# Robotics Programming Laboratory 

Bertrand Meyer Jiwon Shin

## Lecture 6: Localization

This lecture is based on "Probabilistic Robotics" by Thrun, Burgard, and Fox (2005).

## Localization

Localization: process of locating an object in space


Types of localization
> Global localization: initial pose unknown
> Markov localization
> Particle filter localization
$>$ Local localization: initial pose known
> Kalman filter localization

## Probabilistic robotics

Uncertainty!
> Environment, sensor, actuation, model, algorithm
$>$ Represent uncertainty using the calculus of probability theory

Probability theory
> X: random variable
> Can take on discrete or continuous values
$\Rightarrow P(X=x), P(x)$ : probability of the random variable $X$ taking on a value $x$
$\Rightarrow$ Properties of $P(x)$

$$
\begin{aligned}
& >P(X=x)>=0 \\
& >\sum_{x} P(X=x)=1 \text { or } \int_{X} \mathrm{P}(X=x)=1
\end{aligned}
$$

Probability
$\Rightarrow P(x, y)$ : joint probability
$\Rightarrow P(x, y)=P(x) P(y): X$ and $Y$ are independent
$\rightarrow P(x \mid y)$ : conditional probability of $x$ given $y$
$\Rightarrow P(x \mid y)=p(x): X$ and $Y$ are independent
> $P(x, y \mid z)=P(x \mid z) P(y \mid z)$ : conditional independence
$\Rightarrow P(x \mid y)=P(x, y) / P(y)$
$\Rightarrow P(x, y)=P(x \mid y) P(y)=P(y \mid x) P(x)$
$\rightarrow P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}=\frac{\text { likelihood } \cdot \text { prior }}{\text { evidence }}$ : Bayes' rule
$\Rightarrow P(y)=\sum_{x} P(x, y)=\sum_{x} P(y \mid x) P(x)$ : Law of total probability

## Bayes' rule

$P($ door=open | sensor=far)

$$
\begin{aligned}
& =\frac{P(\text { far } \mid \text { open }) P(\text { open })}{P(\text { far })} \\
& =\frac{P(\text { far } \mid \text { open }) P(\text { open })}{P(\text { far } \mid \text { open }) P(\text { open })+P(\text { far } \mid \text { closed }) P(\text { closed })}
\end{aligned}
$$

## Bayes' filter

$\operatorname{bel}\left(x_{\dagger}\right)=p\left(x_{\dagger} \mid z_{1: t}, u_{1: t}\right)$ : belief on the robot's state $x_{t}$ at time $\dagger$

Compute robot's state: bel( $x_{t}$ )
$>$ Predict where the robot should be based on the control $\mathrm{u}_{1: t}$
$>$ Update the robot state using the measurement $z_{1: t}$

## Markov localization

World


Measurement


Markov localization
Belief


```
Markov_localize ( bel t-i: ARRAY[BELIEF_ROBOT_POSE];
            u+: ROBOT_CONTROL;
                        z
                        m:MAP) : BELIEF_ROBOT_POSE
    local
    bel*}\mp@subsup{}{+}{*}\mathrm{ : ARRAY[BELIEF_ROBOT_POSE_PARTICLE]
    bel_ : ARRAY[BELIEF_ROBOT_POSE_PARTICLE]
    x+ : ROBOT_POSE
    do
    create bel* t.make_from_array( bel }\mp@subsup{}{t-1}{}\mathrm{ )
    create bel..make_from_array( bel l-1 )
    from i:= bel..lower until i > bel..upper loop
        xt:= belt[i].pose
Predict bel*}+[i]:=\intp(\mp@subsup{x}{t}{}|\mp@subsup{u}{t}{},\mp@subsup{x}{t-1}{},m)\mp@subsup{\mathrm{ bel}}{t-1}{}(\mp@subsup{x}{t-1}{})d\mp@subsup{x}{t-1}{
Update bel_[i]:= n p (z+|}\mp@subsup{x}{t-1}{},m)\mathrm{ bel*}+[i
        i := i + 1
    end
    Result := bel 
    end
```


>Can be used for both local localization and global localization
> If the initial pose $\left(x^{*}{ }_{0}\right)$ is known: point-mass distribution

