
Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Java: introduction to
object-oriented features

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Java classes and objects

3
Java and C# in depth

Classes and objects

 The basic encapsulation unit is the class

 as in every object-oriented language

 A class is made of a number of features (or members)

 instance variables (attributes, fields)

 methods

 Classes and features have different levels of visibility

 Objects are class instances

 and classes are sets of objects

 or blueprints for creating objects

 constructors are special methods to create new objects

 in Java, objects are automatically destroyed when no

longer referenced (garbage collection)

 no destructors, but optional finalize methods

4
Java and C# in depth

A simple class example

package ch.ethz.inf.se.javacsharpindepth;

/**

 * @author John H. Doe

 */

public class MainClass {

 // ’main’ must be all lowercase

 public static void main (String[] args) {

 Game myGame = new Game();

 System.out.println("Game starts!");

 myGame.startGame();

 }

}

5
Java and C# in depth

Attributes (instance variables)

 Relate to a class instance

 Declared within the class curly brackets, outside any

method

 Visible at least within the class scope, within any method

of the class

 Automatically initialized to the default values

 0 or 0.0 for numeric types, ’\u0000’ for chars, null for

references, false for booleans

6
Java and C# in depth

Methods (instance methods)

 Relate to an instance and are declared within the class

curly brackets

 May have arguments

 Must have return type (possibly void)

 boolean test(int i, boolean b){

 // some stuff here

 return true;

 }

 Constructors are “special” (more on this later)

7
Java and C# in depth

Information hiding

Attribute and method visibility “modifiers”:

 public: visible everywhere

 protected: visible in the same package and in

subclasses (wherever they are)

 (*): visible in the same package

 private: visible only in the class in which it is defined

Class visibility

 Top level classes can only have default or public visibility

 Nested classes can have any chosen visibility level

 (except for inner classes: see later)

(*) No keyword for “package” visibility: it’s the default

8
Java and C# in depth

The static modifier

When applied to non-local variables and methods

 Relates to a specific class, not to a class instance

 Shared by every object of a certain class

 Accessed without creating any class object

MyClass.myStaticAttribute

MyClass.myStaticMethod()

The static modifier does not apply to top-level classes in

Java

9
Java and C# in depth

Constructors

 Same name as the class

 No return type (not even void)

 An argumentless constructor is provided by default

if no other constructor is explicitly given

10
Java and C# in depth

Local variables

 Declared within a method’s scope

(denoted by curly brackets)

 Visible only within the method’s scope

 De-allocated at method end

 Not automatically initialized

 warning if no explicit initialization is given

11
Java and C# in depth

The keyword this

Refers to the current object

public class Card {

 private int value;

 public int getValue() {

 return value;

 }

 public void setValue(int value) {

 this.value = value;

 }

}

12
Java and C# in depth

Nested classes

A class defined inside another class, that may access its
private data. (Nested is the opposite of “top-level”.)

Variants of nested classes

 Inner class: non-static nested class

 can reference the outer class instance

 there’s a one-to-one correspondence between instances of the

containing and inner class

 static nested class

 no references to the outer class (non-static) instance

 Anonymous (inner) class: inner class without a name,

defined in the middle of a method or initialization block

 no visibility specifiers allowed

 Local (inner) class: inner class with a name, defined in

the middle of a method or initialization block

 no visibility specifiers allowed

13
Java and C# in depth

Anonymous inner class example

public void start(int num) {

 // ActionListener is an interface

 ActionListener listener = new ActionListener()

 // anonymous inner class starts here

 {

 public void actionPerformed(ActionEvent e) {

 // reaction code here; may refer to num

 }

 }; // anonymous inner class ends here

 // other code here

}

 Which design pattern does this example suggest?

