
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz

Concepts of Concurrent Computation – Assignments
Spring 2013

Assignment 3: Semaphores

ETH Zurich

1 Precedence to Implementation

1.1 Background

This task is taken from Foundations of Multithreaded, Parallel, and Distributed Programming
[1].

1.2 Task

A precedence graph is a DAG. Nodes represent tasks and edges indicate the order in which tasks
are to be completed. In particular, a task can execute as soon as all of its predecessors have
been completed.

1. Given the following precedence graph,

T3

T2 T4

T1 T5

give an implementation in Java that satisfies the order restrictions, using a minimum of
semaphores.

2. Devise a general scheme that given any DAG, can assign semaphores to edges or processes.
Do not worry about minimizing the number of semaphores, as this is an NP-hard problem
(for an arbitrary DAG).

1.3 Solution

1. Given in code, the minimal number of semaphores is 3.

2. The general scheme will give, for every edge, a semaphore. The source of the edge will
signal its semaphore, while the target will wait on it.

1



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. S. Nanz

Concepts of Concurrent Computation – Assignments
Spring 2013

2 Interleaving with Semaphores

2.1 Background

This task is also taken from Foundations of Multithreaded, Parallel, and Distributed Program-
ming [1].

2.2 Task

Given the following processes and code, give the possible outputs of the interleavings:
s.count := 0
r.count := 1
x := 0
P1 P2 P3

s.down r.down r.down
r.down x := x * (x + 1) x := x + 2
x := x * 2 r.up r.up
r.up s.up

2.3 Solution

The possible execution orders are
P2, P1, P3 or P2, P3, P1 or P3, P2, P1.
The corresponding outputs are: 2, 4, 12.

3 Unisex bathroom

3.1 Background

This task has been adapted from Foundations of Multithreaded, Parallel, and Distributed Pro-
gramming [1]. In an office there is a unisex bathroom with n toilets. The bathroom is open to
both men and women, but it cannot be used by men and women at the same time.

3.2 Task

1. Develop a Java program that simulates the above scenario using semaphores from the Java
concurrency library. Your solution should be deadlock free, but it does not have to be
starvation free.

2. Justify why your solution is deadlock free.

3.3 Solution

The program and the justifications can be found in the source that comes with this solution.

References

[1] Gregory R. Andrews. Foundations of Multithreaded, Parallel, and Distributed Programming.
Addison Wesley, 1999.

2


	Precedence to Implementation
	Background
	Task
	Solution

	Interleaving with Semaphores
	Background
	Task
	Solution

	Unisex bathroom
	Background
	Task
	Solution


