
Java and C# in depth
Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Java: reflection

2
Java and C# in depth

Outline

Introductory detour: quines

Basic reflection
§  Built-in features
§  Introspection
§  Reflective method invocation

Dynamic proxies

Reflective code-generation

3
Java and C# in depth

What’s reflection?

A language feature that enables a program to examine itself at
runtime and possibly change its behavior accordingly
§  It may be cumbersome in imperative programming

paradigms
§  traditional architectures distinguish between data and

instructions
§  instructions are executed, while data is modified
§  this distinction is, however, purely conventional, as both

are stored in memory
§  The usage of metadata is the key to reflection

Java and C# in depth
Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Introductory detour: quines

5
Java and C# in depth

An introductory detour: quines

A quine is a program that outputs its own source code
§  named after the philosopher Willard Van Orman Quine

and his studies of self-reference
§  it is an example of reflection

In pseudocode, the basic algorithm for a quine is:

	 	 	 Print	 the	 following	 sentence	 twice,	 the	 second	 time	 between	 quotes.	
	 “Print	 the	 following	 sentence	 twice,	 the	 second	 time	 between	 quotes.”	

	

Can you write a quine in Java?

6
Java and C# in depth

Java quine

§  From: http://www.nyx.net/~gthompso/self_java.txt
§  Author: Bertram Felgenhauer

class S{
public static void main(String[]a){
 String s="class S{public static void
main(String[]a){String s=;char c=34;
System.out.println(s.substring(0,52)+c+s+c
+s.substring(52));}}";

 char c=34;
 System.out.println(s.substring(0,52)+c+s+c
+s.substring(52));

}}

Java and C# in depth
Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Basic mechanisms for reflection

8
Java and C# in depth

Normal vs. reflective at a glance
Creating an instance of MyClass and invoking public method
myMethod is normally straightforward:

MyClass o = new MyClass(); o.myMethod();

Reflection makes things a bit harder:
Class<?> c = Class.forName(“mypkg.MyClass");//1
Object o = c.newInstance();//2
//if the type is known statically we can cast
MyClass o = (MyClass)c.newInstance();//2bis
//2nd argument: formal arg. list for myMethod
Method m=c.getMethod(“myMethod”,(Class<?>)null);//3
//2nd argument: actual arg. list to invoke myMethod
m.invoke(o, (Object[]) null);//4

9
Java and C# in depth

Small quiz: methods with parameters
Let’s assume that myMethod takes a String and an int:

MyClass o = new MyClass(); o.myMethod(“x”, 1);

How does the reflective code changes?
Class<?> c = Class.forName(“mypkg.MyClass");
Object o = c.newInstance();
//2nd argument: formal arg. list for myMethod
Method m=c.getMethod(“myMethod”, //what here?);
//2nd argument: actual arg. list to invoke myMethod
m.invoke(o, //what here?);

10
Java and C# in depth

Small quiz: methods with parameters
Let’s assume that myMethod takes a String and an int:

MyClass o = new MyClass(); o.myMethod(“x”, 1);

How does the reflective code changes?
Class<?> c = Class.forName(“mypkg.MyClass");
Object o = c.newInstance();
//2nd argument: formal arg. list for myMethod
Method m=c.getMethod(“myMethod”, String.class,

int.class);
//2nd argument: actual arg. list to invoke myMethod
m.invoke(o, new Object[]{new String(“x”),1});

11
Java and C# in depth

Exceptions thrown by reflective code
try{
Class<?> c = Class.forName(“mypkg.MyClass");//1
Object o = c.newInstance();//2
Method m=c.getMethod(“myMethod”,(Class<?>)null);//3
m.invoke(o, (Object[]) null);//4}
//these are only the checked exceptions thrown
catch {ClassNotFoundException e} {////thrown by 1}
catch {InstantiationException e} {//thrown by 2}
catch {IllegalAccessException e} {//thrown by 2,4}
catch {NoSuchMethodException e} {//thrown by 3}
catch {IllegalArgumentdException e} {//thrown by 4}
catch {InvocationTargetException e} {//thrown by 4}

Some unchecked exceptions and errors are also thrown...

