
Work-Stealing
without the Baggage

V. Kumar, D. Frampton, S. Blackburn, 
D. Grove, O. Tardieu

Presentation by Roman Schmocker



Work stealing: Idea

● Work queue for each thread
○ No dependencies allowed between work jobs

● Idle threads steal jobs from busy threads

sin(3.14)

Thread a Thread b

sqrt(42)

fib(21) Zzzz sqrt(42)

sin(3.14)

fib(21)

Thread a Thread b



X10

● Research language by IBM
○ Object-oriented, Java-like
○ Translated to Java
○ Strong focus on parallel programming

● Async-Finish construct in X10:
finish {

async a = sqrt (42); // May run concurrently

b = fib (21);

} // Thread join point

c = a+b;



Async-Finish and Work Stealing

● When encountering async
○ push the continuation to work queue
○ execute the async immediately

● Continuation
○ The code following an async statement up to the end 

of finish block

finish {

async a = sqrt (42);

b = fib (21);

}



Translation to Java

● Put continuation into separate method
○ called continuation method

● All variables accessed within continuation 
method are heap-allocated
○ i.e. generate frame classes and instantiate frame 

objects that hold these variables

● Work queue entries:
○ continuation method
○ frame object (as its argument)



Finish block semantics

● Worker retrieves job from queue
○ No steal -> No waiting necessary

● Worker retrieves null
○ continuation stolen!
○ How to check if thief has finished execution?

● Atomic integer for each finish block
○ Denotes number of active threads
○ Increment when stealing
○ Decrement when completing job
○ Worker: proceed when zero



Performance analysis

● Authors interested in sequential overhead
○ Compare performance between:

■ Work-stealing with only one thread
■ Sequential version (no async-finish statements)

● Several benchmarks
○ e.g. Fibonacci number, LU-Decomposition

● Results
○ Sequential overhead is huge!
○ up to 16x slower than sequential version
○ Best result has still overhead of 1.5



Performance analysis

● Some operations very costly
○ Synchronization of work queue
○ Allocation (and deallocation) of frame objects

● Method splitting prevents optimizations
○ plus overhead of additional call

● This applies even when there's no steal!

● Moreover, further analysis has shown that 
steals are very rare
○ usually 1 steal among 1'000'000 tasks 
○ at most 1 in 10



X10 (Try-Catch)

● New way to translate async-finish
○ main contribution of the paper

● Goal: No sequential overhead
○ Preparing for a potential steal is too expensive
○ Use call stack as implicit queue
○ Copy values only during an actual steal operation

● Control Flow modelled with Java exceptions
○ First step: wrap async-finish into try-catch



def fib (n:Int):Int {

val a:Int; val b:Int;

if (n < 2) return n;

finish {

async a = fib(n-1);

b = fib (n-2);

}

return a + b;

}

X10
int fib (int n) {

int a,b; 

if (n < 2) return n; 

try {

try {

a = fib (n-1); 

} 

catch (...) {}

b = fib (n-2);

} 

catch(...) {}

return a + b;

}

Java



int fib (int n) {

int a,b; if (n < 2) return n; 

try {

try {

// Atomically set a flag indicating that work can be stolen
// WS is a class with some static support methods
WS.setFlag();
a = fib (n-1); 

} 

catch (...) {}

b = fib (n-2);

} 

catch(...) {}

return a + b;

}

Informing thieves



Performing a steal

● Thief forcibly stops worker
○ using Java VM functionality

● Copy call stack of worker
○ and update flag

● Restart worker thread

● Dive into execution by throwing Continuation 
exception
○ Requires catch clause for thief!



int fib (int n) {

int a,b; if (n < 2) return n; 

try {

try {

WS.setFlag();
a = fib (n-1); 

}

catch (Continuation c) {

// Empty catch clause.
// Thief will start here after throwing Continuation exception!

}

b = fib (n-2);

} 

catch(...) {}

return a + b;

}



Control flow

● Goals
○ Worker must not execute stolen continuation
○ None shall leave finish{} while the other is running
○ Exactly one must proceed after finish{}

● Guard exit 
○ join() method at end of try blocks
○ Correct control flow through exceptions

● Finish node
○ Available in join() 
○ Created lazily during steal
○ Atomic integer, represents active threads (initially 2)



Join method
// in class WS

static void join () {

if (WS.getFlag() == false) { // A steal has occured 

int active = finish_node.count.decrementAndGet();

if (active == 0)

// I'm the last thread

throw new Finish();

} else {

// The other thread hasn't finished

throw new JoinFirst(); 

}

}

}



int fib (int n) {

int a,b; if (n < 2) return n; 

try {

try {

WS.setFlag();

a = fib (n-1);

WS.join();

} catch (JoinFirst j) {

WS.exit(); // Search for other work!

} catch (Continuation c) { // Thief entry point

}

b = fib (n-2);

WS.join();

} catch (JoinFirst j) {

WS.exit(); // Search for other work

} catch (Finish f) {

}

return a + b;

}



int fib (int n) {

int a,b; if (n < 2) return n; 

try {

try {

WS.setFlag();

a = fib (n-1);

WS.join();

} catch (JoinFirst j) {

WS.exit(); // Search for other work!

} catch (Continuation c) { // Thief entry point

}

b = fib (n-2);

WS.join();

} catch (JoinFirst j) {

WS.exit(); // Search for other work

} catch (Finish f) {

}

return a + b;

}

Example:
No steal



The Pool of 
Thumb - 
Twiddling 
Threads

int fib (int n) {

int a,b; if (n < 2) return n; 

try {

try {

WS.setFlag();

a = fib (n-1);

WS.join();

} catch (JoinFirst j) {

WS.exit(); // Search for other work!

} catch (Continuation c) { // Thief entry point

}

b = fib (n-2);

WS.join();

} catch (JoinFirst j) {

WS.exit(); // Search for other work

} catch (Finish f) {

}

return a + b;

}

Example:
Steal, 
Thief finishes firstSteal!



int fib (int n) {

int a,b; if (n < 2) return n; 

try {

try {

WS.setFlag();

a = fib (n-1);

WS.join();

} catch (JoinFirst j) {

WS.exit(); // Search for other work!

} catch (Continuation c) { // Thief entry point

}

b = fib (n-2);

WS.join();

} catch (JoinFirst j) {

WS.exit(); // Search for other work

} catch (Finish f) {

}

return a + b;

}

Example:
Steal, 
Worker finishes first

The Pool of 
Thumb - 
Twiddling 
Threads

Steal!



State management

● Computed variables in two different stacks!

● Move values to correct stack
○ depends on who finishes last

● First thread stores its values to the finish 
node
○ in JoinFirst catch blocks

● Last thread retrieves values from finish node
○ in Finish catch block



Improvements

● WS.join() only needed when steal occurs

● Generate two versions of method
○ Slow version: as seen previously
○ Fast version: join() replaced with NOP
○ Default to fast version
○ Stack frame layout and jump offsets remain the 

same!

● Thief switches worker to slow version when 
stealing



Performance Evaluation

● Sequential overhead
○ Usually a lot smaller than previous solution
○ Between 1.15 and 1.5 
○ (one outlier has little more than 2)

● Speedup
○ compared to purely sequential version
○ very good for fine-grained concurrency (e.g. 

Fibonacci), up to 7x speedup for 12 threads
○ at least on par with old solution on other benchmarks



Conclusion

● Interesting approach

● Requires managed runtime (Java VM)

● Impressive results

● Possible improvements
○ Reduce worker downtime
○ Translate X10 arrays correctly


