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Objective

Analyze e�ects of multi-core and multi-socket

systems on managed languages.
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Motivation

• Many applications written in managed languages, for
example Java running on the JVM.

• Runtime environment performs additional tasks.

• Garbage collection
• Compilation
• Support functions

• Performance impact of tasks on multi-core/multi-socket
platforms research topic.
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Test criteria

• Factors to vary:

• Pinning of threads (application, utility) to cores
• Pinning to sockets
• Frequency of cores
• Memory availability (heap size)
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Test environment

• Intel Nehalem, 2012

• Two sockets

• Quad cores per socket

• No hyperthreading

• Clock frequency 1.5GHz, 2.0GHz and 3GHz

• Di�erent heap sizes to trigger utility threads in di�erent
patterns.
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System architecture

nicating across sockets. Although current practice is to have
thread-local allocation, collection threads are not tied to any
particular application thread or core (in our Java virtual ma-
chine), and can touch many areas of memory and incur inter-
thread synchronization in order to reclaim space. Other JVM
threads such as those that perform dynamic compilation and
on-stack replacement, also interact with application threads
and share hardware resources. It is unclear whether hardware
resource sharing between JVM and application threads actu-
ally helps or hurts performance, because of either better data
locality or resource contention.

Thread-to-core/socket mapping. Inherent in the choice of
the number of threads is where to place these threads on
a multicore multi-socket system. Current systems largely
leave thread scheduling up to the operating system which
can preempt and context switch threads when necessary.
Intuition suggests we should use all cores and maximize
parallelism. Further, benchmarks with large working sets
could benefit from the aggregate last-level cache capacity
across sockets. However, as previously mentioned, moving
data between sockets increases inter-thread communication,
leading to more memory accesses and coherence traffic and
potentially higher synchronization costs.

Frequency scaling and power implications. Because mod-
ern machines include the ability to dynamically scale the
core frequency, another axis to explore is the ramifications
of scaling on total application performance. Because power
is a first-order concern, and will become even more con-
strained in future systems, it might be worth paying the
price of somewhat reduced performance for power savings.
Hence, we need to analyze both the cost of moving threads
to another core or socket and then additionally, the cost of
lowering the clock speed. Because JVM service threads do
not run constantly, we surmise that they should be amenable
to running at scaled-down frequencies without hurting appli-
cation performance drastically. However, both compilation
and collection can be on the application critical path if they
need to stop the workload to perform on-stack replacement
or collect garbage when the heap is full. Garbage collection
threads have to trace all live heap pointers to identify dead
data to reclaim, and could thus suffer from higher memory
communication if moved to a separate socket.

Analyzing this challenging experimental space will shed
light on the ramifications of the many configuration and
scheduling decisions on overall goals, whether time or
power. We explore the performance of Java workloads, while
keeping power in mind, along these many orthogonal axes
on modern multicore, multi-socket hardware to provide new,
sometimes surprising, findings and insights.

3. Experimental Setup
Before presenting the key results obtained from this study,
we describe our experimental setup of running Java work-
loads on multicore, multi-socket hardware.
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Figure 1. Diagram of our two-socket, eight-core Intel Ne-
halem experimental machine, with memory hierarchy.

3.1 Hardware Platform
The hardware platform considered in this study is an Intel
Nehalem based system, more specifically, an IBM x3650 M2
with two Intel Xeon X5570 processors that are 45-nm West-
mere chips with 4 cores each, see Figure 1. The two sockets
are connected to each other through QuickPath Interconnect
Technology; and feature a 1333 MHz front-side bus. Each
core has a private L1 with 32 KB for data and 32 KB for
instructions. The unified 256 KB L2 cache is private, and
the 8 MB L3 cache is shared across all four cores on each
socket. The machine has a total main memory capacity of
14 GB. We can use dynamic frequency scaling (DFS) on
the Nehalem to vary core frequencies between 1.596 GHz
and 3.059 GHz. However, on this machine, it is only possi-
ble to change the frequency at a socket-level. Therefore, all
four cores on each socket run at the same frequency, and we
are unable to evaluate more than two different frequencies
simultaneously. For all of our experiments, we set the fre-
quency only to the lowest and highest extremes to test the
limits of performance. We turn hyperthreading off in all of
our experiments.