12
Java and C# in depth

Built-in reflection

Operator instanceof
§  example: overriding equals()

 public boolean equals(Object obj){
 // Querying for a type at runtime
 if (!(obj instanceof IntendedType) {
 return false;
 }
 ...
 }

13
Java and C# in depth

Getting a Class object

§  java.lang.Class<T> is the entry point
§  represents the meta-info for classes

§  How can I get a Class object?
§  from an object reference
Class<?> c1 = myObj.getClass();
§  from any type (including primitive types)
Class<?> c2 = int.class;
§  from a primitive type, through the wrapper
Class<?> c3 = Integer.TYPE;
§  from a (fully-qualified) class name
Class<?> c4 = Class.forName(“
ch.ethz.inf.se.java.reflect.myClassName”);

14
Java and C# in depth

Introspecting a class

Class objects provide information about:
§  Modifiers: int getModifiers()

§  access (visibility) modifiers: abstract, public,
static, final, ... encoded as an integer

§  use static method Modifier.toString(int mod) to
get a textual representation

§  Generic type parameters:
 TypeVariable<Class<?>>[] getTypeParameters()

§  Implemented interfaces: Class[] getInterfaces()
§  Inheritance hierarchy: Class[] getClasses()
§  Annotations: Annotation[] getAnnotations()

15
Java and C# in depth

Introspecting public class members

Class objects provide information about public members:
§  Fields:

 Field[] getFields()
 Field getField(String fieldName)

§  Methods:
 Method[] getMethods()
 Method getMethod(String methodName,
 Class<?>…paramTypes)

§  Constructors:
Constructor<?>[] getConstructors()
Constructor<?> getConstructor(String
constructorName, Class<?>…paramTypes)

16
Java and C# in depth

Introspecting all class members

§  Fields:
 Field[] getDeclaredFields()
 Field getDeclaredField(String fieldName)

§  Methods:
 Method[] getDeclaredMethods()
 Method getDeclaredMethod(String methodName,

Class<?>…paramTypes)
§  Constructors:
Constructor<?>[] getDeclaredConstructors()

 Constructor<?>
getDeclaredConstructor(Class<?>…paramTypes)
To make a non-visible field accessible via reflection, invoke:
f.setAccessible(true)//what’s the type of f?

17
Java and C# in depth

Reflection and security

§  Method setAccessible(boolean flag) in classes
Field and Method toggles runtime access checking

§  The security manager of the JVM can disable
setAccessible altogether

§  The default security manager allows setAccessible
on members of classes loaded by the same class loader
as the caller

18
Java and C# in depth

Reflection and exceptions!

Besides the already mentioned checked exceptions, reflection

may trigger the following un-checked exceptions and errors:
§  SecurityException
§  NullPointerException
§  ExceptionInInitializerError
§  LinkageError

While we don’t have to handle these exceptions and errors, we
do have to handle the checked ones, bloating the code even
more

Java and C# in depth
Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Dynamic proxies

20
Java and C# in depth

Dynamic proxies!

The idea comes from the Proxy design pattern (GoF):
 Allows for object level access control by acting as a pass
through entity or a placeholder object

Dynamically created classes that implement some interfaces

§  Typical usage of dynamic proxy objects: intercept calls to
objects of different classes implementing the same
interfaces

§  Standard Java approach to Aspect Oriented
Programming (AOP): cross-cutting concerns are
centralized

21
Java and C# in depth

Proxy sequence diagram!

 :Proxy :InvocationHandler :Method :target

22
Java and C# in depth

java.lang.reflect.Proxy

Java’s dynamic proxy factory:
§  The factory produces objects of classes extending

class Proxy
§  They also implement the proxied interfaces and

associate an InvocationHandler object
 Object newProxyInstance(ClassLoader loader,
 Class<?>[] interfaces, InvocationHandler h)

§  InvocationHandler is an interface to wrap objects
providing methods that can handle method calls to proxy
instances

§  The handler object holds a reference to the target object

23
Java and C# in depth

Example: a proxy for shapes!

public interface IDrawable {
 public void draw();

}

public class Shape implements IDrawable {
 public void draw(){
 //draw a shape
 }

...
}

24
Java and C# in depth

A factory for shapes!

