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Content

• Why test concurrent program in the first place?

• Metric: Synchronization coverage

• Achieving high synchronization coverage
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Never

Source: [2]
An Exploratory Survey 
Jan 2007 at Microsoft

 Over 50% of the respondants face concurrent bugs regularly.

How often do you detect/debug and fix concurrent bugs?
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26%

58%

14% 2%

Severe L1 (most)

Severe L2

Severe L3

Severe L4 (least)

How severe are the concurrent bugs?

Majority of the concurrent bugs are rated severe.

Source: [2]
An Exploratory Survey 
Jan 2007 at Microsoft

4



19%

54%

21%
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Very Hard

Hard

OK

Relatively Easy

Easy

How difficult is it to find concurrent bugs?

 Concurrent bugs are often difficult to find.
It sometimes takes several days to locate them.

Source: [2]
An Exploratory Survey 
Jan 2007 at Microsoft
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10: thread_1(){

11: lock(m)

…

20: unlock(m)

21: }

30: thread_2(){

31: lock(m)

…

40: unlock(m)

41: }

Coverage for Concurrent Programs

50: thread_3(){

51: …

53: lock(m)

…

60: unlock(m)

71: }

Synchronization-pair:

<11, 31>  <31, 11> <11, 53>  
<53, 11> <31, 53>  <53, 31>
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IBM introduced several coverage models for testing concurrent 
programs. One of which is called synchronization coverage.



Testing Concurrent Programs

Test Type

Stress Random Pattern-Based Systematic TSA*)

Coverage
(Sync.-pair)

Limitation

Tools ConTest
Eraser, Atomizer, 

CalFuzzer
CHESS, Fusion

Close to max coverage

Many Coverage

Some Coverage 7
*) TSA: Thread Scheduling Algorithm

 does not 
reveal all bugs

 Limited 
scalability

 focues on 
specific bugs

 Bad 
scalability

 does not 
reveal any 
concurrent 
bugs

-

 Extra test-
suite 
neccessary



Principle of TSA (Thread Scheduling Algorithm)
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<11, 31>  <31, 11>
<11, 53>  <53, 11> 
<31, 53>  <53, 31>

…

Coverage 
requirement R

From the thread model, 
the SP are generated.



Principle of TSA (Thread Scheduling Algorithm)
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Invoke TSA before lock operation and
after unlock operation. Either suspend or 
proceed thread based on 3 rules.

<11, 31>  <31, 11>
<11, 53>  <53, 11> 
<31, 53>  <53, 31>

…



Rule 1: Proceed with thread that immediately satisfy uncovered SP.
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Details of the 3 Scheduling Rules

<11, 31>  <31, 11>
<11, 53>  <53, 11> 
<31, 53>  <53, 31>

…

11: lock(m) 31: lock(m)

20: unlock(m) 40: unlock(m)

thread_1 thread_2

Rule 2: Proceed with thread that satisfy next uncovered SP with same lock.

11: lock(m) 31: lock(m)

20: unlock(m) 40: unlock(m)

thread_1 thread_2

<11, 31>  <31, 11>
<11, 53>  <53, 11> 
<31, 53>  <53, 31>

…

 Proceed with thread_1
then thread_2

 Proceed with thread_2
then thread_1
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Details of the 3 Scheduling Rules

Rule 3: Choose thread with smallest number of relevant coverage.

11: lock(m) 31: lock(m)

20: unlock(m) 40: unlock(m)

thread_1 thread_2

<11, 31>  <31, 11>
<11, 53>  <53, 11> 
<31, 53>  <53, 31>
<11, 70> <31, 99>
<11, 66> <31, 25>
<11, 90> <99, 31>

There are 3 requirements for 11 left.

There are 4 requirements for 31 left.

 Proceed with thread_1

The approach of rule 3 is also called the estimation based heuristic.
This rule improves test performance dramatically.
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Empirical Test Conditions

Computer specification:
 Intel Core2 Duo 3.0 GHz;
 Sun Java SE 1.6.0
 Fedora Linux platform 9 (kernel 2.6.27)

Subject program for empirical study:
 Test programs out of Java libraries (see table).
 Execution of test 500 times for each technique
 Repetition of experiements 30 times (statistical reasons)



Empirical Test Result (TSA vs. Random)

*SP: synchronization-pair

*)
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Source: [1]

 TSA resaches SP coverage faster and higher.

Side note: over 90% of decision are made by Rule 3
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Summary

 Empirical studies show that TSA is more effective and efficient 
than random testing.

 TSA is scalable to large program (target code is not changed)

 Future works necessary to complete

Critics about TSA

 Relationship between coverage and bug-detection?

 Technique generalizable?

 Extend other concurrent coverage criteria.



END

Thank you 
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