3.2 Benchmarks and JVM Methodology
We perform experiments with the Jikes Research Virtual
Machine (RVM), having obtained the source from the Mer-
curial repository in December, 20111. We updated from a
stable release of Jikes because of a revamping of their ex-
perimental methodology code. We modified Jikes slightly to
identify and control JVM service thread placement for the
purpose of frequency scaling. By default, we pin applica-
tion and garbage collection threads to a particular core, and
other JVM service threads are placed on the socket with ap-
plication threads, but not pinned to a specific core. We also
perform experiments without pinning application and JVM
threads for comparison, and these results will be discussed in
Section 4.5. In addition to threads that perform garbage col-

1 changeset 10414: 5c59ac91ff06
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Benchmarks

• Avrora

• Lusearch, plus �xed version lusearch-�x

• Pmd

• Sun�ow

• Xalan

• Pjbb2005
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Benchmark results I

cation and JVM threads are diverse and complex, and hence,
we perform detailed experiments to evaluate the impact of
both pairing and scaling the frequency of application and
JVM threads.

4. Results
We now present our experimental results running multi-
threaded Java applications on modern multicore, multi-
socket hardware, in which we vary the number of cores and
sockets, the number of application and garbage collection
threads, clock frequency, thread-to-core mapping and pin-
ning, and heap size. Because of the complexity of the space,
we break up the analysis in a number of comprehensive
steps. We first discuss the general effect frequency scaling
has on application execution time. We then analyze the cost
of isolating some JVM threads to a separate socket. After
isolating JVM threads, we analyze the cost of scaling the
frequency of isolated JVM service threads from the high-
est to the lowest value on end-to-end performance. Because
we see a significant cost from isolating garbage collection
threads, we then perform experiments that pair application
and collection threads, but put some pairs on each socket.
Finally, we analyze the effect that thread pinning has on per-
formance, and the effect of varying both the number of ap-
plication and collector threads while running on one socket.

4.1 The Effect of Scaling Frequency
Although a detailed power study is beyond the scope of
this paper, we first wanted to explore the effect core fre-
quency has on application performance. Figure 2 presents
the speedup as a percentage of execution time of boost-
ing core frequency from the lowest to the highest, when all
threads, including four collector threads, run on only one
socket. Results are for all six benchmarks for our range of
three heap sizes.

Finding 1. Java workloads benefit significantly from scaling
up the clock frequency.

Doubling clock frequency leads to between 27% and 50%
performance improvement. Results are not sensitive to heap
size. We see that doubling the clock speed does not lead
to doubling the performance improvement, which would be
100%. Our benchmarks fall short of perfect scaling, most
likely because of inter-thread synchronization and memory
intensity. However, as we will see in all of our results, core
frequency is one of the most significant factors in determin-
ing, and improving, application time. Below, we will show
that scaling down JVM thread frequency does not affect per-
formance as drastically as for application threads.

4.2 The Cost of Isolation
We now analyze the performance penalty inherent to iso-
lating JVM service threads to another socket. We investi-
gate this cost for four collector threads, for the compilation
thread, for all JVM service threads except collector threads,
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Figure 2. Percent execution time improvement when boost-
ing frequency from lowest to highest on one socket.

and then all JVM threads together. The motivation for this
experiment is twofold. First, in order to investigate the fea-
sibility of scaling down the frequency of only JVM service
threads, we must first isolate threads onto a separate socket,
because we are only able to scale frequency at the socket-
level. Second, we want to study how isolating JVM service
threads to another socket hurts (through reduced data local-
ity) or helps performance (by getting off the application’s
critical path).

Isolating garbage collection threads. Figures 3 through 6
show the cost of isolating some JVM threads to a second
socket, as compared with the execution times when run-
ning all threads on one socket. The graphs present steady-
state performance differences for our three heap sizes run-
ning at both the highest and lowest core frequencies. While
some benchmarks’ performance varies with heap size, we
see larger performance differences between high and low
core frequencies.

Finding 2. Isolating garbage collection threads to a sep-
arate socket leads to a small performance degradation (no
more than 17%) for most benchmarks because of increased
latency between sockets; however, one benchmark substan-
tially benefits (up to 66%) from increased cache capacity.

