
Seminar Talk

Achieve High Synchronization Coverage
in

Testing Concurrent Programs

Hong, Ahn, Park, Kim, Harrold

KAIST, South Korea
and

Georgia Institute of Technology, USA
(published in July 2012)

Benjamin Bucheli

buchelib@student.ethz.ch

20.3.2013

Content

• Why test concurrent program in the first place?

• Metric: Synchronization coverage

• Achieving high synchronization coverage

2

3%

13%

38%

44%

2%

Daily

Weekly

Monthly

Rearly

Never

Source: [2]
An Exploratory Survey
Jan 2007 at Microsoft

 Over 50% of the respondants face concurrent bugs regularly.

How often do you detect/debug and fix concurrent bugs?

3

26%

58%

14% 2%

Severe L1 (most)

Severe L2

Severe L3

Severe L4 (least)

How severe are the concurrent bugs?

Majority of the concurrent bugs are rated severe.

Source: [2]
An Exploratory Survey
Jan 2007 at Microsoft

4

19%

54%

21%

6% >1%

Very Hard

Hard

OK

Relatively Easy

Easy

How difficult is it to find concurrent bugs?

 Concurrent bugs are often difficult to find.
It sometimes takes several days to locate them.

Source: [2]
An Exploratory Survey
Jan 2007 at Microsoft

5

10: thread_1(){

11: lock(m)

…

20: unlock(m)

21: }

30: thread_2(){

31: lock(m)

…

40: unlock(m)

41: }

Coverage for Concurrent Programs

50: thread_3(){

51: …

53: lock(m)

…

60: unlock(m)

71: }

Synchronization-pair:

<11, 31> <31, 11> <11, 53>
<53, 11> <31, 53> <53, 31>

6

IBM introduced several coverage models for testing concurrent
programs. One of which is called synchronization coverage.

Testing Concurrent Programs

Test Type

Stress Random Pattern-Based Systematic TSA*)

Coverage
(Sync.-pair)

Limitation

Tools ConTest
Eraser, Atomizer,

CalFuzzer
CHESS, Fusion

Close to max coverage

Many Coverage

Some Coverage 7
*) TSA: Thread Scheduling Algorithm

 does not
reveal all bugs

 Limited
scalability

 focues on
specific bugs

 Bad
scalability

 does not
reveal any
concurrent
bugs

-

 Extra test-
suite
neccessary

Principle of TSA (Thread Scheduling Algorithm)

8

<11, 31> <31, 11>
<11, 53> <53, 11>
<31, 53> <53, 31>

…

Coverage
requirement R

From the thread model,
the SP are generated.

Principle of TSA (Thread Scheduling Algorithm)

9

Invoke TSA before lock operation and
after unlock operation. Either suspend or
proceed thread based on 3 rules.

<11, 31> <31, 11>
<11, 53> <53, 11>
<31, 53> <53, 31>

…

Rule 1: Proceed with thread that immediately satisfy uncovered SP.

10

Details of the 3 Scheduling Rules

<11, 31> <31, 11>
<11, 53> <53, 11>
<31, 53> <53, 31>

…

11: lock(m) 31: lock(m)

20: unlock(m) 40: unlock(m)

thread_1 thread_2

Rule 2: Proceed with thread that satisfy next uncovered SP with same lock.

11: lock(m) 31: lock(m)

20: unlock(m) 40: unlock(m)

thread_1 thread_2

<11, 31> <31, 11>
<11, 53> <53, 11>
<31, 53> <53, 31>

…

 Proceed with thread_1
then thread_2

 Proceed with thread_2
then thread_1

11

Details of the 3 Scheduling Rules

Rule 3: Choose thread with smallest number of relevant coverage.

11: lock(m) 31: lock(m)

20: unlock(m) 40: unlock(m)

thread_1 thread_2

<11, 31> <31, 11>
<11, 53> <53, 11>
<31, 53> <53, 31>
<11, 70> <31, 99>
<11, 66> <31, 25>
<11, 90> <99, 31>

There are 3 requirements for 11 left.

There are 4 requirements for 31 left.

 Proceed with thread_1

The approach of rule 3 is also called the estimation based heuristic.
This rule improves test performance dramatically.

12

Empirical Test Conditions

Computer specification:
 Intel Core2 Duo 3.0 GHz;
 Sun Java SE 1.6.0
 Fedora Linux platform 9 (kernel 2.6.27)

Subject program for empirical study:
 Test programs out of Java libraries (see table).
 Execution of test 500 times for each technique
 Repetition of experiements 30 times (statistical reasons)

Empirical Test Result (TSA vs. Random)

*SP: synchronization-pair

*)

13

Source: [1]

 TSA resaches SP coverage faster and higher.

Side note: over 90% of decision are made by Rule 3

14

Summary

 Empirical studies show that TSA is more effective and efficient
than random testing.

 TSA is scalable to large program (target code is not changed)

 Future works necessary to complete

Critics about TSA

 Relationship between coverage and bug-detection?

 Technique generalizable?

 Extend other concurrent coverage criteria.

END

Thank you

15

