
Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

C#: advanced
object-oriented features

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Namespaces

3
Java and C# in depth

Namespaces

Classes can be grouped in namespaces

 A hierarchical grouping of classes and other entities

 Every source file defines a global namespace

 possibly implicitly, if the user doesn’t provide a name

 May affect visibility (but in general namespace ≠
assembly)

 Unlike Java, there need not be any connection between
namespaces and directory structure

 The following are allowed in C# and disallowed in (the
official implementation of) Java:

 multiple public classes in the same file

 splitting the declaration of a class across multiple files

4
Java and C# in depth

Using namespaces

 Namespace declaration:
 namespace MyNameSpace { ... }

 Load all classes in a namespace (but not sub-
namespaces) with the using keyword:
 using System;
 Console.WriteLine(“Hi!”);

instead of:
 System.Console.WriteLine(“Hi!”);

 Upon importing you can declare an alias:
 using MyConsole = System.Console;
 MyConsole.WriteLine(“Hi!”);

5
Java and C# in depth

BCL: Base Class Library

 System

(basic language functionality, fundamental types)

 System.Collections (collections of data structures)

 System.IO (streams and files)

 System.Net (networking and sockets)

 System.Reflection (reflection)

 System.Security

(cryptography and management of permissions)

 System.Threading (multithreading)

 System.Windows.Forms
(GUI components, nonstandard, specific to the Windows
platform)

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Abstract classes and interfaces

7
Java and C# in depth

Abstract classes and interfaces

A class member may or may not have an implementation

 if it lacks an implementation, it is abstract

A class whose implementation is not complete is also called

abstract

 but even a fully implemented class can be declared

abstract

Interfaces are a form of fully abstract classes

 they enable a restricted form of multiple inheritance

8
Java and C# in depth

Abstract classes

 An abstract class cannot be directly instantiated

 An abstract method cannot be directly executed

 If a class has an abstract method, the class itself

must be abstract

 An abstract class cannot be sealed

 Useful for conceptualization and partial implementations

9
Java and C# in depth

Interfaces

 Declared using interface instead of class

 Equivalent to a fully abstract class

 you don’t use the keyword abstract in an interface

 A way to have some of the benefits of multiple

inheritance, with little hassle (e.g., selecting

implementations)

 A class may inherit from one or more interfaces

 If the class inherits from another class and some

interfaces, the class must come first in the inheritance list

 An interface can also inherit from one or more interfaces

10
Java and C# in depth

Interface use

 For typing, implementing an interface is essentially

equivalent to extending a class: polymorphism applies

 All interface members are implicitly abstract and

public (and non-static)

 But the interface itself may have restricted visibility

 Interfaces can have: methods, properties, events,

indexers

 Interfaces cannot have fields

This is C#’s way to push programmers to have only private

or protected fields

 What’s the principle behind this?

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Delegates and events

12
Java and C# in depth

Events and Delegates

C# provides language features for event-driven programming

 most common application: GUI programming

Delegates are object wrappers for operations

 similar to C/C++ function pointers, but with type safety

 similar to Eiffel’s agents

 similar functionality achieved in Java with anonymous inner classes

Events are signals sent by an object to communicate the occurrence of an

action

 event publisher: object which can signal an event

 event subscriber: object which triggers some action when an event

is signalled

 multicast communication applies

 an event can have multiple subscribers

 a subscriber can subscribe to multiple events

13
Java and C# in depth

Delegates

Delegates are object wrappers for operations

 They can be declared anywhere as members in a

namespace, including outside any class

 The declaration includes a return type, a name, a list of

arguments

 public delegate void BinaryOp (int i, int j);

 This is a placeholder for methods taking two integer

arguments and returning none

14
Java and C# in depth

Delegates

After being declared, delegates can be instantiated by

passing a handler to an actual method implementation

 The signature (and return type) of the passed method

must match that of the delegate

BinaryOp bop = new BinaryOp(adder.AddPrint);

adder.AddPrint references method AddPrint of

object attached to reference adder.

 You can attach (and remove) multiple methods to the

same delegate, or attach the same method multiple times

bop += new BinaryOp(multiplier.MultPrint);

BinaryOp b2 = StaticMethodOfCurrent +

 new BinaryOp(adder.AddPrint) +

 new BinaryOp(adder.AddPrint);

b2 -= StaticMethodOfCurrent;

15
Java and C# in depth

Delegates

After instantiation, a delegate can be invoked

 the net effect is equivalent to calling synchronously the

passed method(s)

 bop(3, 5); // prints 3+5 and 3*5

 if multiple methods are attached to the delegate, their
order of execution is nondeterministic

 if the attached methods return a value, the call through the

delegate returns the last computed value

Other methods are available to control the invocation order

and use multiple returned values

 foreach (BinaryOP b in bop.GetInvocationList()) {

 b(3, 5); // single invocation

 }

16
Java and C# in depth

Events

Events are signals sent by an object to communicate the

occurrence of an action

 An event is a member of some class

 The declaration associates an event name to a delegate

type

 public event BinaryOp BOPRequest;