14
Java and C# in depth

Anonymous inner class example

public void start(int num) {

 // ActionListener is an interface

 ActionListener listener = new ActionListener()

 // anonymous inner class starts here

 {

 public void actionPerformed(ActionEvent e) {

 // reaction code here; may refer to num

 }

 }; // anonymous inner class ends here

 // other code here

}

This is an instance of the observer design pattern

15
Java and C# in depth

Method overloading

 Using the same name with different argument list

 list can differ in length, argument type, or both

 Example: constructors

 Method signature: name + arguments list

 The return type is not part of the signature

 Tip: overloading may reduce readability: don’t abuse it

16
Java and C# in depth

Method overloading with subtypes

When a method name is overloaded with argument types that

are related by inheritance, method resolution selects the

“closest” available type.

Example: Student is a subtype of Person

 class X {

 // v1

 void foo (Person p) { }

 // v2

 void foo (Student p) { }

 }

X x = new X();

x.foo(new Person()); // Executes v1

x.foo(new Student()); // Executes v2

17
Java and C# in depth

Method overloading with subtypes

When a method name is overloaded with argument types that

are related by inheritance, method resolution selects the

“closest” available type.

Example: Student is a subtype of Person

 class Y { void foo (Person p) { ... } }

 class Z { void foo (Student p) { ... } }

Y y = new Y();

y.foo(new Person()); // OK

y.foo(new Student()); // OK

Z z = new Z();

z.foo(new Person()); // Error

z.foo(new Student()); // OK

18
Java and C# in depth

Operator overloading

 No custom operator overloading is possible

 Only “+” for String is overloaded at language level

 System.out.println(

 “Custom operator overloading ” +
 “would have been nice…”)

19
Java and C# in depth

Method argument passing

 All the primitive types are passed by value

 Inside the method body we work with a local copy

 We return information using the return keyword

 (Object) Reference types are passed by value too, but:

 What is passed by value is the reference (i.e., an object

address)

 Consequently, a method can change the state of the

object attached to the actual arguments through the

reference

20
Java and C# in depth

Variable number of arguments

To pass a variable number of arguments to a method:

 Use a collection (including arrays)

 From Java 5.0: varargs arguments “...”

 public void write(String ... someStrings) {

 for (String aString : someStrings) {

 System.out.println(aString);

 }

 }

 This is just syntactic sugar for an array

 You can pass an array as actual

 The varargs parameter must be the only one of its

kind and the last one in the signature

21
Java and C# in depth

Block initializers (a.k.a. initialization blocks)

 Similar to “anonymous” method bodies

 without signature and return type, only curly brackets and
possibly the static modifier

 The code within them is executed during initialization

 Can be static or non-static

 Useful to perform some computation before the

constructors are invoked

 Factor out code common to multiple constructors

 Initialize final static variables

22
Java and C# in depth

Finalizer methods

The Object class includes a method:

 protected void finalize()

which can be overridden in any class.

The finalize method is called just before garbage collection

 May never be called, if an object is not collected

 No real-time guarantee that the object is collected right

after finalize is executed

What’s for: do some final clean-up upon object disposal

 E.g.: resources not properly released beforehand

It is not meant for general release of resources

 Files and other I/O resources have “close/destroy”

methods, which should be called explicitly

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Inheritance, polymorphism,
and dynamic dispatching

24
Java and C# in depth

Inheritance

 We can explicitly “extend” from one class only

 Otherwise, every class implicitly extends Object

 Public and protected inherited fields and methods are
available in the heir.

 Package-visible (no visibility specifiers) inherited
members are visible only in heirs within the same
package.

25
Java and C# in depth

Overriding and dynamic dispatching

 Overriding: method redefinition in a subclass

 Overriding rule:

 (before Java 5.0) overriding method must have the same

signature and return type as in the superclass

 (from Java 5.0) overriding method must have the same

signature as in the superclass and a covariant return type

of the superclass

 Annotation @Override avoids compiler warning

 Dynamic dispatching applies

 The keyword final prevents overriding in subclasses

 Overriding cannot reduce the visibility of a method

 e.g.: from public to private

 No overriding for static methods

26
Java and C# in depth

Covariant return types example

In Java 5.0 the return type of an overridden method can be
a subtype of the base method’s return type.

class Account { ... }

class SavingsAccount extends Account { ... }

class AccountManager {

 public Account GetAccount() { ... }

}

class SavingsAccountManager extends AccountManager {

 public SavingsAccount GetAccount() { ... }

}

27
Java and C# in depth

Casting and Polymorphism

Casting is C++/Java/C# jargon to denote polymorphic
assignments.

