
Chair of Software Engineering

Einführung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer	

Exercise Session 6

2

Today

Ø Abstractions
Ø Exporting features
Ø Exercise: practicing contracts

3

Abstraction

To abstract is to capture the essence behind the details
and the specifics.
The client is interested in:

§  a set of services that a software module provides,
not its internal representation

§  what a service does, not how it does it

hence, the class abstraction

hence, the feature abstraction
§  Programming is all about finding right abstractions
§  However, the abstractions we choose can sometimes

fail, and we need to find new, more suitable ones.

4

Abstraction

”A simplification of something much more complicated
that is going on under the covers. As it turns out, a lot of
computer programming consists of building abstractions.

What is a string library? It's a way to pretend that
computers can manipulate strings just as easily as they
can manipulate numbers.

What is a file system? It's a way to pretend that a hard
drive isn't really a bunch of spinning magnetic platters
that can store bits at certain locations, but rather a
hierarchical system of folders-within-folders containing
individual files that in turn consist of one or more strings
of bytes.“

(extract from http://www.joelonsoftware.com/articles/LeakyAbstractions.html)

5

Finding the right abstractions (classes)

Suppose you want to model your room:
 class ROOM
 feature

 -- to be determined
 end

Your room probably has thousands of properties and
hundreds of things in it.

size location
material

messy?

door

shape
computer

bed desk

furniture etc
etc etc

Therefore, we need a first abstraction: What do we
want to model?

In this case, we focus on the size, the door, the
computer and the bed.

6

Finding the right abstractions (classes)

To model the size, an attribute of type DOUBLE is
probably enough, since all we are interested in is it‘s value:

class ROOM
feature

 size: DOUBLE
 -- Size of the room.

end

7

Finding the right abstractions (classes)

Now we want to model the door.
If we are only interested in the state of the door, i.e. if it
is open or closed, a simple attribute of type BOOLEAN
will do:
 class ROOM
feature

 size: DOUBLE
 -- Size of the room.

 is_door_open: BOOLEAN
 -- Is the door open or closed?

 ...
end

8

Finding the right abstractions (classes)

But what if we are also interested in what our door looks
like, or if opening the door triggers some behavior?
Ø  Is there a daring poster on the door?
Ø  Does the door squeak while being opened or closed?
Ø  Is it locked?
Ø When the door is being opened, a message will be sent
to my cell phone

In this case, it is better to model a door as a separate
class!

9

Finding the right abstractions (classes)

class ROOM
feature
 size: DOUBLE
 -- Size of the room

 -- in square meters.
 door: DOOR

 -- The room’s door.
end

class DOOR
feature
 is_locked: BOOLEAN
 -- Is the door locked?

 is_open: BOOLEAN
 -- Is the door open?

 is_squeaking: BOOLEAN
 -- Is the door squeaking?

 has_daring_poster: BOOLEAN
 -- Is there a daring poster on

 -- the door?
 open
 -- Opens the door
 do

 -- Implementation of open,
 -- including sending a message
 end

 -- more features…

end

10

Finding the right abstractions (classes)

How would you model…

… the computer?

… the bed?

How would you model an elevator in a building?

11

Finding the right abstractions (features)

(BANK_ACCOUNT)

deposits
withdrawals

800
(BANK_ACCOUNT)

deposits
withdrawals

balance

1000 300

500

1000 300

500

invariant: balance = total (deposits) – total (withdrawals)

Which one would you choose and why?

12

Exporting features: The stolen exam

class ASSISTANT

create

 make
feature

 make (a_prof: PROFESSOR)
 do
 prof := a_prof
 end

feature
 prof: PROFESSOR

feature
 propose_draft (a_draft: STRING)
 do
 prof.review(a_draft)
 end

end

13

For your eyes only

class PROFESSOR

create

 make
feature

 make
 do
 exam_text := ‘’exam is not ready’’
 end

feature
 exam_text: STRING

 review_draft (a_draft: STRING)
 do
 -- review ‘a_draft’ and put the result into ‘exam_text’
 end

end

14

Exploiting a hole in information hiding

class STUDENT

create

 make
feature

 make (a_assi: ASSISTANT; a_prof: PROFESSOR)
 do
 assi := a_assi
 prof := a_prof
 end

feature
 prof: PROFESSOR
 assi: ASSISTANT

feature
 stolen_exam: STRING
 do
 Result := prof.exam_text
 end

end

15

Don’t try this at home!

you: STUDENT
your_prof: PROFESSOR
your_assi: ASSISTANT
stolen_exam: STRING

create your_prof.make
create your_assi.make (your_prof)
create you.make (your_prof, your_assi)

your_assi.propose_draft (“top secret exam!”)

stolen_exam := you.stolen_exam

16

Secretive professor

class STUDENT

create

 make
feature

 make (a_assi: ASSISTANT ; a_prof: PROFESSOR)
 do
 assi := a_assi
 prof := a_prof
 end

feature
 prof: PROFESSOR
 assi: ASSISTANT

feature
 stolen_exam: STRING
 do
 Result :=
 end

end

prof.exam_text assi.prof.exam_text

)

