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Content

 Why test concurrent program in the first place?
* Metric: Synchronization coverage

* Achieving high synchronization coverage



How often do you detect/debug and fix concurrent bugs?

Source: [2]
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=» Over 50% of the respondants face concurrent bugs regularly.



How severe are the concurrent bugs?

Source: [2]
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=>» Majority of the concurrent bugs are rated severe.



How difficult is it to find concurrent bugs?

Source: [2]
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=» Concurrent bugs are often difficult to find.
It sometimes takes several days to locate them.
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Coverage for Concurrent Programs

IBM introduced several coverage models for testing concurrent
programs. One of which is called synchronization coverage.

10:  thread 1 () { 30:  thread 2 () { 50:  thread 3 () {

20: unlock (m) 40: unlock (m)

21: } 41: } 60: unlock (m)

71: }

Synchronization-pair:

<11, 31> <31, 11><11, 53>
<53, 11><31, 53> <53, 31>



Testing Concurrent Programs
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*) TSA: Thread Scheduling Algorithm



Principle of TSA (Thread Scheduling Algorithm)
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Principle of TSA (Thread Scheduling Algorithm)
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Invoke TSA before lock operation and
after unlock operation. Either suspend or
proceed thread based on 3 rules.

10 thread 1() { 300 thread 2 () { 50:  thread 3() {

11: 31: 51:
MM lock(m) lock(m)

53¢ lock (m)
<3535 <53
20: unlock (m) 40: unlock (m) .
,J;3471;;; 5§Z1f345" 21: } 41: } 60: unlock (m)

71}




Details of the 3 Scheduling Rules

Rule 1: Proceed with thread that immediately satisfy uncovered SP.

thread 1

A 4

thread 2

11: lock(m)

31: lock(m)

20: unlock(m)

40: unlock(m)

<1375 <31, 11>

<11, 53> <53, 11>
<31, 53> <53, 31>

=>» Proceed with thread 1
then thread 2

Rule 2: Proceed with thread that satisfy next uncovered SP with same lock.

thread 1

A 4

thread 2

11: lock(m)

A 4

31: lock(m)

20: unlock(m)

40: unlock(m)

<11-3T> <344TS
<1153 <53 44>
<31, 53> <53-37S

=» Proceed with thread 2
then thread 1 10



Details of the 3 Scheduling Rules

Rule 3: Choose thread with smallest number of relevant coverage.

thread 1 thread 2

<11-3T> <3149
v <11.-53> <524%>
11: lock(m) 31: lock(m) <31, 53> <53.34>
<11, 70> <31, 99>
v v <11, 66> <31, 25>
20: unlock(m) 40: unlock(m) <11, 90><99, 31>

There are 3 requirements for 11 left.
There are 4 requirements for 31 left.

=>» Proceed with thread 1

The approach of rule 3 is also called the estimation based heuristic.
This rule improves test performance dramatically.
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Empirical Test Conditions

Subject program for empirical study:

— Test programs out of Java libraries (see table).

— Execution of test 500 times for each technique

— Repetition of experiements 30 times (statistical reasons)

Lines of # of # of
Type Program Code Threads | Sync. stmts.
ArrayList] 7712 26 69
ArraylList2 712 1 67
HashSetl 0028 21 67
HashSet2 0028 3 66
Java HashTablel 11431 5 96
Library HashTable2 11431 5 116
LinkedList1 T3ThH 26 67
LinkedList2 TaTh 15 66
TreeSetl 5669 21 69
TreeSet2 5669 3 67
cached] 1922 10 128
Java — -
Server p_cro_l uul}ﬁ 10 280
VES2 22081 6 116

Computer specification:

— Intel Core2 Duo 3.0 GHz;

— SunlJavaSE 1.6.0

— Fedora Linux platform 9 (kernel 2.6.27)



Empirical Test Result (TSA vs. Random)
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=>» TSA resaches SP coverage faster and higher.

Side note: over 90% of decision are made by Rule 3

*SP: synchronization-pair 13



Critics about TSA

— Relationship between coverage and bug-detection?

— Technique generalizable?
— Extend other concurrent coverage criteria.

Summary

— Empirical studies show that TSA is more effective and efficient

than random testing.
— TSA is scalable to large program (target code is not changed)

— Future works necessary to complete
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