
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2012

Solution 9: Data structures

ETH Zurich

1 Choosing data structures

1. You can use a doubly-linked list. An arrayed list is also suitable if it is implemented as
a circular buffer (that is, the list can start from any element in the array), in which case
inserting in the beginning of the list is also efficient. A disadvantage of an arrayed list is
that adding a station will sometimes take longer (when the array does not have any more
free slots and has to be reallocated), an advantage is fast access by index, which is not
mentioned in the scenario, but is always good to have.

A disadvantage of a doubly-linked list is high memory overhead: in addition to the refer-
ence to a station object each list element stores two other references (to the next and the
previous element). Arrayed list also has a memory overhead (free array slots), however for
common implementations this overhead will not be as high.

2. A hash table with names (strings) as keys and phone numbers as values, because hash
table allows efficient access by key.

3. A stack, because the step that was added last is always the first to roll back.

4. A linked list, because it supports efficient insertion of the elements of the second list into
the proper place inside the first list while merging. The insertion is done by re-linking
existing cells and does not require creating a copy of either of the lists.

5. A queue, because the first call added to the data structure should be the first one to be
processed.

2 Short trips: take two

Listing 1: Class SHORT TRIPS

note
description: ”Short trips.”

class
SHORT TRIPS

inherit
ZURICH OBJECTS

feature −− Explore Zurich

highlight short distance (s: STATION)
−− Highight stations reachable from ‘s’ within 3 minutes.

require

1



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2012

station exists: s /= Void
do
create times
highlight reachable (s, 3 ∗ 60)

end

feature {NONE} −− Implementation

times: V HASH TABLE [STATION, REAL 64]
−− Table that maps a station to the maximum time that was left after visiting that

station.
−− Stations that were never visited, are not in the table.

highlight reachable (s: STATION; t: REAL 64)
−− Highlight stations reachable from ‘s’ within ‘t’ seconds.

require
station exists: s /= Void

local
line: LINE
next: STATION

do
if t >= 0.0 and (not times.has key (s) or else times [s] < t) then

times [s] := t
Zurich map.station view (s).highlight
across

s.lines as li
loop

line := li.item
next := line.next station (s, line.north terminal)
if next /= Void then

highlight reachable (next, t − s.position.distance (next.position) / line.speed)
end
next := line.next station (s, line.south terminal)
if next /= Void then

highlight reachable (next, t − s.position.distance (next.position) / line.speed)
end

end
end

end

end

3 Bags

Listing 2: Class LINKED BAG

class
LINKED BAG [G]

feature −− Access

occurrences (v: G): INTEGER

2



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2012

−− Number of occurrences of ‘v’.
local

c: BAG CELL [G]
do
from

c := first
until

c = Void or else c.value = v
loop

c := c.next
end
if c /= Void then
Result := c.count

end
ensure

non negative result: Result >= 0
end

feature −− Element change

add (v: G; n: INTEGER)
−− Add ‘n’ copies of ‘v’.

require
n positive: n > 0

local
c: BAG CELL [G]

do
from

c := first
until

c = Void or else c.value = v
loop

c := c.next
end
if c /= Void then

c.set count (c.count + n)
else
create c.make (v)
c.set count (n)
c.set next (first)
first := c

end
ensure

n more: occurrences (v) = old occurrences (v) + n
end

remove (v: G; n: INTEGER)
−− Remove as many copies of ‘v’ as possible, up to ‘n’.

require
n positive: n > 0

local
c, prev: BAG CELL [G]

3



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2012

do
from

c := first
until

c = Void or else c.value = v
loop

prev := c
c := c.next

end
if c /= Void then
if c.count > n then

c.set count (c.count − n)
elseif c = first then

first := first.next
else

prev.set next (c.next)
end

end
ensure

n less: occurrences (v) = (old occurrences (v) − n).max (0)
end

subtract (other: LINKED BAG [G])
−− Remove all elements of ‘other’.

require
other exists: other /= Void

local
c: BAG CELL [G]

do
from

c := other.first
until

c = Void
loop

remove (c.value, c.count)
c := c.next

end
end

feature {LINKED BAG} −− Implementation

first: BAG CELL [G]
−− First cell.

end

4


	Choosing data structures
	Short trips: take two
	Bags

