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Analyze effects of multi-core and multi-socket
systems on managed languages.
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Motivation

e Many applications written in managed languages, for
example Java running on the JVM.

e Runtime environment performs additional tasks.

e Garbage collection
e Compilation
e Support functions

e Performance impact of tasks on multi-core/multi-socket
platforms research topic.
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Test criteria

e Factors to vary:

e Pinning of threads (application, utility) to cores
e Pinning to sockets

e Frequency of cores

e Memory availability (heap size)

Conclusion



Test criteria
°

Test environment

Intel Nehalem, 2012

Two sockets

Quad cores per socket

No hyperthreading

Clock frequency 1.5GHz, 2.0GHz and 3GHz

Different heap sizes to trigger utility threads in different
patterns.
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Figure 2. Percent execution time improvement when boost-

ing frequency from lowest to highest on one socket.
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Figure 3. Percent execution time improvement of isolating
four collector threads to a second socket.
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Figure 12. Percent execution time improvement when low-
ering frequency from highest to lowest, either four collector
threads, or application (plus the rest) socket.
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Figure 19. Execution time comparison normalized to min-
imum with different thread mappings and scaling frequen-
cies, at twice the minimum heap size.
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Figure 20. Percent execution time improvement going from
all threads on one socket and from isolating four collector
threads on a second socket to pairing application and collec-
tor threads and placing half each socket, at twice the mini-
mum heap size.
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Figure 24. Execution time comparison for lusearch and
lusearch-fix varying the number of collector threads normal-
ized to lusearch with one collector thread, on one socket at
twice the minimum heap size.
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Factors have an impact on performance.
Dependent on benchmark.

Other factors have similar performance effects on all
benchmarks.

Factors have a different impact during startup and
steady-state operation.
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Related work

Understanding JVM behavior

e Analyze importance of utility threads versus application
threads.

e Impact of hardware characteristics, such as memory
availability, cache size.

e Typically 20%, ranges from 10% to 55%|2]

DVFS (Dynamic Voltage and Frequency Scaling)

e Save power while keeping performance.
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Conclusion

e Core frequency has strong influence on performance.

e Garbage collection has a strong influence depending on
workload. Separation to different sockets/cores might
degrade performance.

e Future work should focus on closer operating system and
runtime environment integration.
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Impact

e No citations.

e Research for performance analysis has to be done closer to
hardware.
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