ETHZ D-INFK Introduction to Programming — Mock Exam

Prof. Dr. B. Meyer

Fall 2012

Mock Exam 2

ETH Zurich
December 5, 2012

Name:

Group:

Question Points
1
2
3
4
Total
Grade

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2012

1 Terminology (10 Points)
Goal

This task will test your understanding of the object-oriented programming concepts presented
so far in the lecture. This is a multiple-choice test.

Todo

Place a check-mark in the box if the statement is true. There may be multiple true statements
per question; 0.5 points are awarded for checking a true statement or leaving a false statement
un-checked, 0 points are awarded otherwise.

1. A class...
a. is the description of a set of possible run-time objects to which [
the same features are applicable.

b. can only exist at runtime. O
c. cannot be declared as expanded; only objects can be expanded. [

d. may have more than one creation procedure. O

2. Procedures, functions and attributes.

a. A query needs to be a function. O
b. A function cannot modify any objects. O
¢. An attribute is stored directly in memory. d
d. A procedure can return values that are computed. O
3. What are the possible changes in a function redefinition?
a. To change the implementation. O
b. To change the list of argument types. (]
c. To change the contract. U
d. To change the result type. O

4. Clients and suppliers.
a. A supplier of a software mechanism is a system that uses the [
mechanism.
b. A client of a software mechanism cannot be a human. O

c. A client of a software mechanism is a system of any kind, O
software or not, that uses the mechanism. For its clients, the
mechanism is a supplier.

d. A supplier of a set of software mechanisms provides an inter- [
face to its clients.

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2012

5. Polymorphism.
a. A data structure is polymorphic if it may contain references [
to objects of different types.

b. An assignment or argument passing is polymorphic if its target [
variable and source expression have different types.

c. Polymorphism is the capability of objects to change their [
types at run time.

d. An entity or expression is polymorphic if, as a result of poly- O
morphic attachments, it may at run time become attached to
objects of different types.

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2012

2 Design by Contract (10 Points)
2.1 Task

Your task is to fill in the contracts (preconditions, postconditions, class invariants, loop variants
and invariants) of the class CAR according to the given specification. You are not allowed to
change the class interface or the given implementation. Note that the number of dotted lines
does not indicate the number of missing contracts.

2.2 Solution

class

CAR

create
make

feature { NONE} —— Creation
make
—— Creates a default car.
require

do
create {LINKED_LIST [CAR_DOOR)]} doors.make

ensure

feature {ANY} —— Access

is_convertible : BOOLEAN
—— Is the car a convertible (cabriolet)? Default: no.

doors: LIST [CAR_DOOR)
—— The doors of the car. Number of doors must be 0, 2 or 4. Default: 0.

color: COLOR
—— The color of the car. ‘Void’ if not specified . Default: ‘Void’.

feature {ANY} —— Element change

42

44

46

48

50

92

54

56

98

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2012

set_convertible (a-is_convertible : BOOLEAN)

require

is_convertible := a_is_convertible
ensure

set_doors (a_doors: ARRAY [CAR_DOOR))
require

local
door_index: INTEGER
do
doors.wipe_out
if a_doors /= Void then
from
door_index := 1
invariant

until
door_index > a_doors.count
loop
doors.extend (a_doors [door_index])
door_index := door_index + 1
variant

ETHZ D-INFK Introduction to Programming — Mock Exam

Prof. Dr. B. Meyer Fall 2012

L
end
96 end
ensure

98
100
102
104 end

106 set_color (a-color: COLOR)
require
108

110

112

114 do
color := a_color
116 ensure

LL 8
2
12

124
invariant
126

128

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2012

3 Inheritance and polymorphism (14 Points)

Classes PRODUCT, COFFEE, ESPRESSO, CAPPUCCINO and CAKE given below are part
of the software system used by a coffee shop to keep track of the products it has.

1 deferred class PRODUCT
3 feature —— Main operations

5 setprice (r: REAL)
—— Set ‘price’ to ‘r’.

7 require

r_non_negative: r >= 0
9 do

price ;=1
11 ensure

price_set: price =1
13 end
15 feature —— Access

17 price: REAL
—— How much the product costs

19
description: STRING
21 —— Brief description
deferred
23 end

25 invariant
non_negative_price: price >= 0
27 walid_description : description /= Void and then not description.is_empty

29 end

1 deferred class COFFEE

3 inherit
PRODUCT
5
feature —— Main operations
7
make
9 —— Prepare the coffee.
do
11 print (I am making you a coffee.”)
end
13
end
2

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming — Mock Exam
Fall 2012

class ESPRESSO
4
inherit

6 COFFEE

8 create

set_price
10

feature —— Access

12

description: STRING
14 do

Result := ” A small strong coffee”

16 end

18 end

class CAPPUCCINO
2

inherit
4 COFFEE

6 create
set_price
8
feature —— Access
10
description: STRING
12 do

Result := ” A coffee with milk and milk foam”

14 end
16 end

class CAKFE
2
inherit
4 PRODUCT
rename set_price as make
6 end

8 create

make
10

feature —— Access

12

description: STRING
14 do

Result := ” A sweet dessert”

16 end

18 end

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2012

Given the following variable declarations:

product: PRODUCT

coffee: COFFEFE

espresso: ESPRESSO
cappuccino: CAPPUCCINO
cake: CAKE

specify, for each of the code fragments below, if it compiles. If it does not compile, explain
why this is the case. If it compiles, specify the text that is output to the screen when the code
fragment is executed.