 Any class that can trigger the event will have a “trigger

method” for the event

 naming convention for the trigger method: OnEventName

 void OnBOPRequest(int i, int j) {

 if (BOPRequest != null) { BOPRequest(i,j); }

 }

17
Java and C# in depth

Events

Subscribers to an event provide a handler for that event in the

form of a method

 They register it on the event using the delegate type

associated to the event
BOPRequest += new BinaryOp(adder.AddPrint);

BOPRequest += new BinaryOp(multiplier.MultPrint);

 Whenever the event is triggered, all the registered

methods of the subscribers are executed synchronously

 OnBOPRequest(3, 5); // prints 3+5 and 3*5

 Delegates provide a mechanism to decouple event

generation and handling: the writer of the event class

doesn’t know what handlers will be attached to it

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

“Special” classes and features

19
Java and C# in depth

The String class

Sequences of Unicode characters

 string (all lowercase) is an alias for String

 Immutable class: no setters

Some differences w.r.t. Java:

 == and != pre-defined to compare string content, not

addresses

 Individual characters accessible with array notation
Console.WriteLine(“Hi!”[2]); // prints: !

Two formats for constant strings:

 quoted: escape characters are processed
String s = “A \”path\” c:\\myDir\\onWindows”;

 @-quoted: escape characters are not processed
String s = @“A ““path”” c:\myDir\onWindows”;

20
Java and C# in depth

Object comparison: Equals

public boolean Equals(Object obj) {

 return (this == obj);

}

 The default semantics compares addresses

 We can provide a different semantics by redefining it

 What kind of redefinition is appropriate (overriding or

shadowing)?

 Implementation should be an equivalence relation

 Reflexive, symmetric, transitive

 For any non-null reference variable x it should be:

 x.Equals(null) == false

 It is usually necessary to override GetHashCode() as well,

because equal objects should have equal hash codes

21
Java and C# in depth

Class Object: hash code

public virtual int GetHashCode()

The default implementation of GetHashCode() does not

guarantee that different objects return different hash codes.

In general, it is necessary to override GetHashCode(), so that

equal objects have equal hash codes.

Overriding Equals() in descendants does not guarantee to

give the right semantics to hashCode() as well.

22
Java and C# in depth

Class Object: string representation

public virtual String ToString()returns a string

representation of the object

 Tip: all descendants should override this method

 Tip: the result should be a concise and informative

representation

23
Java and C# in depth

Arrays

 Arrays are objects of class System.Array

 but with the familiar syntax to access them

 Operator [] to access components

 Field Length denotes the number of elements

 All components must a have a “common” type

 a common ancestor in the inheritance hierarchy

 Array components are automatically initialized to defaults

 Three variants

 Monodimensional: string[] arr;

 Multidimensional: string[,,] arr_3d;

 Jagged (array-of-arrays): string[][] aOfa;

 aOfa[i] is a reference to a mono-dimensional array

24
Java and C# in depth

Array use

// mono-dimensional of size 7

int[] iArray = new int[7];

// multi-dimensional of size 2x5x8

int[,,] mdArray = new int[2,5,8];

// jagged

int[][] jArray = new int[2][];

// using initializers

Vehicle[] v1 = {new Car(), new Truck()};

int[,] mdArray = {{1,2}, {3,4}, {5,6}};

int[][] jArray = new int[]{new int[] {0, 1},

 new int[] {8,7,6}};

25
Java and C# in depth

Enumerated types

Denote a finite set of named integer values

 enum TypeName : intType {VALUE_1, ..., VALUE_N};

 intType defaults to int if omitted

 Enumeration starts from 0 by default, with step 1

 Can define different values: VALUE_3 = 8;

Within the type system, TypeName is a class that extends

class System.Enum and with N static integer values

 TypeName aValue = TypeName.VALUE_2;

Unlike in Java, C#’s enum does not define a full-fledged class

with constructors, fields, etc.

26
Java and C# in depth

Enumerated types (cont’d)

Convenient way to define a set of integer constants
enum Days {Monday, Tuesday, ...};

An enum declaration defines a type with limited capabilities

 Variable instantiation:
 Days d = new Days(); // d has value 0

 Can refer to elements of enumeration:

d = Days.Monday + 3; // d has value 0+3

Default initialization of enum’s without 0 yields undefined behavior:

enum Parity {odd = 1, even = 2};

Parity p = new Parity();

The default initialization of p is to the default int value 0:
p = (Parity) 0; // allowed but undefined!