Figure 3 shows that all but one application suffer from
isolating four collection threads, due to more data commu-
nication between sockets. For all but lusearch, the degrada-
tion is less than 5% for the lowest frequency, and less than
17% for the highest. Lusearch is an outlier that particularly
suffers from both increasing the number of collector threads
(as shown in Figure 24) and from isolating those threads to
another socket, with over 40% degradation in performance.
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Benchmark results II
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Figure 3. Percent execution time improvement of isolating
four collector threads to a second socket.
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Figure 4. Percent execution time improvement of isolating
the compiler thread to a second socket.

Figure 3 shows that when lusearch does not suffer from huge
amounts of allocation, lusearch-fix’s cost of moving collec-
tor threads to another socket lowers to be in line with other
benchmark trends.

Interestingly, avrora benefits from isolating the collector
threads to another socket. Performance improves by 36%
and 66% at the lowest and highest frequencies, respectively.
However, it should be noted that the confidence intervals
for avrora are large, and thus performance greatly varies
from run to run. For avrora, running all application and
collector threads on one socket makes the threads contend
more for the cache, and avrora benefits from the increased
cache capacity of two sockets. Analyzing hardware perfor-
mance counters revealed fewer L3 misses when the collector
threads were isolated. We will see later that avrora is particu-
larly sensitive to application-thread to core mapping because
application threads do not have uniform behavior, and share
data (see analysis in Sections 4.4 and 4.5).
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Figure 5. Percent execution time improvement of isolating
all JVM non-collector threads to a second socket.

Isolating the JIT compilation thread. Figure 4 shows the
effect of isolating just the compilation thread, with four
collector and four application threads that are pinned to the
first socket.

Finding 3. Isolating the compilation thread to a sepa-
rate socket leads to a either a performance boost, or is
performance-neutral. Only avrora’s performance at high
frequencies suffers because of increased latency between
sockets.

Four benchmarks have very little change to performance
when the compiler thread is isolated to a separate socket dur-
ing steady-state. Lusearch and pjbb2005 see a performance
win, especially at the higher frequency, by isolating the com-
piler away from other application and collector threads. Only
avrora sees a performance hit, up to 100% with the highest
frequency (although confidence intervals are large). It is pos-
sible that when the application is sped up, it is more sensi-
tive to the compiler being separated from other JVM threads
such as those that perform on-stack-replacement. When an-
alyzing startup time, indeed avrora is the only benchmark
for which performance degrades when isolating the compiler
or on-stack-replacement threads (see further analysis in this
section regarding Figures 8 and 9).

Isolating all JVM service threads. Figure 5 shows the
cost of isolating all JVM service threads except for the four
collection threads (or nonGC) which remain on the first
socket with application threads. Figure 6 then shows the
impact to performance when all JVM threads are isolated
onto another socket.

Finding 4. Isolating all JVM service threads to a separate
socket leads to larger performance degradation for a few
benchmarks (only one suffers more than 22% degradation,
and only at the highest frequency), while others are only
slightly negatively affected by offloading computation and
memory to another socket.
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Figure 12. Percent execution time improvement when low-
ering frequency from highest to lowest, either four collector
threads, or application (plus the rest) socket.

ing some JVM threads to a second socket, with both sockets
at the highest frequency. The left groupings of bars compare
a configuration lowering only the isolated JVM threads’ fre-
quency, while the right groupings compare lowering only the
application and non-isolated threads’ frequency. We present
all results at all three heap sizes for all benchmarks, but note
that there is little heap-size variation.

Finding 6. On average, lowering the frequency of collector
threads does degrade performance (usually less than 20%),
but degrades about five times less than lowering application
thread frequency.

Figure 12 compares scaling down the frequency of four
collector threads in the left three bar groupings versus ap-
plication threads on the right. Although collector threads
can be on the application critical path because they force
the application to pause during collection, collector threads
do not run all the time, and thus they are amenable to be-
ing scaled down for more power-conscience environments.
Maximally, avrora performance degrades 69% for scaling
collector threads (with large confidence intervals), with the
next highest benchmark degradation at 20%. After scaling
application threads, we see avrora’s performance can de-
grade up to 315%!

Finding 7. Lowering the core frequency for the isolated
compiler thread affects performance very little, while appli-
cation performance suffers greatly.

