
Java and C# in depth
Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Concurrency: a crash course

2
Java and C# in depth

Concurrent computing

Applications designed as a collection of computational units
that may execute in parallel
§  logical vs. physical parallelism
§  parallel vs. distributed

What’s concurrency good for?
§  improved user experience

§  applications carry out several tasks at once
§  better usage of resources

§  interactive computing
§  performance

§  clusters and multi-core CPUs

3
Java and C# in depth

Processes and threads

Concurrency can have two levels of granularity, according to
what is the unit of parallel computation

§  Processes
§  the abstraction of a running program

§  includes program counter, registers, variables, ...
§  different processes have independent address spaces

§  Threads
§  an independent thread of execution within a process

§  a “lightweight process”
§  threads within the same process share the address

space
This brief introduction refers to threads, but the same notions

apply to processes as well

4
Java and C# in depth

Coordination of threads

Threads need to coordinate when accessing the shared
memory to avoid race conditions

§  inconsistent access to shared resources

-- shared memory
s: shared INTEGER
invariant s ≥ 0 end

-- thread A -- thread B
if s > 0 then s := 0
 s := s – 1
end

5
Java and C# in depth

Coordination of threads

Coordination must guarantee mutual exclusion when
accessing shared resources

§  a section of code that accesses some shared resource is
called critical region

§  at any given time, no more than one thread should be in
the critical region

-- A’s crit. reg. -- B’s crit. reg.
if s > 0 then s := 0
 s := s – 1
end

6
Java and C# in depth

Coordination mechanisms for shared memory

A few coordination mechanisms, roughly in increasing level of
abstraction

We won’t specifically discuss how to use synchronization
mechanisms to avoid problems such as deadlocks,
starvation, livelocks, etc.

Locks

§  a lock is a variable (or an object) that is owned by no
more than one thread at a time

§  locks can be acquired and released
§  guarding with locks the access to critical regions is a way

to ensure mutual exclusion

7
Java and C# in depth

Coordination mechanisms for shared memory

Mutexes
§  a way to implement locks
§  a mutex is a binary variable accessed with primitives
lock and unlock
§  lock: if the mutex is unlocked acquire the lock, otherwise

suspend execution
§  unlock : release the lock and resume all suspended

executions
§  the lock and unlock operations are guaranteed to be

non-interruptible

8
Java and C# in depth

Mutex: example

-- shared memory
s: shared INTEGER
invariant s ≥ 0 end
-- mutex
m: MUTEX

-- thread A -- thread B
m.lock m.lock
if s > 0 then s := 0
 s := s – 1 m.unlock
end
m.unlock

9
Java and C# in depth

Coordination mechanisms for shared memory

Semaphores
§  generalization of mutexes

§  an integer variable that can be atomically incremented (up)
and decremented, if its value is positive (down)

§  invented by Dijkstra (1965)

10
Java and C# in depth

Coordination mechanisms for shared memory

Monitors
§  a collection of routines (methods) that are guaranteed

mutually exclusive access to shared resources
§  no more than one routine in the monitor is active at once
§  in other words: only one thread can be active in a monitor

at any instant
§  threads within the same monitor coordinate with signals

§  a thread may not be able to proceed because it needs
some other thread’s work. Then it can wait and yield
control to other threads.

§  when a thread performs an action that some other threads
may be waiting for it can signal it and wake them up
(interrupting their waiting)

§  invented by Brinch Hansen (1973) and Hoare (1974)

11
Java and C# in depth

Monitors: example

mon is monitor

 s: INTEGER
 invariant s ≥ 0 end

 decrement do
 if s > 0 then s := s – 1 end
 end

 set_zero do
 s := 0
 end
end -- monitor