17

Fixing the issue: hint

Use selective export for the features

class

 A

feature
 g ...

feature

 f...

end

{B, C }

18

Fixing the issue

class PROFESSOR
create

 make
feature

 make
 do
 exam_text := ‘’exam is not ready’’
 end

feature

 exam_text: STRING

 review_draft (a_draft: STRING)
 do
 -- review ‘a_draft’ and put the result into ‘exam_text’
 end

end

{PROFESSOR, ASSISTANT}

19

The export status does matter!

class STUDENT
create

 make
feature

 make (a_prof: PROFESSOR; a_assi: ASSISTANT)
 do
 prof := a_prof
 assi := a_assi
 end

feature
 prof: PROFESSOR
 assi: ASSISTANT

feature
 stolen_exam: STRING
 do
 Result := prof.exam_text
 end

end

Invalid call!

Result := assi.prof.exam_text

Invalid call!

20

Exporting features

•  a1.f, a1.g: valid in any client

•  a1.h: invalid everywhere (including in A’s text!)

•  a1.j: valid in B, C and their descendants (invalid
in A!)

•  a1.m: valid in B, C and their descendants,
 as well as in A and its descendants.

Status of calls in a client with a1 of type A: class
 A

feature
 f ...
 g ...

feature {NONE}

 h, i ...

feature {B, C}

 j, k, l ...

feature {A, B, C}

 m, n…
end

21

Compilation error?

class PERSON
feature

 name: STRING
feature {BANK}

 account: BANK_ACCOUNT
feature {NONE}

 loved_one: PERSON
 think
 do
 print (“Thinking of ” + loved_one.name)
 end
 lend_100_franks
 do
 loved_one.account.transfer (account, 100)
 end

end

OK: unqualified call OK: exported to all

OK: unqualified call Error: not exported to
PERSON

22

Exporting attributes

Exporting an attribute only means giving read access

x.f := 5

Attributes of other objects can be changed only through
commands

Ø  protecting the invariant
Ø  no need for getter functions!

23

Example

class TEMPERATURE
feature

celsius_value: INTEGER

make_celsius (a_value: INTEGER)
 require
 above_absolute_zero: a_value >= - Celsius_zero
 do
 celsius_value := a_value
 ensure
 celsius_value_set := celsius_value = a_value
 end

...
end

24

Assigners

If you like the syntax
x.f := 5

you can declare an assigner for f

§  In class TEMPERATURE
 celsius_value: INTEGER assign make_celsius

§  In this case
t.celsius_value := 36

is a shortcut for
t.make_celsius (36)

§  ... and it won’t break the invariant!

25

Information hiding vs. creation routines
class PROFESSOR
create

 make
feature {None}

 make
 do
 ...
 end

end

Can I create an object of type PROFESSOR as a client?

After creation, can I invoke feature make as a client?

26

Controlling the export status of creation routines
class PROFESSOR
create {COLLEGE_MANAGER}

 make
feature {None}

 make
 do
 ...
 end

end

Can I create an object of type PROFESSOR as a client?
After creation, can I invoke feature make as a client?
What if I have create {NONE} make instead of
create {COLLEGE_MANAGER} make ?

27

Specification of a card game

A deck is initially made of 36 cards

Every card in the deck represents a value in the range 2..10

Every card also represents 1 out of 4 possible colors

The colors represented in the game cards are:
red (‘R’), white (‘W’), green (‘G’) and blue (‘B’)

As long as there are cards in the deck, the players can look
at the top card and remove it from the deck

28

Class CARD create make

make (a_color: CHARACTER, a_value: INTEGER)
 -- Create a card given a color and a value.
 require
 ...

 ensure
 ...

color: CHARACTER

 -- The card color.
value: INTEGER

 -- The card value.

29

Class CARD: which colors are valid?

is_valid_color (a_color: CHARACTER): BOOLEAN
 -- Is `a_color’ a valid color?
 require
 ...

 ensure
 ...

30

Class CARD: which ranges are valid?

is_valid_range (n: INTEGER): BOOLEAN
 -- Is `n’ in the acceptable range?
 require
 ...

 ensure
 ...

invariant

 ...

31

Class CARD create make: reloaded

make (a_color: CHARACTER, a_value: INTEGER)
 -- Create a card given a color and a value.
 require
 ...

 ensure
 ...

color: CHARACTER

 -- The card color.
value: INTEGER

 -- The card value.

32

Class DECK create make

make
 -- Create a deck with random cards.
 require
 ...
 ensure
 ...

feature {NONE} –- Implementation

card_list: LINKED_LIST [CARD]

 -- Deck as a linked list of cards.

33

Class DECK queries

top_card: CARD
 -- The deck’s top card.

is_empty: BOOLEAN

 -- Is Current deck empty?
 do
 …
 end

count: INTEGER
 -- Number of remaining cards in the deck.
 do
 …
 end

34

Removing the top card from DECK

remove_top_card
 -- Remove the top card from the deck.
 require
 ...

 ensure
 ...

35

The class invariant

invariant

 ...

