Seminar Talk

Achieve High Synchronization Coverage
N
Testing Concurrent Programs

Hong, Ahn, Park, Kim, Harrold

KAIST, South Korea
and
Georgia Institute of Technology, USA
(published in July 2012)

20.3.2013

Benjamin Bucheli
buchelib@student.ethz.ch

Content

 Why test concurrent program in the first place?
* Metric: Synchronization coverage

* Achieving high synchronization coverage

How often do you detect/debug and fix concurrent bugs?

Source: [2]
0
An Exploratory Survey 2% 3%

Jan 2007 at Microsoft 13%
0
/_

m Daily
m Weekly
44% m Monthly
= Rearly

Never

\\38%

=» Over 50% of the respondants face concurrent bugs regularly.

How severe are the concurrent bugs?

Source: [2]

An Exploratory Survey 14% 2%
Jan 2007 at Microsoft \ \

26%

m Severe L1 (most)
m Severe L2
m Severe L3

Severe L4 (least)

|
58%

=>» Majority of the concurrent bugs are rated severe.

How difficult is it to find concurrent bugs?

Source: [2]

An ExploratorY Survey 6% >1%
Jan 2007 at Microsoft ~N

19%

21%

\54%

=» Concurrent bugs are often difficult to find.
It sometimes takes several days to locate them.

m Very Hard
® Hard
OK
Relatively Easy

Easy

Coverage for Concurrent Programs

IBM introduced several coverage models for testing concurrent
programs. One of which is called synchronization coverage.

10: thread 1 () { 30: thread 2 () { 50: thread 3 () {

20: unlock (m) 40: unlock (m)

21: } 41: } 60: unlock (m)

71: }

Synchronization-pair:

<11, 31> <31, 11><11, 53>
<53, 11><31, 53> <53, 31>

Testing Concurrent Programs

Stress
Coverage _
(Sync.-pair)
— does not
Limitation el 2y
concurrent
bugs
Tools

‘A’ Close to max coverage
** Many Coverage

* Some Coverage

Random

W

— does not
reveal all bugs

— Limited
scalability

ConTest

Test Type

Pattern-Based

WO

— focues on
specific bugs

Eraser, Atomizer,
CalFuzzer

Systematic TSA*)
— Bad — Extra test-
scalability suite
neccessary

CHESS, Fusion

*) TSA: Thread Scheduling Algorithm

Principle of TSA (Thread Scheduling Algorithm)

20:

21

[Thread model #
Program P analysis
+ =
Test case
Estimation phase

From the thread model,
the SP are generated.

thread 1 () { 300 thread 2(){
lock (m) 3L lock (m)
unlock (m) 40: unlock (m)

} 41: }

50:

51:

60:

71:

}

-

Test run

k'

Scheduling
controller

Threads

<11, 31> <31, 11>
<11, 53> <53, 11>
<31, 53> <53, 31>

Measure
coverage
{(Z 4.
A (L D), A | 2),
(£ £} 5=
Coverage (& 5
requirements =
R Testing phase
thread 3() {
© lock(m) #
unlock (m)

Coverage

requirement R

Principle of TSA (Thread Scheduling Algorithm)

[_‘ - r T ™
Thread model M Measure Test run
analysis coverage > Schedulmg
Program P Y (. 0. controller
+ > = . 1:,',}. > (e 2),
Test case (£)} e
Coverage (4 £)}
" r. - Y i
requirements \ Threads)
Estimation phase R Testing phase

Invoke TSA before lock operation and
after unlock operation. Either suspend or
proceed thread based on 3 rules.

10 thread 1() { 300 thread 2 () { 50: thread 3() {

11: 31: 51:
MM lock(m) lock(m)

53¢ lock (m)
<3535 <53
20: unlock (m) 40: unlock (m) .
,J;3471;;; 5§Z1f345" 21: } 41: } 60: unlock (m)

71}

Details of the 3 Scheduling Rules

Rule 1: Proceed with thread that immediately satisfy uncovered SP.

thread 1

A 4

thread 2

11: lock(m)

31: lock(m)

20: unlock(m)

40: unlock(m)

<1375 <31, 11>

<11, 53> <53, 11>
<31, 53> <53, 31>

=>» Proceed with thread 1
then thread 2

Rule 2: Proceed with thread that satisfy next uncovered SP with same lock.

thread 1

A 4

thread 2

11: lock(m)

A 4

31: lock(m)

20: unlock(m)

40: unlock(m)

<11-3T> <344TS
<1153 <53 44>
<31, 53> <53-37S

=» Proceed with thread 2
then thread 1 10

Details of the 3 Scheduling Rules

Rule 3: Choose thread with smallest number of relevant coverage.

thread 1 thread 2

<11-3T> <3149
v <11.-53> <524%>
11: lock(m) 31: lock(m) <31, 53> <53.34>
<11, 70> <31, 99>
v v <11, 66> <31, 25>
20: unlock(m) 40: unlock(m) <11, 90><99, 31>

There are 3 requirements for 11 left.
There are 4 requirements for 31 left.

=>» Proceed with thread 1

The approach of rule 3 is also called the estimation based heuristic.
This rule improves test performance dramatically.

11

Empirical Test Conditions

Subject program for empirical study:

— Test programs out of Java libraries (see table).

— Execution of test 500 times for each technique

— Repetition of experiements 30 times (statistical reasons)

Lines of # of # of
Type Program Code Threads | Sync. stmts.
ArrayList] 7712 26 69
ArraylList2 712 1 67
HashSetl 0028 21 67
HashSet2 0028 3 66
Java HashTablel 11431 5 96
Library HashTable2 11431 5 116
LinkedList1 T3ThH 26 67
LinkedList2 TaTh 15 66
TreeSetl 5669 21 69
TreeSet2 5669 3 67
cached] 1922 10 128
Java — -
Server p_cro_l uul}ﬁ 10 280
VES2 22081 6 116

Computer specification:

— Intel Core2 Duo 3.0 GHz;

— SunlJavaSE 1.6.0

— Fedora Linux platform 9 (kernel 2.6.27)

Empirical Test Result (TSA vs. Random)

200 Saturation point
180 "{_ Qur technique
160 /7
v
:':En w0 < RND-sleep(<10ms) avg.
g 120 | emmeee . RND-sleep(<100ms) aveg.
Rl | T i
& 1[}0 ‘-"’#” O — 0T N RND-SIE‘EP{lmS] avg
80 _',"': - e b :
60 - ,.-”.-:_'::
4"-}"
40 '|_.':*’
20 :
0 ArraylList 1
0 50 100 150
time (sec)
Source: [1]

=>» TSA resaches SP coverage faster and higher.

Side note: over 90% of decision are made by Rule 3

*SP: synchronization-pair 13

Critics about TSA

— Relationship between coverage and bug-detection?

— Technique generalizable?
— Extend other concurrent coverage criteria.

Summary

— Empirical studies show that TSA is more effective and efficient

than random testing.
— TSA is scalable to large program (target code is not changed)

— Future works necessary to complete

END

Thank you