The clients gets an IDrawable object:
public class DrawablesFactory{

public static IDrawable getDrawable(){
 Shape s = new Shape();
 return Proxy.newProxyInstance(
 this.getClass().getClassLoader(),
 new Class[]{IDrawable.class},
 new CustomInvocationHandler(s));

}
}

25
Java and C# in depth

Sample invocation handler!

class CustomInvocationHandler
 implements InvocationHandler{
 private proxied;
 public CustomInvocationHandler(Shape s){
 proxied = s; }

 public Object invoke(Object proxy, Method m,
Object[] args) throws Throwable{

 // Pre-processing here

 Object result = m.invoke(proxied, args);
 // Post-processing here
 return result;
 }

}

26
Java and C# in depth

Proxy usage: example

/* If the client does not know which
specific type comes from the factory */

IDrawable s =
DrawablesFactory.getDrawable();

/* If the client wants to use other
features of Shape as well*/

Shape s = (Shape)
DrawablesFactory.getDrawable();

s.draw();

27
Java and C# in depth

Dynamic Proxies hints and tips!

§  You can only proxy for an interface, not for a

class

§  Use handlers to process requests

§  instanceof can be used on proxy objects

§  Casting works with proxy objects

28
Java and C# in depth

What is a Class Loader

§  For every class in the system, the JVM maintains a copy of
the class code in the form of an instance of
java.lang.Class
§  the class attribute of any Object returns it

§  Every class is loaded in the JVM by an instance of
java.lang.ClassLoader
§  reflection is really built-in the JVM

§  Within the JVM, a class is uniquely defined by:
§  its fully-qualified name (i.e., including the package name)
§  and the instance of the class loader that loaded it

§  User-defined class loaders may make different usages of
the same class incompatible (if loaded by unrelated class
loaders)

29
Java and C# in depth

Possible usages of class loaders

§  Load resources bundled in JARs
§  Load, unload, update modules at runtime
§  Use different versions of a library at the same time
§  Isolate different applications running within the

same VM (static variables could be a problem
otherwise)

§  Exercise control over where the code comes from
(e.g. a network)

Java and C# in depth
Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Reflective code-generation

31
Java and C# in depth

Reflective code generation!

 Ø Basic Java reflection is limited

Ø Dynamic proxies are more powerful, but their level of
granularity is the method

Ø We may need to change the behavior of a method at
runtime

Ø Code generation is a solution

Ø Class-to-class transformation is an example of code
generation

32
Java and C# in depth

Class-to-class transformation!

Ø  Input: a class

Ø Output: another class, obtained by transforming the input

Ø Use reflection to examine the input class (no parser
needed)

Ø  Load generated classes dynamically at runtime

33
Java and C# in depth

Generating static HelloWorld (1/2)!

class HelloGenerator {
 public static void main(String[] args)

 throws Exception {
 // Step 1: generate class text on file
 PrintWriter pw = new PrintWriter(new

 FileOutputStream(“Hello.java”));
 pw.println(“... class text here ...”);
 // Step 2: compile .java file into bytecode
 Process p = Runtime.getRuntime().exec(
 new String[]{“javac”,”Hello.java”});
 p.waitFor();
 // continues on next slide

34
Java and C# in depth

Generating static HelloWorld (2/2)!
 // continues from previous slide
 // If compilation went fine...
 if(p.exitValue() == 0){
 // now the runtime knows about the Hello class
 // Step 3: use dynamically generated class
 Class<?> helloObj = Class.forName(“Hello”);
 Method m = helloObj.getMethod(“main”, String[].class);
 // null target because ‘main’ is static
m.invoke(null, new Object[]{new String[]{}});

 }
 else{ /* handle I/O errors */ }

 }

}

