
Chair of Software Engineering

Einführung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 7

2

News (Reminder)

Mock exam next week!

You have to be present

 The week after we will discuss the results

 Assignment 7 due on November 14

3

Today

 Inheritance

 Genericity

4

Inheritance

Principle:
Describe a new class as extension or specialization of an
existing class
 (or several with multiple inheritance)

If B inherits from A :

 As modules: all the services of A are available in B
 (possibly with a different implementation)

 As types: whenever an instance of A is required, an
 instance of B will be acceptable
 (“is-a” relationship)

5

Let's play Lego!

BRICK

LEGO_BRICK

LEGO_BRICK_WITH_HOLE LEGO_BRICK_SLANTED

6

Class BRICK

deferred class
 BRICK

feature
 width: INTEGER
 depth: INTEGER
 height: INTEGER
 color: COLOR

 volume: INTEGER
 deferred
 end
end

7

Class LEGO_BRICK

class
 LEGO_BRICK

inherit
 BRICK

feature
 number_of_nubs: INTEGER

 volume: INTEGER
 do
 Result := ...
 end
end

Inherit all features of
class BRICK.

New feature, number
of nubs

Implementation of
volume.

8

Class LEGO_BRICK_SLANTED

The feature volume is
going to be redefined

(=changed). The feature
volume comes from

LEGO_BRICK

class
 LEGO_BRICK_SLANTED

inherit
 LEGO_BRICK
 redefine
 volume
 end

feature
 volume: INTEGER
 do
 Result := ...
 end
end

9

Class LEGO_BRICK_WITH_HOLE

class
 LEGO_BRICK_WITH_HOLE

inherit
 LEGO_BRICK
 redefine
 volume
 end

feature
 volume: INTEGER
 do
 Result := ...
 end
end

The feature volume is
going to be redefined

(=changed). The feature
volume comes from

LEGO_BRICK

10

Inheritance Notation

volume++

BRICK

LEGO_BRICK

LEGO_BRICK_WITH_HOLE LEGO_BRICK_SLANTED

+

+ +

volume*

volume+

*

volume++

Notation:

 Deferred *

 Effective +

 Redefinition ++

11

Deferred

 Deferred

 Deferred classes can have deferred features.

 A class with at least one deferred feature must
be declared as deferred.

 A deferred feature does not have an
implementation yet.

 Deferred classes cannot be instantiated and
hence cannot contain a create clause.

Can we have a deferred class with no deferred
features?

12

Effective

 Effective

 Effective classes do not have deferred features
(the “standard case”).

 Effective routines have an implementation of
their feature body.

13

Precursor

 If a feature was redefined, but you still wish to call
the old one, use the Precursor keyword.

volume: INTEGER
 do
 Result := Precursor - ...
 end

15

Today

 Inheritance

 Genericity

16

Genericity

 Genericity lets you parameterize a class. The
parameters are types. A single class text may be
reused for many different types.

17

Genericity

LIST_OF_
CARS

SET_OF_
CARS

LINKED_LIST_
OF_CARS

LIST_OF_
CITIES

LIST_OF_
PERSONS

Abstraction

Specialization

Type parameterization Type parameterization

Genericity

Inheritance

18

A generic list
Formal generic parameter

Actual generic parameter

class LIST [G] feature

 extend (x : G) ...

 last : G ...

end

To use the class: obtain a generic derivation, e.g.

cities : LIST [CITY]

19

] -> RESOURCE

A generic list with constraints

class
 STORAGE [G

inherit
 LIST [G]

feature
 consume_all
 do
 from start until after
 loop
 item.consume
 forth
 end
 end
end

constrained generic parameter

The feature item is
checked for

conformance with
RESOURCE. We can

assume this.

The feature item is
of type G. We cannot

assume consume.

20

Type-safe containers

 Using genericity you can provide an implementation of
type safe containers.

 x: ANIMAL
 animal_list: LINKED_LIST [ANIMAL]
 a_rock: MINERAL

 animal_list.put (a_rock) -- Does this rock?

21

Definition: Type

We use types to declare entities, as in

x : SOME_TYPE

With the mechanisms defined so far, a type is one of:

 A non-generic class e.g. METRO_STATION

 A generic derivation, i.e. the name of a class
followed by a list of types, the actual generic
parameters, in brackets (also recursive)
 e.g. LIST [ARRAY [METRO_STATION]]

LIST [LIST [CITY]]
TABLE [STRING, INTEGER]

22

So, how many types can I possibly get?

Two answers, depending on what we are talking about:

 Static types

 Static types are the types that we use while writing
Eiffel code to declare types for entities (arguments,
locals, return values)

 Dynamic types

 Dynamic types on the other hand are created at run-
time. Whenever a new object is created, it gets assigned
to be of some type.

23

Static types

class EMPLOYEE

feature

 name: STRING

 birthday: DATE

end

class DEPARTMENT

feature

 staff: LIST [EMPLOYEE]

end

bound by the program text:
EMPLOYEE

STRING

DATE

DEPARTMENT

LIST[G]
becomes LIST[EMPLOYEE]

24

Object creation, static and dynamic types

class TEST_DYNAMIC _CREATION
feature
 ref_a: A; ref_b: B
 -- Suppose B, with creation feature make_b,
 -- inherits from A, with creation feature make_a

 do_something
 do
 create ref_a.make_a
 -- Static and dynamic type is A

 create {B} ref_a.make_b
 -- Static type is A, dynamic type is B

 create ref_b.make_b
 ref_a := ref_b
 end
end

25

Dynamic types: another example

class SET[G] feature
 powerset: SET[SET[G]] is
 do
 create Result
 -- More computation…
 end

 i_th_power (i: INTEGER): SET[ANY]
 require i >= 0
 local n: INTEGER
 do
 Result := Current
 from n := 1 until n > i loop
 Result := Result.powerset
 n := n + 1
 end
 end
end

Dynamic types from i_th_power :

SET[ANY]

SET[SET[ANY]]

SET[SET[SET[ANY]]]

…

From http://www.eiffelroom.com/article/fun_with_generics