Figure 13 shows that lowering the core frequency for only
the compiler thread does not affect steady-state performance
on average. In Figure 16, we show that at startup time, the
compilation thread is also unaffected by lowering frequency.
In comparison, benchmark application threads can degrade
by as much as 100% when we scale down frequency at
steady-state time. Interestingly, avrora is the only applica-
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Figure 13. Percent execution time improvement when low-
ering frequency from highest to lowest, either compiler
thread, or application (plus the rest) socket.
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Figure 14. Percent execution time improvement when low-
ering frequency from highest to lowest, either JVM non-
collector threads, or application (plus the rest) socket.

tion that does not see a performance degradation when the
application and other threads are scaled down together.

Finding 8. If worrying about a power budget, scaling down
the frequency of JVM threads, while costing some perfor-
mance (usually less than 20%), has a much more reasonable
effect on overall execution time as compared to scaling ap-
plication threads, which can take twice the running time.

Looking at the cost of scaling all but collector threads
in Figure 14, and scaling all JVM service threads in Fig-
ure 15, we see that sunflow’s application threads suffer the
most, more than 90%, from running at a lower clock speed,
while JVM threads’ performance degrades less than 30% for
all benchmarks. It is interesting to note the change in per-
formance for scaling pjbb2005’s application threads down,
between the configuration where the compilation thread is
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Figure 18. Percent execution time improvement when low-
ering frequency from highest to lowest, either JVM threads,
or application socket, at startup time.
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Figure 19. Execution time comparison normalized to min-
imum with different thread mappings and scaling frequen-
cies, at twice the minimum heap size.

degrades performance on average by 16%, and with appli-
cation threads 47%. While these degradations are slightly
less than steady-state time’s degradations of 10% and 50%,
respectively, we observe the same trends.

Overall best performance. Figure 4.3 compares overall
execution times of all benchmarks as we move from lower
to higher frequencies (left to right) and explore isolating
various JVM threads, and scaling the frequency of either
the isolated or application and other threads. These results
present runs for two times the minimum heap size. Whereas
previous graphs gave a percentage improvement in execution
time over a baseline run, we present here running times

normalized to the minimum time over this set of experiments
(so lower is better) in order to analyze trends.

Finding 10. When power-constrained in a multi-socket en-
vironment, it is better to either keep application and JVM
service threads on one socket, and power down the other
socket(s), or to isolate the compilation thread onto the sec-
ond socket and lower its frequency.

Figure 4.3’s left grouping shows performance when all
sockets are run at the low frequency. Moving right to the
second grouping, we boost the frequency of the application
and non-isolated threads. Performance generally improves
(closer to one on the graph), but not always for avrora. Al-
most universally, going from the second to the third group-
ing, now keeping the first socket at the lowest frequency
and boosting only the isolated JVM threads on the second
socket, running time increases. Avrora shows similar trends,
but unlike other benchmarks, achieves the lowest perfor-
mance when collection threads are separated from applica-
tion threads and application threads are boosted. We sur-
mise avrora has a lot of inter-application communication
and collection threads interfere with cache and bandwidth
resources. Finally, the last grouping shows overall improve-
ments when we boost the frequency of both sockets. For all
benchmarks but avrora, the fastest run times come from ei-
ther the configuration where the compilation thread is iso-
lated and the other socket is boosted (HiApp-LoComp), or
the configuration also with the compilation thread isolated,
but both sockets boosted (IsolateComp-Hi). For benchmarks
except for avrora, lusearch, and pjbb2005, the configuration
with all threads running together on one socket at the highest
frequency (1Socket-Hi) performs almost optimally as well.

4.4 Pairing Application and Collector Threads
Because our benchmarks have up to 17% performance
degradation from isolating collector threads to another socket,
here we explore the effect of splitting work between sockets
without separating all application from collection threads. In
this section, we pair an application and a collection thread
and place half of the pairs on each socket.

Figure 20 presents results for running two application and
two collection threads on each socket, with all application
and collection threads pinned to cores. The graph shows both
running all threads on one socket, and isolating collection
threads to a second socket versus this paired-and-divided
configuration. We present results at high and low frequencies
for two times the minimum heap size.

Finding 11. Other than the anomalous avrora benchmark
which likely has high levels of inter-thread communication,
applications benefit more from pairing collector threads to-
gether with application threads while running on multiple
sockets, with performance comparable to running on only
one socket.
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Figure 20. Percent execution time improvement going from
all threads on one socket and from isolating four collector
threads on a second socket to pairing application and collec-
tor threads and placing half each socket, at twice the mini-
mum heap size.