- $\operatorname{bel}\left(x_{0}\right)= \begin{cases}1 & \text { if } x_{0}=x *_{0} \\ 0 & \text { otherwise }\end{cases}$
> If the initial pose $\left(x^{*}{ }_{0}\right)$ is known with uncertainty $\Sigma$ : Gaussian distribution with mean at $x^{*}{ }_{0}$ and variance $\Sigma$
- $\operatorname{bel}\left(x_{0}\right)=\operatorname{det}(2 \pi \Sigma)^{-\frac{1}{2}} \exp \left\{-\frac{1}{2}\left(x_{0}-x_{0}\right)^{T} \Sigma^{-1}\left(x_{0}-x * 0\right)\right\}$
> If the initial pose is unknown: uniform distribution
- $\operatorname{bel}\left(x_{0}\right)=\frac{1}{|x|}$
>Computationally expensive
> Higher accuracy requires higher grid resolution


## What if we keep track of multiple robot pose?



Measurement


A sample-based Bayes filter
$\Rightarrow$ Approximate the posterior bel $\left(x_{t}\right)$ by a finite number of particles
> Each particle represents the probability of a particular state vector given all previous measurements
$>$ The distribution of state vectors within the particle is representative of the probability distribution function for the state vector given all prior measurements

## Importance sampling



Generate samples from a distribution

$$
\begin{aligned}
E_{f}[I(x \in A)] & =\int f(x) I(x \in A) d x \\
& =\int f(x) / g(x) g(x) I(x \in A) d x \\
& =E_{g}[w(x) I(x \in A)]
\end{aligned}
$$

$f(x)$ : target distribution
$g(x)$ : proposal distribution $-f(x)>0 \rightarrow g(x)>0$

## Particle filter localization

```
particle_filter_localize ( }\mp@subsup{X}{t-1}{}\mathrm{ : ARRAY[BELIEF_ROBOT_POSE_PARTICLE];
u+: ROBOT_CONTROL;
z
m: MAP) : ARRAY[BELIEF_ROBOT_POSE_PARTICLE]
    local
```

```
    Xt : ARRAY[BELIEF_ROBOT_POSE_PARTICLE]
```

    Xt : ARRAY[BELIEF_ROBOT_POSE_PARTICLE]
    x
    x
    do
    create }\mp@subsup{X}{t}{}\mathrm{ .make_from_array( }\mp@subsup{X}{t-1}{}\mathrm{ )
    from i:= }\mp@subsup{X}{t-1}{}\mathrm{ .lower until i> }\mp@subsup{X}{t-1}{}\mathrm{ . upper loop
        xt-1
    ```

```

Update }\quad\mp@subsup{X}{t}{}[i].weight := compute_sensor_measurement_prob ( ( zt,m
i := i + 1
end
Result := resample( (X)
end

```

\section*{Sampling from motion model}
sample_motion_mode ( \(x\) : ROBOT_POSE;
u: ROBOT_CONTROL
\(\Delta t\) : REAL_64 ) : ROBOT_POSE
local
x': ROBOT_POSE
\(u^{\prime}:\) ROBOT_CONTROL
do
\[
\begin{aligned}
& \text { u'.v:= Gaussian_sample( u.v, } a_{1} \text { u. } \sigma_{v}{ }^{2}+a_{2} \text { u. } \sigma_{\omega}{ }^{2} \text { ) } \\
& u^{\prime} . w \text { := Gaussian_sample( u.w, } a_{3} u . \sigma_{v}{ }^{2}+a_{4} u . \sigma_{\omega}{ }^{2} \text { ) } \\
& x^{\prime} . x:=x . x-\frac{u^{\prime} . v}{u^{\prime} . \omega} \sin (x . \theta)+\frac{u^{\prime} \cdot v}{u^{\prime} . w} \sin \left(x . \theta+u^{\prime} . \omega \Delta t\right) \\
& x^{\prime} \cdot y:=x . y+\frac{u^{\prime} . v}{u^{\prime} . \omega} \cos (x . \theta)-\frac{u^{\prime} \cdot v}{u^{\prime} . \omega} \cos \left(x . \theta+u^{\prime} . \omega \Delta t\right) \\
& x^{\prime} . \theta:=x . \theta+u^{\prime} . w \Delta t+\operatorname{Gaussian} \_ \text {sample }\left(0, a_{5} u . \sigma_{v}{ }^{2}+a_{6} u . \sigma_{\omega}{ }^{2}\right) \Delta t
\end{aligned}
\]

Result := \(x^{\prime}\)
end

\section*{Resampling}

Roulette wheel sampling


Stochastic universal sampling

distance between two samples = total weight / number of samples starting sample: random number in [0, distance between samples]

\section*{Particle filter localization}
> Global localization
> Track the pose of a mobile robot without knowing the initial pose
\(>\) Can handle kidnapped robot problem with little modification
> Insert some random samples at every iteration
> Insert random samples proportional to the average likelihood of the particles
> Approximate
> Accuracy depends the number of samples

Estimate the robot pose with a Gaussian distribution!