1. create product
i0. put_string (product. description)

2. create { ESPRESSO} product.set_price (5.20)
i0. put_string (product. description)

3. create cappuccino.make
i0. put_string (cappuccino.description)

4. create { ESPRESSO} cappuccino.set_price (5.20)
i0. put_string (cappuccino.description)

5. create cake.make (6.50)
product := cake
i0. put_string (product. description)

ETHZ D-INFK

Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer

Fall 2012

6. create { ESPRESSO} product.set_price (5.20)
espresso = product

0. put_string (espresso. description)

7. create { CAPPUCCINO} coffee.set_price (5.50)
coffee . make

10

10

12

14

16

18

20

2

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2012

4 Recursion: Deleting directories (10 Points)

In this question you will work with the FILFE class, which represents both directories and regular
files. You can iterate through the files contained in a directory using an internal cursor:

from
directory . start
until
directory . after
loop
—— Do something with ‘directory.item’
directory . forth
end

The delete command of class FILE physically deletes the file from disk and changes the value
of the ezists query on the corresponding FILE object to False. For a directory this command
only works if the directory is physically empty (i.e. no files physically exist in the directory).

4.1 Task 1

Take a look at the following procedure delete_all . It deletes a given directory with all its content
using recursion:

delete_all (directory: FILE)
require
directory /= Void and then (directory.exists and directory.is_directory)
do
from
directory . start
until
directory . after
loop
if directory .item. is_directory then
delete_all (directory .item)
else —— regular file
directory . item. delete
end
directory . forth
end
directory . delete
ensure
not directory. exists
end

Your task is to rewrite delete_all so that it does not use recursion (the procedure is not
allowed to call itself). You are not allowed to add new features. You are only allowed to call
those features of class FILE that are already used in the recursive implementation of delete_all .

You can use the class ARRAYFED_LIST for this task. An excerpt is given at the end of the
question.

delete_all (directory: FILFE)

require
directory /= Void and then (directory.ezxists and directory.is_directory)
local

11

10

12

16

18

20

22

26

28

30

32

36

38

40

42

46

48

50

52

56

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2012
do

98

60

62

66

68

70

72

76

78

80

82

© 00 O U Wi

ETHZ D-INFK Introduction to Programming — Mock Exam

Prof. Dr. B. Meyer Fall 2012
ensure
not directory. exists
end
4.2 Task 2

With the following example directory and the invocation
delete_all (create {FILE}.make (”C:\Temp\to_del”))

please give the order in which the files will be deleted for (a) the given recursive algorithm and
(b) your non-recursive algorithm (e.g.: 3,6, 7, 8,9, 2, 5, 4, 1).

C:\ Temp\to_del

C:\ Temp\to_del\1

C:\ Temp\ to_del\1\ foo.tat

C:\ Temp\ to_del\2

C:\ Temp\ to_del\2\3

C:\ Temp\ to_del\2\3\ foobar.txt
C:\ Temp\ to_del\2\ bar.tzt

C:\ Temp\ to_del\ another_file. txt
C:\ Temp\ to_del\ file. txt

13

ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2012

4.3 ARRAYED _LIST [G] (Excerpt)

class
ARRAYED_LIST [G]

feature { NONE} —— Initialization
feature —— Access

first : like item
—— Item at first position

item: G
—— Current item

last: like item
—— Item at last position

feature —— Status report

after: BOOLEAN
—— Is there no valid cursor position to the right of cursor?

before: BOOLEAN
—— Is there no valid cursor position to the left of cursor?

feature —— Cursor movement
back
—— Move to previous item.
finish
—— Move cursor to last position.
—— (Go before if empty)
forth
—— Move cursor to next position.
start
—— Move cursor to first position.
feature —— Element change

extend (v: like item)
—— Add v’ to end.

—— Do not move cursor.
put_front (v: like item)
—— Add ‘v’ to beginning.

—— Do not move cursor.

put_left (v: like item)

14

ETHZ D-INFK Introduction to Programming — Mock Exam

Prof. Dr. B. Meyer

Fall 2012

—— Add ‘v’ to the left of cursor position.
—— Do not move cursor.

put_right (v: like item)
—— Add ‘v’ to the right of cursor position.
—— Do not move cursor.

feature —— Removal

remove
—— Remove current item.
—— Move cursor to right neighbor
—— (or after if no right neighbor).

remove_left

—— Remove item to the left of cursor position.
—— Do not move cursor.

remove_right

—— Remove item to the right of cursor position.
—— Do not move cursor.

end —— class ARRAYED_LIST

15

	Terminology (10 Points)
	Design by Contract (10 Points)
	Task
	Solution

	Inheritance and polymorphism (14 Points)
	Recursion: Deleting directories (10 Points)
	Task 1
	Task 2
	ARRAYED_LIST [G] (Excerpt)