Let S be an ancestor of T (that is, T →* S)

Upcasting: an object of type T is attached to a reference of
type S

Downcasting: an object of type S is attached to a
reference of type T

class Vehicle;

class Car extends Vehicle;

Vehicle v =(Vehicle)new Car(); // upcasting

Car c = (Car)new Vehicle(); // downcasting

28
Java and C# in depth

Casting in Java

Upcasting is implicit

 For primitive types, upcasting means assigning a
“smaller” type to a “larger” compatible type

 byte to short to int to long to float to double
(long to float may actually lose precision)

 char to int

 For reference types, upcasting means assigning a
subtype to a supertype, that is:

 a subclass to superclass

 an implementation of an interface X to that interface X

 an interface X to the implementation of an ancestor of X

Downcasting must be explicit

 can raise runtime exceptions if it turns out to be
impossible

No casts are allowed for reference types outside the
inheritance hierarchy

29
Java and C# in depth

The instanceof keyword

 The instanceof keyword performs runtime checking of

the dynamic type of a reference variable

 Syntax: aVariable instanceof aType

 Is the object attached to aVariable compatible with

aType?

 Compatible means of aType or one of its subtypes

30
Java and C# in depth

Shadowing

Variables with the same name and different (but overlapping)
scopes:

 A local variable shadows an attribute with the same
name: use this to access the attribute

 A subclass attribute shadows a superclass attribute with
the same name

 Polymorphism does not apply

 if a reference is superclass type and attached object is
subclass type, the superclass variable is used

 Tip: avoid if possible (it may decrease readability)

31
Java and C# in depth

The final modifier

 final class

 Cannot be inherited from

 final attribute, argument, or local variable

 It’s a constant: cannot be redefined and must be initialized

 (If it’s a reference: the object state can change)

 final static attributes can only be initialized by block

initializers

 final (non-static) attributes can be set only once, and

must be set by every constructor of the class (whenever
initializers haven’t already set them).

 Style tip: constant names are capitalized

 final method

 Cannot be overridden

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

The object creation process

33
Java and C# in depth

The keyword super

 Enables invocation of a superclass method from within

an overriding method in a subclass

 Can be used to explicitly invoke a constructor of the

superclass (see next example)

34
Java and C# in depth

Chained constructors

 Any constructor implicitly starts by executing the
argumentless constructor of the parent class, unless:

 A specific constructor of the superclass is invoked
using super(...)

 Another specific constructor of the same class is
invoked using this(...)

 If used, super(...) or this(...) must be the
first instruction

35
Java and C# in depth

Chained constructors: example

public class CreatureCard extends Card {

 int value;

 public CreatureCard(String name){

 super(name);

 // class-specific initializations

 value = 7;

 }

 public CreatureCard(int value){

 this(“Big Monster”);

 // class-specific initializations

 this.value = value;

 }

}

36
Java and C# in depth

Object creation process

 MyClass obj = new MyClass();

(static members are initialized before)

 new allocates memory for a MyClass instance
(all attributes, including inherited ones)

 initializes all attributes to default values

If constructor references
super (explicitly or by

default):

1.Recursive call to

constructor of superclass

2.Execute MyClass’s

initializers in their textual

order

3.Execute constructor body

If constructor references
this (another constructor

X):

1. Recursive call to other

constructor X

2. Execute rest of originally

called constructor body

37
Java and C# in depth

Object creation process: example

public class Person {

 int age = 1;

}

public class Student extends Person {

 { age = 6; }

 double gpa = age/2;

 public Student() { gpa += 1.0; }

}

Person p1 = new Person(); // age = 1

Person p2 = new Student(); // age = 6, gpa = 4.0

