
Java and C# in depth
Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

C#: overview by example

2
Java and C# in depth

Bank Account

A Bank Account
§ maintain a balance (in CHF) of the total amount of money

§ balance can go negative
§ can open an account with an initial sum of money
§ can deposit money on the account

§ deposit makes sense only for a nonnegative amount of money
§ can withdraw money from the account

§ withdraw makes sense only for a nonnegative amount of money

C# implementation: BankAccount class
 public class BankAccount {
 ...
 }

3
Java and C# in depth

Attribute balance

§ maintain a balance (in CHF) of the total amount of money

 public class BankAccount {

 // Attribute 'balance', inaccessible by clients
 private int balance;

 // Definition of setter and getter for 'balance'
 public int Balance {
 get { return balance; }
 protected set { balance = value; }
 }

 ...
 }

4
Java and C# in depth

Constructor: open a new account

§ can open an account with an initial sum of money

 public class BankAccount {
 ...
 // no-arg constructor
 public BankAccount() { Balance = 0;}

 // 1-arg constructor
 public BankAccount(int initialBalance) {
 if (initialBalance >= 0) {
 Balance = initialBalance;
 }
 else throw new BankAccountException(“…”)
 }
 }

 ...
 }

5
Java and C# in depth

Method deposit

§ can deposit money on the account
§ deposit is effective only for a nonnegative amount of money

 public class BankAccount {
 ...

 // deposit 'amount'
 // don't do anything if 'amount' < 0
 public void deposit(int amount) {
 if (amount >= 0) {
 balance = balance + amount;
 }
 }
 ...
 }

6
Java and C# in depth

Method withdraw

§ can withdraw money on the account
§ withdraw is effective only for a nonnegative amount of money

 public class BankAccount {
 ...
 // withdraw allowed ‘amount’
 // access restricted only to “some” clients
 protected virtual int withdraw(int amount) {
 if (amount >= 0) {
 balance = balance – amount;
 return 0;
 }
 else { return -1; }
 }
 ...
 }

7
Java and C# in depth

Premium Bank Account

A special Bank Account:
§ basic functionalities as in a regular Bank Account
§ has a minimum balance and a fixed fee
§ if the balance goes below the minimum balance, the fee is automatically
deducted from the balance

§ example:
§ minimum balance = 200, fee = 15
§ if a withdrawal brings the balance down to 150, an additional 15 is
deducted, so the final balance after the deposit is 135

C# implementation:

 PremiumBankAccount class inheriting from BankAccount
 public class PremiumBankAccount : BankAccount {
 ...
 }

8
Java and C# in depth

New attributes

§  has a minimum balance and a fee

 public class PremiumBankAccount : BankAccount {

 public const int minimumBalance = 200;

 public const int lowBalanceFee = 15;

 ...
 }

9
Java and C# in depth

New constructor

§  construction is as in the BankAccount class

 public class PremiumBankAccount : BankAccount {
 ...

 // constructor
 public PremiumBankAccount(int initialBalance)
 if(initialBalance >= minimumBalance) {
 Balance = initialBalance;}
 else{
 throw new BankAccountException(“…”);
 }
 }

 ...
 }

10
Java and C# in depth

Redefining withdraw

§ if the balance goes below the minimum balance, the fee is automatically
deducted from the balance

 public class PremiumBankAccount : BankAccount {
 ...
 // overrides corresponding method in BankAccount
 protected override int withdraw(int amount) {
 int res = base.withdraw (amount);
 if (res == 0 && Balance < minimumBalance) {
 Balance = Balance - lowBalanceFee;
 return 0;
 }
 else { //handle other cases here }
 }
 ...
 }

11
Java and C# in depth

Clients of the BankAccount Class

§  A client class which runs two instances of BankAccount
using System;
public class BankClient {

 public static void Main(String[] args) {
 BankAccount ba = new BankAccount(0);
 BankAccount bap = new PremiumBankAccount(250);
 Console.WriteLine(ba.Balance);
 Console.WriteLine(bap.Balance);
 ba1.deposit(1800);
 ba2.deposit(100);
 Console.WriteLine(ba.Balance);
 Console.WriteLine(bap.Balance);
 }

}

12
Java and C# in depth

Running a C# application (under Linux)

> mcs bankAccount.cs
> ./bankAccount.exe

 0
 250
 1800
 135