In comparison with all threads on one socket (left bars),
lusearch, lusearch-fix, pmd, sunflow, and xalan have almost
the same running time when pairing and dividing applica-
tion and collection threads. At the highest frequency, sun-
flow degrades performance by 9% because of more com-
munication through memory, while pjbb2005 has improved
performance by 15% by using twice the last-level cache
as with one socket. Unfortunately, although avrora benefit-
ted from separating collector threads, dividing application
threads costs up to 220% of performance. Upon further in-
vestigation, unhalted cycle and L3 miss performance coun-
ters on the Nehalem reveal that avrora’s application threads
have non-uniform behavior. Some run many more cycles and
incur more last-level cache misses than others. It is also pos-
sible avrora’s application threads have significant data shar-
ing, because the application threads suffer many more L3
misses when divided between sockets.

In comparison with isolating all collection threads from
application threads (right bars), benchmarks mostly see pos-
itive impacts to performance when pairing and dividing ap-
plication and collection threads. Again, avrora suffers heav-
ily from dividing up application threads — this time by max-
imally 460%, albeit with large confidence intervals. Other
benchmarks either improve (lusearch by 29% and pjbb2005
by 17%) or maintain performance by preserving some local-
ity between application and collector threads.

We explore increasing the number of application and col-
lection threads using the same paired-and-divided method-
ology. Using four application and four collector threads as
a baseline, Figure 21 presents performance improvements
for two times the heap size. We first increase the number
of application threads to eight while keeping four collector
threads, and then increase both to eight threads.

Finding 12. When running on two sockets, surprisingly, it is
not always recommended to set the number of threads equal
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Figure 21. Percent execution time improvement when pair-
ing application and collector threads and placing half on
each socket, varying the number of application and collec-
tor threads, at twice the minimum heap size.

to the number of cores. All but one benchmark benefit from
setting the number of application thread to the number of
cores, but only two of our benchmarks benefit from boosting
the number of collection threads above four.

The graph shows that almost all benchmarks improve
performance by having as many application threads as cores
(eight), but few benefit from increasing to eight collec-
tion threads. Specifically, avrora and sunflow benefit from
using more application threads, and are less sensitive to
the number of collector threads, improving performance
by 95% and 34-40%, respectively. Other benchmarks de-
grade performance when going from four to eight collector
threads. Lusearch’s performance degrades significantly (up
to 295%), but with the allocation bug-fix, lusearch-fix does
not experience the large degradation when going to eight
collection threads. Pseudojbb2005 alone has significant per-
formance degradation with more application threads, around
100%. This degradation could be due to not enough work
to keep application threads busy, and increases in thread-
synchronization time (particularly with the main thread). In
Section 4.6 we analyze the effect of varying the number
of application and collection threads on one socket, but the
optimal configuration highly depends on the benchmark.

4.5 The Effect of Pinning
Because all previous experiments were performed while pin-
ning application and collection threads to cores, this section
explores the effects of removing some thread-pinning on per-
formance. The experiments presented in this section have all
threads placed on one socket and are for two times the min-
imum heap size. Figure 22 compares pinning only the col-
lector thread, only the application threads, and pinning no
threads against a baseline of pinning all application and col-
lector threads.
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Figure 24. Execution time comparison for lusearch and
lusearch-fix varying the number of collector threads normal-
ized to lusearch with one collector thread, on one socket at
twice the minimum heap size.

times. Although lusearch benefits for up to three collector
threads, performance degrades significantly with four col-
lector threads especially at a higher frequency. The same
graph shows that lusearch-fix does not suffer in the same
way and obtains better overall performance.

Figure 23 also compares running with three and five ap-
plication and collector threads. Except for pjbb2005, all
benchmarks degrade in performance when increasing or de-
creasing threads from the 4-4 configuration. Pseudojbb2005
surprisingly performs 85% better with only three application
and collector threads, probably because these are sufficient
to perform the computational work for the input set, and
more threads just increase inter-thread communication. The
right grouping in Figure 23 increases the number of appli-
cation threads to eight, while keeping the collector threads
at four. Because this experiment is performed on one socket,
all benchmarks suffer because many threads are contending
for limited resources. In general, setting the number of col-
lector threads equal to application threads, and equal to the
number of cores, seems to obtain best performance for our
multi-threaded benchmarks running on one socket.

5. Related Work
We first discuss previous work that tried to understand the
performance of managed language applications, and their
ramifications on power. We then discuss research that is
related to dynamic voltage frequency scaling.

