
1

Einführung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 13

2

Today

Ø  Mock exam 2 review
Ø  Tuples and agents

3

Tuples

In mathematics, computer science, linguistics, and
philosophy a tuple is an ordered list of elements. In set
theory, an (ordered) n-tuple is a sequence (or ordered list)
of elements, where n is a non-negative integer.

 Wikipedia, Tuple
 For example:

 (2, 1, 4, 5)
 (cat, dog)
 ()

4

Tuples in Eiffel

Ø A tuple of type TUPLE [A, B, C] is a sequence of at least
three values, first of type A, second of type B, third of
type C.
Ø  In this case possible tuple values that conform are:

Ø  [a, b, c], [a, b, c, x],...
where a is of type A, b of type B, c of type C and x of
some type X

Ø Tuple types (for any types A, B, C, ...):
 TUPLE
 TUPLE [A]
 TUPLE [A, B]
 TUPLE [A, B, C]
 ...

Subtypes

5

Tuple conformance

tuple_conformance
 local
 t0: TUPLE
 t2: TUPLE [INTEGER, INTEGER]
 do
 create t2
 t2 := [10, 20]
 t0 := t2
 print (t0.item (1).out + "%N")
 print (t0.item (3).out)
 end

Not necessary in this
case

Runtime error, but
will compile

Implicit creation

6

Labeled Tuples

Ø Tuples may be declared with labeled arguments:
 tuple: TUPLE [food: STRING; quantity: INTEGER]

Ø  Same as an unlabeled tuple:

 TUPLE [STRING, INTEGER]
but provides easier (and safer!) access to its elements:
May use
 Io.print (tuple.food)
instead of
 Io.print (tuple.item (1))

7

What are agents in Eiffel?

Ø Objects that represent operations

Ø  Can be seen as operation wrappers

Ø Similar to

Ø  delegates in C#
Ø  anonymous inner classes in Java < 7
Ø  closures in Java 7
Ø  function pointers in C
Ø  functors in C++

8

Agent definition

Ø Every agent has an associated routine, which the agent
wraps and is able to invoke

Ø To get an agent, use the agent keyword
 e.g. a_agent := agent my_routine

Ø This is called agent definition

Ø What’s the type of a_agent?

9

EiffelBase classes representing agents

*
ROUTINE

+
PROCEDURE

+
FUNCTION

+
PREDICATE

call

item

10

Agent Type Declarations

p: PROCEDURE [ANY, TUPLE]
 Agent representing a procedure belonging to a class
that conforms to ANY. At least 0 open arguments

q: PROCEDURE [C, TUPLE [X, Y, Z]]

 Agent representing a procedure belonging to a
 class that conforms to C. At least 3 open arguments

f: FUNCTION [ANY, TUPLE [X, Y], RES]

 Agent representing a function belonging to a class that
conforms to ANY. At least 2 open arguments, result of
type RES

11

Open and closed agent arguments

Ø An agent can have both “closed” and “open” arguments:
Ø  closed arguments are set at agent definition time

Ø  open arguments are set at agent call time.
Ø To keep an argument open, replace it by a question mark

 u := agent a0.f (a1, a2, a3) -- All closed

 v := agent a0.f (a1, a2, ?)
 w := agent a0.f (a1, ?, a3)
 x := agent a0.f (a1, ?, ?)
 y := agent a0.f (?, ?, ?)
 z := agent {C}.f (?, ?, ?) -- All open

12

Agent Calls

An agent invokes its routine using the feature “call”

f (x1: T1; x2: T2; x3: T3)

 -- defined in class C with
 -- a0: C; a1: T1; a2: T2; a3: T3

u := agent a0.f (a1, a2, a3)
 v := agent a0.f (a1, a2, ?)

w := agent a0.f (a1, ?, a3)
x := agent a0.f (a1, ?, ?)
y := agent a0.f (?, ?, ?) y.call ([a1, a2, a3])

x.call ([a2, a3])
w.call ([a2])
v.call ([a3])
u.call ([]) PROCEDURE [C, TUPLE]

PROCEDURE [C, TUPLE [T3]]
PROCEDURE [C, TUPLE [T2]]
PROCEDURE [C, TUPLE [T2, T3]]
PROCEDURE [C, TUPLE [T1,T2,T3]]

What are the types of the agents?

 z := agent {C}.f (?, ?, ?) z.call ([a0, a1, a2, a3]) PROCEDURE [C, TUPLE [C,T1,T2,T3]]

Arguments in excess,
if any, are ignored

13

Doing something to a list

do_all (do_this : PROCEDURE[ANY, TUPLE[G]])
 local
 i : INTEGER
 do

Hands-On

 from

 until

 loop

 end
 end

i := 1

i > count

i := i + 1

Given a simple ARRAY [G] class, with only the features
`count’ and `at’, implement a feature which will take an agent and
perform it on every element of the array.

do_this.call ([at (i)])

14

For-all quantifiers over lists

for_all (pred : PREDICATE [ANY, TUPLE[G]]): BOOLEAN
 local
 i : INTEGER
 do

Hands-On

 from

 until

 loop

 end
 end

i := 1

i > count or not Result

i := i + 1

Result := True

Result := pred.item ([at (i)])

15

Using inline agents

We can also define our agents as-we-go!

Applying this to the previous `for_all’ function we made,
we can do:

for_all_ex (int_array : ARRAY [INTEGER]): BOOLEAN

 local
 greater_five: PREDICATE [ANY, TUPLE [INTEGER]]
 do
 greater_five := agent (i : INTEGER) : BOOLEAN
 do
 Result := i > 5
 end
 Result := int_array.for_all (greater_five)
 end

16

Problems with Agents/Tuples

We have already seen that TUPLE [A,B] conforms to
TUPLE [A]. This raises a problem. Consider the definition:

f (proc : PROCEDURE [ANY, TUPLE [INTEGER]])

 do
 proc.call ([5])
 end

Yes! Oh no… that procedure needs
at least TWO arguments!

Are we allowed to call this on something of type
PROCEDURE [ANY, TUPLE [INTEGER, INTEGER]] ?

Runtime error
(compiles fine)

