
Java and C# in Depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Exercise Session – Week 10

GC and Managed Memory Leaks

2
Java and C# in depth

Overview

Managed memory

• Why GC?

• GC overview

• Tricks & Memory Leaks

• Performance considerations

3
Java and C# in depth

Pre-GC era

void Foo(int k){

 double* a = new double[k];

…

delete a;// memory leak! Plus, Undefined

behavior (UB)

}

Bar* Create(){return new Bar;}

void Foo2(){

Bar* g = Create();

…//forgot to delete, memory leak!

}

void Foo3(int k){

int* bar = new int[k];

…

delete[] bar;

..

delete[] bar; //UB

}

void Foo4(){

 Bar* g = new Bar;

…

free(g); //UB, memory leak!

void Foo5(){

Bar* g = new Bar;

delete g;

f.crunch();//UB!

}

4
Java and C# in depth

Pre-GC era 2

Bar* Create(){..}

void BetterFoo(){

std::shared_ptr<Bar> ref(Create());//1 ref

{

 std::shared_ptr<Bar> ref2(ref)// 2 refs

} // 1 ref

..

}//0 refs, Bar deleted

Reference counting to the rescue!

Is this enough?

5
Java and C# in depth

Cyclic references

void FooNode(){

 Node *a = new Node; Node *b = new Node;

 a->Next = new std::shared_ptr(b);

 b->Next = new std::shared_ptr(a);

..

}

Even if there is no references
outside to a, or b, they still
cannot be deleted!

Need another approach!

6
Java and C# in depth

GC essentials: Mark & Compact

Stage 1: Mark reachable objects from the roots

What are roots?

• All local (stack) variables in all threads

• Static variables

• Content of CPU registers

• etc

Mark

Stage 2: Compact everything that is
marked. Everything else is garbage (no
way to reach it)

Compact

Stage 0: Stop all running threads

7
Java and C# in depth

GC: finalization

File f = new File(…); //consumes the

machine resources

How does a framework know that it needs

to close a file?

Garbage collection is non-
deterministic!

Need to finalize some objects

• C# : ~File(){..}

• Java: protected void finalize(){…}

8
Java and C# in depth

GC: Mark & Compact Revised(C#)

Stage 0: Stop all running threads

Stage 1: Mark reachable objects from the roots. Put

the finalizable objects to Freachable (finalizer-

reachable queue), also mark them

Stage 2: Compact everything that is marked.

Everything else is garbage (no way to reach it)

Finalizer thread: Maintains the finalization queue, runs

object finalizers in own thread. May run in parallel

to actual program execution

Consequences:

• Finalizable objects take longer to be
collected => do not use without
necessity

9
Java and C# in depth

GC: generations

Optimization technique: do not process the entire heap, until necessary

10
Java and C# in depth

GC: Non-determinism

SqlConnection conn = new SqlConnection(…);

~SqlConnection{//cleanup unmanaged resources, close the physical connection}

• When will connection be closed?

• Is it guaranteed to close at all?

“GC is when the operating environment automatically reclaims memory that is no
longer being used by the program. It does this by tracing memory starting from
roots to identify which objects are accessible”

The job of a firefighter is "driving a red truck and spraying water."

Insights:

• If the amount of RAM available to the runtime is greater than the amount of
memory required by a program, then a memory manager which employs the
null garbage collector is a valid memory manager.

• A correctly-written program cannot assume that finalizers will ever run at
any point prior to program termination.

11
Java and C# in depth

GC: Disposable pattern(C#)

interface IDisposable{ void Dispose();} - Deterministic finalization

For unmanaged resource holders – Disposable pattern:

class Holder : IDisposable{

 //some unmanaged resource

 ~Holder(){

 Dispose(false);

 }

 protected virtual void Dispose(bool disposing){// if class is sealed, this method is private

 if(disposing){

 //managed cleanup

 }

 //free unmanaged resources: close file handlers, db connections, free unmanaged memory

 }

 public void Dispose(){

 Dispose(true);

 GC.SupressFinalize(this);

 }

}

12
Java and C# in depth

GC: managed memory leak -1

class Processor

{

 MailManager _bar;

 public Processor(MailManager bar) {

 _bar = bar;

 _bar.NewMail += OnNewMail;

 }

 void OnNewMail(object sender, EventArgs e) { }

 public void DoSmth(){..}

 }

class MailManager

{

 public event EventHandler NewMail;

 //other methods

 }

var bar = new MailManager();

while(!bar.Stopped)

{

 var f = new Processor(bar);

 f.DoSmth();

}

Memory leak because of the event
subscription.

Ways to solve:

• Unsubscribe, when object is not needed

• WPF WeakEventManager

• Custom Weak Events implementation

13
Java and C# in depth

GC: managed memory leak - 2

A snippet from server application:

while(!IsStopped) {

 var data = (Foo)HttpContext.Current.Session[“userData"]

 LocalDataStoreSlot myData;

 myData=Thread.GetNamedDataSlot(“userData”);

 Thread.SetData(myData, data);

 //continue to listen

}

Thread Local Storage: continues to keep data, until it is explicitly cleared. Can be thought
as static dictionary.

Again, the problem is that objects live longer, than needed – GC is unable to help with
that!

while(!IsStopped){

 var data = new Foo ();

dict.add (“userData”, data);

}

How to solve? Thread.SetData(myData, null), when finished with processing

14
Java and C# in depth

GC: enough memory?(C#)

Large Object Heap (LOH) stores the objects:

• sizeof(object) >= 85 kb

• double[], with size >= 1000

85k – threshold, when compacting does not provide

any performance improvements

Memory in LOH does not get compacted =>

May end with OutOfMemoryException, even if there

is enough memory in LOH’s fragments

Insight:

• Use large objects with care

15
Java and C# in depth

GC: out of scope

• Object resurrection

• Unmanaged memory leaks

• Critical Finalization

• Weak References

• Interaction with unmanaged memory(memory pins)

• GC modes (server vs client)

• Debugging memory leaks(windbg, perfmon)

16
Java and C# in depth

References

• GC explained : http://blogs.msdn.com/b/oldnewthing/archive/2010/08/09/10047586.aspx

• J. Richter weak events: http://wintellect.com/blogs/jeffreyr/weak-event-handlers

• Disposable pattern: http://msdn.microsoft.com/en-us/library/fs2xkftw.aspx

• Large Object Heap: http://msdn.microsoft.com/en-us/magazine/cc534993.aspx

http://blogs.msdn.com/b/oldnewthing/archive/2010/08/09/10047586.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2010/08/09/10047586.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2010/08/09/10047586.aspx
http://wintellect.com/blogs/jeffreyr/weak-event-handlers
http://wintellect.com/blogs/jeffreyr/weak-event-handlers
http://wintellect.com/blogs/jeffreyr/weak-event-handlers
http://wintellect.com/blogs/jeffreyr/weak-event-handlers
http://wintellect.com/blogs/jeffreyr/weak-event-handlers
http://wintellect.com/blogs/jeffreyr/weak-event-handlers
http://msdn.microsoft.com/en-us/library/fs2xkftw.aspx
http://msdn.microsoft.com/en-us/library/fs2xkftw.aspx
http://msdn.microsoft.com/en-us/library/fs2xkftw.aspx
http://msdn.microsoft.com/en-us/magazine/cc534993.aspx
http://msdn.microsoft.com/en-us/magazine/cc534993.aspx
http://msdn.microsoft.com/en-us/magazine/cc534993.aspx

