Objective Motivation Test criteria Results Related work

0000

Exploring Multi-Threaded Java Application
Performance on Multicore Hardware|1]

Jennifer B. Sartor Lieven Eeckhout

Presented by Moritz Hoffmann

May 8, 2013

Conclusion

Impact

Objective

Objective

Analyze effects of multi-core and multi-socket
systems on managed languages.

Motivation

Motivation

e Many applications written in managed languages, for
example Java running on the JVM.

e Runtime environment performs additional tasks.

e Garbage collection
e Compilation
e Support functions

e Performance impact of tasks on multi-core/multi-socket
platforms research topic.

Objective Motivation Test criteria Results Related work

0000

Test criteria

e Factors to vary:

e Pinning of threads (application, utility) to cores
e Pinning to sockets

e Frequency of cores

e Memory availability (heap size)

Conclusion

Test criteria
°

Test environment

Intel Nehalem, 2012

Two sockets

Quad cores per socket

No hyperthreading

Clock frequency 1.5GHz, 2.0GHz and 3GHz

Different heap sizes to trigger utility threads in different
patterns.

Objective Motivation Test criteria Results Related work Conclusion

Impact

[eYoX Yol

System architecture

Socket O Socket 1

DDR3 Memory

DDR3 Memory
Controllers Controllers

0

D H
]

Objective

Motivatio Test criteria Results Relatec

0e00

Benchmarks

Avrora

Lusearch, plus fixed version lusearch-fix
Pmd

Sunflow

Xalan

Pjbb2005

ol

pact

i

Conclusion

Results Related work

Test criteria

Motivation

Objective

oooe

Benchmark results 1

a
©
o}

<
>

o

[

=2xheap
= 3xheap

S ONNANNNNNNNNNY
I I I
VL7177 {7777

ANNNNAWONNNOANNNNNANNNNONNNNY
R N A I
I 7L IIIIHITI I TIT I I7777,

NN ENNNANNNNINNNNNNY
I I
L

Boost Freq, 1 Socket

r 72
s

o o o o o o o

© 'e] < (3] N —
awl] 09x3 ul uswaoidul| %

500zqald
uefex
Mopuns
pwd
Xlj-yoJeasn|
yoJeasn|

®BloIAR

Figure 2. Percent execution time improvement when boost-

ing frequency from lowest to highest on one socket.

Test criteria e t
.

Benchmark results 11

Isolate GC
80 {
s | §
X
40 4 £ - § sLo-1.5xheap
8 .. B2 ¢ & -clo2xheap
20 @ £ S ‘—; "é =Lo-3xheap
2 e e X = Hi-1.5xheap

~ =Hi-2xheap
= Hi-3xheap

A R
o o
avrora
“4P23333733 lusgarch

% Improvement in Exec Time
o

Figure 3. Percent execution time improvement of isolating
four collector threads to a second socket.

yjective Motivatio

Test criteria Results Related work
o]

Benchmark results I11

Lower Freq:
o 20
E 9 i ke
l_
8 -20
< =avrora
w -40 ,uz g 8 =lusearch
£ o MO (0] (0] A =lusearch-fix
c O ! =pmd
GEJ -80 H u =sunflow
D -100 =xalan
3 0 Mo N «pjbb2005
Q. - a N&
5 -120 = 15 88

< <

1= Z
—=-140
X160 ik

Figure 12. Percent execution time improvement when low-
ering frequency from highest to lowest, either four collector
threads, or application (plus the rest) socket.

Objective

Motivatio

Test criteria

€000

Results

Related work

Benchmark results IV

s Performance Comparison

[}
E4s
= . I
5 4 N / \ —e—avrora
5 35 /\ lusearch
3 f I \ f I\/ --~+---lusearch-fix
Ll>j 3 1a ——4—-pmd
o \ / l / (sunflow
Q \ —-—+---xalan
= e~ pjbb2005
E
o 15 S
P4 ~ ;
y X / ;4
00000 VaOS 0OQV) T
33333 BEBS 8BS TIiit
TOAOS ©°QL7 FRED 20 20>
SHEGS JQ99 TOoTr XGEGS
Opocs a0Z4 ofZr 810cH
020568 6506 arFe 27008
NTBR2E Lara <alg NSp>g
ol T 50“(Saal —owaS
2x%o TIT SZ5S aBE20
2580 ~<SST 383 ~ome
oo IZ a5 @20
g7] T o L]

Figure 19. Execution time comparison normalized to min-
imum with different thread mappings and scaling frequen-
cies, at twice the minimum heap size.

bact

Test criteria

Benchmark results V

1 & Isolated Sockets vs Paired & Divided
40 —8

® o
E 201%

[0l-=

§ -20 77 =X

W -40 N = S 3 :

c .60 N [5 = o =OneSocket-Lo
= 5 7 o) X
= .80 M] ‘& =OneSocket-Hi
clc> 3 = |solate-Lo

g -100 4 =Isolate-Hi
Q120 A

O 140 +n

g -160

z -180

> _2007221I 464

Figure 20. Percent execution time improvement going from
all threads on one socket and from isolating four collector
threads on a second socket to pairing application and collec-
tor threads and placing half each socket, at twice the mini-
mum heap size.

Test criteria e t
.

Benchmark results VI

, Lusearch, Vary from 1GC

g L
£ 1.1
= T T -~y
c 1 ::\I///.,
K<) T p
=
3 0.9 T —e—Lusearch-Lo
Q 0.8 Q Q Q Q Lusearch-Hi
w - - [3Y ® < - - Lusearch-fix-Lo
B 07++ F — == - Lusearch-fix-Hi
N [B O R -4
© 0.6 ¥ ha |
T 1

g = T e
o 05
z] 1 L

0.4 =

Figure 24. Execution time comparison for lusearch and
lusearch-fix varying the number of collector threads normal-
ized to lusearch with one collector thread, on one socket at
twice the minimum heap size.

Results

Results

Factors have an impact on performance.
Dependent on benchmark.

Other factors have similar performance effects on all
benchmarks.

Factors have a different impact during startup and
steady-state operation.

Related work

Related work

Understanding JVM behavior

e Analyze importance of utility threads versus application
threads.

e Impact of hardware characteristics, such as memory
availability, cache size.

e Typically 20%, ranges from 10% to 55%|2]

DVFS (Dynamic Voltage and Frequency Scaling)

e Save power while keeping performance.

Conclusion

Conclusion

e Core frequency has strong influence on performance.

e Garbage collection has a strong influence depending on
workload. Separation to different sockets/cores might
degrade performance.

e Future work should focus on closer operating system and
runtime environment integration.

Impact

Impact

e No citations.

e Research for performance analysis has to be done closer to
hardware.

Appendix
[]

For Further Reading I

1. Exploring multi-threaded Java application performance on
multicore hardware; Sartor, Jennfer B and Eeckhout,
Lieven; Proceedings of the ACM international conference
on Object oriented programming systems languages and
applications; page 281-296, 2012; ACM

2. T. Cao, S. M. Blackburn, T. Gao, and K. 5. McKinley. The
yin and yang of power and performance for asymmetric
hardware and managed software. In The 39th International

Symposium on Computer Architecture (ISCA), pages
225-236, June 2012.

	Objective
	Motivation
	Test criteria
	Test environment
	System architecture
	Benchmarks
	Benchmark results

	Results
	Related work
	Conclusion
	Impact
	Appendix
	Appendix

