
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

Assignment 7: Inheritance and polymorphism

ETH Zurich

handout: Monday, 4 November 2013
Due: Wednesday, 13 November 2013

Well 2 c© Randall Munroe (http://xkcd.com/568/)

Goals

• Understand polymorphism and dynamic binding.

• Practice inheritance.

• Continue the design and implementation of the board game.

1 Polymorphism and dynamic binding

Review polymorphic attachment and dynamic binding (Touch of Class, sections 16.2 and 16.3).
Below you can see a class diagram and code of three classes from a new video game “Blades

of Glory”.

HERO*

WARRIOR HEALER

1

http://xkcd.com/568/


ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

deferred class
HERO

feature −− Initialization
make (s: STRING)
−− Create a hero with name ‘s’.

require
s /= Void

do
name := s
level := 1
health := 100

end

feature −− Access
name: STRING

level: INTEGER

health: INTEGER

feature −− Basic operations
do action (other: HERO)
−− Perform main action on ‘other’.

require
alive: health > 0

deferred
end

level up
−− Increase level.

do
level := level + 1
set health (100)

end

feature {HERO} −− Setters
set health (h: INTEGER)
−− Set ‘health’ to ‘h’.

require
0 <= h and h <= 100

do
health := h
if health = 0 then
print (name + ” is dead.%N”)

end
end

invariant
name /= Void
0 <= health and health <= 100
level > 0

2



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

end

class
WARRIOR

inherit
HERO

rename
do action as attack

redefine
level up

end

create
make

feature −− Basic operations
attack (other: HERO)
−− Attack ‘other’.

local
damage: INTEGER

do
damage := (5 ∗ level).min (other.health)
other.set health(other.health − damage)
print (name + ” attacks ” + other.name + ”. Does ” + damage.out + ” damage%

N”)
end

level up
do
Precursor
print (name + ” is now a level ” + level.out + ” warrior%N”)

end

end

class
HEALER

inherit
HERO

rename
do action as heal

redefine
make,
level up

end

create
make

feature −− Initialization

3



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

make (s: STRING)
−− Create a healer with name ‘s’.

do
Precursor (s)
mana := 100

end

feature −− Access
mana: INTEGER

feature −− Basic operations
heal (other: HERO)
−− Heal ‘other’.

local
h: INTEGER

do
if mana >= 10 then
h := (10 ∗ level).min (100 − other.health)
other.set health(other.health + h)
mana := mana − 10
print (name + ” heals ” + other.name + ” by ” + h.out + ” points%N”)

end
end

level up
do
Precursor
mana := 100
print (name + ” is now a level ” + level.out + ” healer%N”)

end
end

Given the following variable declarations:

hero: HERO
warrior: WARRIOR
healer: HEALER

indicate, for each of the code fragments below, whether it compiles. If the code fragment does
not compile, explain why this is the case. If the code fragment compiles, specify the text that
is printed to the screen when the code fragment is executed. This is a pen-and-paper task; you
are not supposed to use EiffelStudio.

Example:

create warrior
warrior.level up

This code does not compile, because default creation is not available for class WARRIOR.

4



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

Task 1

create warrior.make (”Thor”)
warrior.level up

Task 2

create hero.make (”Althea”)
hero.level up

Task 3

create warrior.make (”Thor”)
create healer.make (”Althea”)
warrior.do action (healer)

Task 4

create {HEALER} warrior.make (”Diana”)
warrior.level up

Task 5

create {WARRIOR} hero.make (”Thor”)
hero.do action (hero)
create {HEALER} hero.make (”Althea”)
hero.do action (hero)

Task 6

create {WARRIOR} hero.make (”Thor”)
warrior := hero
warrior.attack (hero)

To hand in

Hand in your answers for the code fragments above.

2 Ghosts in Zurich

Ghosts are taking over Zurich! In this task you will implement a special kind of mobile object:
a GHOST. Ghosts in Traffic have the following behavior: they choose a station of the city and
then fly around it in circles.

To do

1. Download http://se.inf.ethz.ch/courses/2013b_fall/eprog/assignments/07/traffic.zip,
unzip it, copy the dir assignment 7 into directory traffic/examples and open
assignment 7.ecf from within EiffelStudio.

2. Create a new class GHOST and make it inherit from MOBILE. The latter has three
deferred features: position, speed and move distance, which you have to implement before
you can successfully compile your class. For the first two features you have a choice of
making them into either an attribute or a function. The third one should be implemented
as a procedure that calculates where the ghost ends up when it moves from the current

5

http://se.inf.ethz.ch/courses/2013b_fall/eprog/assignments/07/traffic.zip


ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

position by d meters. You can assume that all ghosts always move at the same speed (e.g.
10 meters per second).