27
Java and C# in depth

Structs

Structs are a sort of “lightweight classes”

 mostly supported for continuity from C/C++

Can have fields, methods, and other features of classes

Important differences between structs and full-fledged classes

 structs define value types: they are stack-allocated

 difference if passed as method arguments

 if constructors are present, they must have arguments

 can be instantiated without new

 but then cannot be used until all fields are initialized

 can implement interfaces

 cannot inherit from another struct or class

 Tip: if you need methods and constructors, you’d probably

better use a class

28
Java and C# in depth

Properties

Properties are shorthands to define pairs of setter and getter

for a field

 Properties are syntactic sugar to facilitate proper

encapsulation

A property has a name and a type

 For a client of the class, a property is indistinguishable

from a field with the same name

A property can have a setter, a getter, or both

 Keywords: set, get

 Within a setter: value refers to the value passed to the

setter

 Default visibility is public, but can be changed

 A property can also be static

29
Java and C# in depth

Properties: example

public class Employee {

 private int empAge;

 public int Age {

 get { return empAge; }

 set { empAge = value; }

 }

}

Usage:

Employee e = new Employee();

e.Age = 33; // calls setter with value==33

int a = e.Age; // calls getter

30
Java and C# in depth

Properties: example (2)

public class Employee {

 private int empAge;

 public int Age {

 get { return empAge; }

 set { empAge = value; }

 }

}

This straightforward implementation of properties is equivalent

to the default:

public class Employee {

 public int Age { get; set; }

}

31
Java and C# in depth

Indexers

Indexers are similar to properties, but for “indexed” fields

 typically arrays (and possibly other maps)

An indexer has a type and an index argument

 no specific name

public class ATPRanking {

 private string[] list = new string[1000];

 public string this[int pos] {

 get { if (1 <= pos && pos <= 1000)

 return list[pos]; else return “”; }

 set {if (1 <= pos && pos <= 1000) list[pos]=value;}

 }

}

Usage:

 ATPRanking r = new ATPRanking();

 r[2] = “Roger Federer”; // calls setter

 string n = r[100]; // calls getter

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Assertions and contracts

33
Java and C# in depth

Contracts

Contracts are specification elements embedded in the program
text. They use the same syntax as Boolean expressions of the
language. Here’s an example with Eiffel syntax.
class BankAccount

 balance: INTEGER

 deposit (amount: INTEGER)

 require amount > 0 // precondition

 do balance := balance + amount

 ensure balance > old balance end // postcondition

invariant

 balance >= 0 // class invariant

end

34
Java and C# in depth

Contracts: preconditions

The precondition of a method M specifies requirements that
every call to M must satisfy. It is the caller’s responsibility to
ensure that the precondition is satisfied.

 ba: BankAccount

 create ba // object creation

 ba.deposit (120) // valid call: 120 > 0

 ba.deposit (-8) // invalid call: -8 < 0

35
Java and C# in depth

Contracts: postconditions

The postcondition of a method M specifies conditions that hold
whenever an invocation to M terminates. M’s body is
responsible to ensure that the postcondition is satisfied.

 ba: BankAccount

 create ba // object creation

 // assume ‘balance’ is 20

 ba.deposit (10)

 // postcondition ok: 30 > 20

 ba.deposit (MAX_INTEGER)

 // postcondition violation if balance

 silently overflows into the negatives

36
Java and C# in depth

Contracts: class invariants

The class invariant of a class C constrains the states that
instances of the class can take. The class invariant’s
semantics is a combination of the semantics of pre- and
postcondition: the class invariant must hold upon object
creation, right before every qualified call to public members of
C, and right after every call terminates.

 ba: BankAccount

 create ba // object creation

 // class invariant must hold

 // class invariant must hold

 ba.deposit (10)

 // class invariant must hold

37
Java and C# in depth

Assertions

The .NET framework offers assertions: checks that can be
placed anywhere in the executable code:

 Debug.Assert(boolean-expr)

 Assertion checking is enabled only in debug builds:

 If evaluates to true, nothing happens

 If evaluates to false, the run is interrupted and control
returns to the debugger

We can use assertions to render the semantics of contracts.

38
Java and C# in depth

Code Contracts

Since version 4.0, the .NET framework includes full support of

contracts through CodeContracts

 Preconditions, postconditions, class invariants

 Runtime checking (exception mechanism)

 Static checking

 Documentation generation

CodeContracts are offered as a library rather than natively

 Advantage: available across the .NET platform

 Disadvantage: verbose syntax

Currently unavailable in the Mono platform

More information:

 http://research.microsoft.com/en-us/projects/contracts/

http://java.sys-con.com/read/48539.htm
http://java.sys-con.com/read/48539.htm
http://java.sys-con.com/read/48539.htm

39
Java and C# in depth

Code Contracts: example

using System.Diagnostics.Contracts;

class BankAccount {

 int balance;

 void deposit (int amount) {

 Contract.Requires (amount > 0); // precondition

 Contract.Ensures // postcondition

 (balance > Contract.OldValue <int>(balance));

 balance += amount;

 }

 [ContractInvariantMethod] // class invariant

 void ClassInvariant()

 { Contract.Invariant(balance >= 0); }

}

