
Java and C# in Depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Exercise Session – Week 8

2
Java and C# in depth

Java 8 release date

• Was early September 2013

• Currently moved to March 2014

• http://openjdk.java.net/projects/jdk8/milestones

• http://mreinhold.org/blog/secure-the-train

http://openjdk.java.net/projects/jdk8/milestones
http://openjdk.java.net/projects/jdk8/milestones
http://mreinhold.org/blog/secure-the-train
http://mreinhold.org/blog/secure-the-train
http://mreinhold.org/blog/secure-the-train
http://mreinhold.org/blog/secure-the-train
http://mreinhold.org/blog/secure-the-train
http://mreinhold.org/blog/secure-the-train

3
Java and C# in depth

Quiz 1: What is printed? (Java)

class MyTask implements Runnable {

 public void run() {

 throw new RuntimeException("Help!");

 }

}

public static void main(String[] args) {

 try {

 (new Thread(new MyTask())).start();

 System.out.println("Everything is ok!");

 } catch (RuntimeException e) {

 System.out.println("Something went wrong...");

 }

}

«Everything is ok!

Exception in thread...: Help!»

Exceptions from other threads are not propagated to main

4
Java and C# in depth

Quiz 1: A C# solution

In C# you can use asynchronous delegates to propagate

exceptions to the main thread:

static void MyTask() { throw new Exception("Help!"); }

delegate void MyTaskInvoker();

public static void Main() {

 try {

 MyTaskInvoker method = MyTask;

 IAsyncResult res = method.BeginInvoke(null, null);

 method.EndInvoke(res);

 // This doesn’t work:

 // new Thread(MyTask).Start();

 } catch (Exception) {

 Console.WriteLine("Something went wrong");

 }

5
Java and C# in depth

Quiz 2: What happens (C#)?

static void MyTask() {

 try {

 ... // Some heavy work

 } catch { ...

 } finally {

 Console.WriteLine("Very important cleanup");

 }

}

public static void Main() {

 Thread t = new Thread(MyTask);

 t.IsBackground = true;

 t.Start();

 ...

 t.Interrupt();

}

finally block may not be executed:

the main thread may exit before that

and the application does not wait for

background threads to finish

6
Java and C# in depth

Quiz 3: What can go wrong? (Java)

public walkUnderTheRain() {

 if(!isRaining) {

 try { wait(); }

 catch (InterruptedException e) {…}

 }

 System.out.println("Walking under the rain!");

}

Shared variable

Don’t expect that the first interrupt we get is the one we need: use while instead of if

To call wait the enclosing method must be synchronized

(otherwise IllegalMonitorStateException is thrown at runtime)

7
Java and C# in depth

Quiz 3: A C# solution: wait handles

static EventWaitHandle rain = new AutoResetEvent(false);

static void WalkUnderTheRain() {

 rain.WaitOne();

 Console.WriteLine("Walking under the rain!”);

}

public static void Main() {

 new Thread(WalkUnderTheRain).Start();

 Thread.Sleep(500);

 rain.Set();

}

8
Java and C# in depth

Quiz 4.a: What happens? (Java)

class MyTask implements Runnable {

 public void run() {

 while (true) { }

 }

}

public static void main(String[] args) {

 try {

 Thread t = new Thread(new MyTask());

 t.start();

 t.interrupt();

 t.join();

 System.out.println("t interrupted");

 } catch (InterruptedException e) {…}

}

run does not handle interrupts

this code will be never executed

9
Java and C# in depth

Quiz 4.a: How to handle interrupts?

1. Calling methods that throw InterruptedException

public synchronized void run() {

 while (true) try {

 sleep (200);

 } catch (InterruptedException e) {

 return;

 }

}

2. Checking Thread.interrupted flag

public void run() {

 while (true) {

 if (Thread.interrupted()) { return; }

 }

}

10
Java and C# in depth

Quiz 4.b: What happens? (C#)

static void Run() { while (true) { } }

public static void Main() {

 Thread t = new Thread(Run);

 t.Start();

 Thread.Sleep(500);

 t.Abort();

 t.Join();

 Console.WriteLine("t aborted");

}

This code is executed.

Unlike Interrupt, Abort stops the

thread even if it’s currently running

11
Java and C# in depth

Quiz 4.c: What happens (C#)?

static void Run() {

 while (true) {

 try {

 Thread.Sleep(1000);

 } catch (ThreadAbortException e) {

 Console.WriteLine("Ha-ha! I will be executing FOREVER!");

 }

 }

}

public static void Main() {

 Thread t = new Thread(Run);

 t.Start();

 Thread.Sleep(500);

 t.Abort();

 t.Join();

 Console.WriteLine("t aborted");

}

Thread t is still aborted!

ThreadAbortException is automatically

rethrown at the end of the catch block if

Thread.ResetAbort is not called

12
Java and C# in depth

Quiz 5: Is this class thread-safe? (Java)

class Counter {

 private int c = 0;

 public void increment() {

 c++;

 }

 public void decrement() {

 c--;

 }

 public int value() {

 return c;

 }

}

Counter count = new Counter;

...