You’ll probably also want to add new features to GHOST, for example to store the station
that it is flying around and the distance it keeps from the station (the radius of its circular
trajectory). Additionally you’ll need a creation procedure that takes the station and the
radius as arguments.

Hint: It’s convenient to represent the ghost position at any point in time as a sum of two
vectors, one of them constant and the other one changing as the ghost moves, like on this
picture:

3. In the class GHOST INVASION implement a feature add ghost (s: STATION; r:
REAL 64) that creates a ghost flying around a station s at a distance r and adds it
to Zurich (using the feature add custom mobile). Don’t forget to update the map in order
to create the view for the new ghost. After that, modify the view so that the ghost is
depicted as an icon instead of the default black dot; you can use “ghost.png” from the
“images” directory for the icon. The expression Zurich map.custom mobile view (ghost)
gives you access to the view of the object ghost.

Test the add ghost feature by calling it from invade with arguments of your choice. To
make the ghost move, double-click on the map.

4. Modify the feature invade so that it generates 10 ghosts flying around random stations of
Zurich at a random distance between 10 and 100 meters (you don’t have to check that all
stations are different). To access stations by integer index, create a cursor that iterates
through the stations and call the command go to on that cursor.

To hand in

Hand in classes GHOST and GHOST INVASION.

3 Code review

Code review is a widely applied software engineering practice, in which source code produced
by a software developer is examined by his or her peers. The purpose of a code review is
to find design, programming, and style errors, improving the overall software quality and the
developers’ skills.

In this task you will conduct a review of the Board game (part 2) implementation, written
by one of your peers. You will receive the code to review from your assistant by the end of
Wednesday, November 6.

To do

Examine the code carefully, evaluating the following aspects:

6



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

1. Choice of abstractions (the set of classes, the set of responsibilities of each class)

2. Architecture (relationship between classes, such as inheritance and client-supplier)

3. Contracts

4. Implementation techniques (choice of data structures and algorithms)

5. Coding style and names

6. Comments and documentation (including header comments and note clauses for classes)

For each category listed above, write down related issues you found in the code, if any. If
the same issue occurs multiple times (for example, a header comment is missing in all features)
you only have to mention it once.

To hand in

Your review.

4 Board game: Part 3

In this task you will extend the implementation of the board game. You will find an updated
problem description below.

The board game comes with a board, divided into 40 squares, a pair of six-sided dice, and
can accommodate 2 to 6 players. It works as follows:

• All players start from the first square.

• One at a time, players take a turn: roll the dice and advance their respective tokens on
the board.

• A round consists of all players taking their turns once.

• Players have money. Each player starts with 7 CHF.

• The amount of money changes when a player lands on a special square:

– Squares 5, 15, 25, 35 are bad investment squares: a player has to pay 5 CHF. If the
player cannot afford it, he gives away all his money.

– Squares 10, 20, 30, 40 are lottery win squares: a player gets 10 CHF.

• The winner is the player with the most money after the first player advances beyond the
40th square. Ties (multiple winners) are possible.

To do

Modify the implementation of the board game in such a way that it accommodates the changes
in the problem description (money, special squares, new winning criterion). We recommend that
you start from the master solution to the assignment 6: http://se.inf.ethz.ch/courses/2013b_

fall/eprog/assignments/07/board_game.zip.

7

http://se.inf.ethz.ch/courses/2013b_fall/eprog/assignments/07/board_game.zip
http://se.inf.ethz.ch/courses/2013b_fall/eprog/assignments/07/board_game.zip


ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2013

Hints

Are there entities in the problem domain that didn’t have enough properties and behavior to
deserve their own classes in the previous version of the game, but that gained some properties
or behavior in the current version? You might want to introduce new classes for such entities.

Bad investment and lottery win squares are special cases of squares, which differ in a way
they affect players. To model this you can introduce class SQUARE and then use inheritance
and feature redefinition to implement the behavior of special squares. You can store squares
of all kinds in a single polymorphic container (e.g. V ARRAY [SQUARE]) and let dynamic
binding take care of which special behavior applies for each square.

To hand in

Hand in the code of your classes.

5 MOOC: Single Inheritance

To do

1. Access the main MOOC course web page at http://se.ethz.ch/mooc/programming.

2. Listen to lecture number 7 “Single Inheritance” and take the corresponding quiz.

Your goal is to provide all correct answers to the quiz. You can take the quiz as many times as
you want. If you succeed, you will be awarded a badge.

8

http://se.ethz.ch/mooc/programming

	Polymorphism and dynamic binding
	Ghosts in Zurich
	Code review
	Board game: Part 3
	MOOC: Single Inheritance