5.1 Understanding JVM Services’ Performance and
Power

Hu and John [13] perform a simulation-based study and eval-
uate how processor core characteristics, such as issue queue
size, reorder buffer size and cache size, affect JIT com-
piler and garbage collection performance. They conclude
that JVM services yield different performance and power
characteristics compared to the Java application itself.

Esmaeilzadeh et al. [10] evaluate the performance and
power consumption across five generations of microproces-
sors using benchmarks implemented in both native and man-
aged programming languages. The authors considered end-
to-end Java workload performance, like our work, but as-
sumed a single socket where we use multi-socket systems.
Further, we explore how isolating and slowing/speeding up
JVM service threads affects end-to-end performance.

Cao et al. [6] study how a Java application can poten-
tially benefit from hardware heterogeneity. They tease apart
the interpreter, JIT compiler and garbage collector, conclud-
ing that JVM services consume on average 20% of total en-
ergy, ranging from 10% to 55% across the set of applica-
tions considered in the study. They further study how clock
frequency, cache size, hardware parallelism and gross mi-
croarchitecture design options (in-order versus out-of-order
processor cores) affect the performance achieved per unit of
energy for each of the JVM services. Through this analy-
sis, they advocate for heterogeneous multicore hardware, in
which JVM services are run on customized simple cores and
Java application threads run on high-performance cores.

There are at least two key differences between this prior
work [6] and ours. First, our experimental setup considers
multi-socket systems, not individual processors. Second, we
focus on end-to-end Java workload performance whereas
Cao et al. consider the Java application and the various
JVM services in isolation. These key differences enable us
to evaluate how scaling down frequency for particular JVM
services affects overall Java workload performance. This is
done by separating out the JVM service of interest to an-
other socket and scaling its frequency. A number of con-
clusions that we obtain are in line with Cao et al. In par-
ticular, we confirm that the Java application itself benefits
significantly from increasing clock frequency, and garbage
collection benefits much less. We also confirm a slight im-
provement to application performance if the compiler is iso-
lated, regardless of whether the isolated compiler runs at
the highest or lowest frequency. However, we also obtain a
number of conclusions that are quite different from Cao et
al. Whereas Cao et al. conclude that high clock frequency
is energy-efficient for the JIT compiler, we find that it has
limited impact on overall end-to-end performance. Also, al-
though reducing clock frequency for the garbage collector
may be energy-efficient according to Cao et al., we find that
it negatively affects end-to-end benchmark performance.

5.2 DVFS
Dynamic Voltage and Frequency Scaling (DVFS) is a widely
used power reduction technique: DVFS lowers supply volt-
age and clock frequency to reduce both dynamic and static
power consumption. DVFS is being used in commercial pro-
cessors across the entire computing range: from the embed-
ded and mobile market up to the server market. Extensive
research has been done towards how to take advantage of
DVFS and reduce overall energy consumption while meet-

294



Objective Motivation Test criteria Results Related work Conclusion Impact

Results

• Factors have an impact on performance.

• Dependent on benchmark.

• Other factors have similar performance e�ects on all
benchmarks.

• Factors have a di�erent impact during startup and
steady-state operation.
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Related work

Understanding JVM behavior

• Analyze importance of utility threads versus application
threads.

• Impact of hardware characteristics, such as memory
availability, cache size.

• Typically 20%, ranges from 10% to 55%[2]

DVFS (Dynamic Voltage and Frequency Scaling)

• Save power while keeping performance.
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Conclusion

• Core frequency has strong in�uence on performance.

• Garbage collection has a strong in�uence depending on
workload. Separation to di�erent sockets/cores might
degrade performance.

• Future work should focus on closer operating system and
runtime environment integration.
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Impact

• No citations.

• Research for performance analysis has to be done closer to
hardware.



Appendix

For Further Reading I

1. Exploring multi-threaded Java application performance on
multicore hardware; Sartor, Jennfer B and Eeckhout,
Lieven; Proceedings of the ACM international conference
on Object oriented programming systems languages and
applications; page 281�296, 2012; ACM

2. T. Cao, S. M. Blackburn, T. Gao, and K. S. McKinley. The
yin and yang of power and performance for asymmetric
hardware and managed software. In The 39th International
Symposium on Computer Architecture (ISCA), pages
225�236, June 2012.
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