// In thread 1:

count.increment();

...

// In thread 2:

count.increment();

...

// In the main thread after joining

// threads 1 and 2:

System.out.println(count.value());

c++ is not atomic =>

the result might be 1

13
Java and C# in depth

Quiz 5: Is this class thread-safe? (Java)

class Counter {

 public int c = 0;

 public synchronized void increment() {

 c++;

 }

 public synchronized void decrement() {

 c--;

 }

 public synchronized int value() {

 return c;

 }

}

All attributes must be

accessible only through

synchronized methods
private

14
Java and C# in depth

Quiz 5: Is this class thread-safe? (Java)

class Counter {

 ... // Everything as before

 public static synchronized void increment_some(Counter count) {

 count.c++;

 }

 Counter(int c) {

 this.c = c;

 }

}

No: static methods use different

object as a lock!

OK: constructors need not (and

cannot) be synchronized, they

are executed once per object

15
Java and C# in depth

Quiz 6: What is printed? (Java)

public class Test extends Thread {
 boolean keepRunning = true;

 public static void main(String[] args) {
 Test t = new Test(); t.start();
 Thread.sleep(1000);
 t.keepRunning = false;
 System.out.println("keepRunning is false");
 }

 public void run() {
 while (keepRunning) {}
 System.out.println("finished");
 }
}

Thread might cache values

locally. Here, it will run forever!

Fix by declaring

attributes volatile

16
Java and C# in depth

Quiz 7: Does it work? (C#)

volatile static bool go;

volatile static DateTime dt;

static void Wait() {

 while (!go) { }

 Console.WriteLine(dt);

 }

public static void Main() {

 new Thread(Wait).Start();

 Thread.Sleep(1000);

 dt = DateTime.Now;

 go = true;

}

Here we want to see the change

to dt made by the main thread

Compilation error:

Objects of non-primitive value types

cannot be cached by the processor

=> need not (and cannot) be volatile

17
Java and C# in depth

C# volatile

• Only (up to) 32bit types can be declared volatile.

• Reference types (just the reference is volatile)

• sbyte, byte, short, ushort, int, uint, char, float, bool

• Threads will always get the most up-to-date value

for volatile fields.

• Fields declared as volatile are not cached.

18
Java and C# in depth

Quiz 8: Thread safe? (Java)

public static long data;

new Thread(new Runnable() {
 public void run() {
 while (true) {
 if (data == target) {
 doSomething();
 }
 }
 }
}).start();

new Thread(new Runnable() {
 public void run() {
 while (true) {
 data = someFunction();
 }
 }
}).start();

Shared data:

Two threads:

Should be declared volatile

19
Java and C# in depth

Java Language Specification

17.7. Non-atomic Treatment of double and long

For the purposes of the Java programming language memory

model, a single write to a non-volatile long or double value is

treated as two separate writes: one to each 32-bit half. This

can result in a situation where a thread sees the first 32 bits of

a 64-bit value from one write, and the second 32 bits from

another write.

Writes and reads of volatile long and double values are always

atomic.

Writes to and reads of references are always atomic,

regardless of whether they are implemented as 32-bit or 64-bit

values.

20
Java and C# in depth

Quiz 9: Communication via Mutex (C#)

• Given:

• 1 Mutex

• 2 Threads that can access only that Mutex

• How can you transfer data from one thread to the

other, using ONLY the Mutex as a communication.

21
Java and C# in depth

Quiz 9: Communication via Mutex (C#)

ReleaseMutex Releases the Mutex once.

WaitOne() Blocks the current thread until the

current WaitHandle receives a

signal. (Inherited from WaitHandle.)

Return Value: true if the current instance

receives a signal. If the current instance is

never signaled, WaitOne never returns.

WaitOne(Int32) Blocks the current thread until the

current WaitHandle receives a signal, using a

32-bit signed integer to specify the time

interval. (Inherited from WaitHandle.)

Return Value: true if the current instance

receives a signal; otherwise, false.

http://msdn.microsoft.com/en-us/library/system.threading.mutex.releasemutex.aspx
http://msdn.microsoft.com/en-us/library/58195swd.aspx
http://msdn.microsoft.com/en-us/library/cc189907.aspx

22
Java and C# in depth

Quiz 9: Communication via Mutex (C#)

void SendData(int data)
{
 for (int i = 0; i < 32; i++) {
 if (((data >> i) & 0x1) == 1) {
 mutex.WaitOne();
 Thread.Sleep(timeout);
 mutex.ReleaseMutex();
 } else {
 Thread.Sleep(timeout);
 }
 }
}

void ReceiveData()
{
 for (int i = 0; i < 32; i++)
{
 if (mutex.WaitOne(0)) {
 mutex.ReleaseMutex();
 // bit is 0
 } else {
 // bit is 1
 }
 Thread.Sleep(timeout);
 }
}

23
Java and C# in depth

Questions?