\section*{Measurement}


\section*{Properties of Gaussian distribution}

Univariate
\[
\left.\begin{array}{l}
X \sim N\left(\mu, \sigma^{2}\right) \\
Y=a X+b
\end{array}\right\} \Rightarrow \quad Y \sim N\left(a \mu+b, a^{2} \sigma^{2}\right)
\]
\(\left.\begin{array}{r}X_{1} \sim N\left(\mu_{1}, \sigma_{1}{ }^{2}\right) \\ X_{2} \sim N\left(\mu_{2}, \sigma_{2}{ }^{2}\right)\end{array}\right\} \Rightarrow p\left(X_{1}\right) \cdot p\left(X_{2}\right) \sim N\left(\frac{\sigma_{2}{ }^{2}}{\sigma_{1}{ }^{2}+\sigma_{2}{ }^{2}} \mu_{1}+\frac{\sigma_{1}{ }^{2}}{\sigma_{1}{ }^{2}+\sigma_{2}{ }^{2}} \mu_{2}, \frac{1}{\sigma_{1}{ }^{-2}+\sigma_{2}{ }^{-2}}\right)\)

Multivariate
\[
\left.\begin{array}{r}
X \sim N(\mu, \Sigma) \\
Y=A X+B
\end{array}\right\} \Rightarrow Y \sim N\left(A \mu+B, A \Sigma A^{T}\right)
\]
\[
\left.\begin{array}{l}
X_{1} \sim N\left(\mu_{1}, \Sigma_{1}\right) \\
X_{2} \sim N\left(\mu_{2}, \Sigma_{2}\right)
\end{array}\right\} \Rightarrow p\left(X_{1}\right) \cdot p\left(X_{2}\right) \sim N\left(\frac{\Sigma_{2}}{\Sigma_{1}+\Sigma_{2}} \mu_{1}+\frac{\Sigma_{1}}{\Sigma_{1}+\Sigma_{2}} \mu_{2}, \frac{1}{\Sigma_{1}^{-1}+\Sigma_{2}^{-1}}\right)
\]

\section*{Kalman filter localization}

A special case of Markov localization

Assumptions:
> The system is linear (describable as a system of linear equations)
> The noise in the system has a Gaussian distribution
\(\Rightarrow\) The error criteria is expressed as a quadratic equation (e.g. sumsquared error)

\section*{Kalman filter localization}

\section*{Belief}


Update


\section*{Kalman filter}
```

Kalman_filter ( }\mp@subsup{x}{t-1}{}\mathrm{ : ROBOT_POSE;
u
local
\mu
\mp@subsup{\Sigma}{t-1}{},\mp@subsup{\Sigma}{}{\star}}\mp@subsup{}{+}{},\mp@subsup{\Sigma}{\dagger}{}:ROBOT_POSE_COVARIANCE
K+:KALMAN_GAIN
do
\mu
\Sigmat-1
Predict l}\begin{array}{l}{\mp@subsup{\mu}{}{*}+=\mp@subsup{A}{t}{}\mp@subsup{\mu}{t-1}{}+\mp@subsup{B}{t}{}\mp@subsup{U}{t}{\prime}}<br>{\mp@subsup{\Sigma}{t}{*}:=\mp@subsup{A}{t}{}\mp@subsup{\Sigma}{t-1}{\prime}\mp@subsup{A}{t}{\top}+\mp@subsup{R}{t}{}}
K
Update
\mp@subsup{\mu}{+}{}}:=\mp@subsup{\mu}{}{\star}+\mp@subsup{}{+}{+}\mp@subsup{K}{\dagger}{}(\mp@subsup{z}{+}{}-\mp@subsup{C}{+}{}\mp@subsup{\mu}{}{*}\mp@subsup{}{+}{*}
\Sigma

```
            \(z_{\downarrow}\) : SENSOR_MEASUREMENT ) : ROBOT_POSE
    Result := create \(\left\{\right.\) ROBOT_POSE\}.make_with_variables \(\left(\mu_{\dagger}, \Sigma_{\dagger}\right)\)
    end

\section*{Kalman filter: prediction}
\[
\begin{aligned}
\mu_{+}^{\star}=A_{+} & \mu_{t-1}+B_{+} U_{t} \\
& >\text { system state estimation for time } t
\end{aligned}
\]
\(\Sigma^{\star}{ }_{\dagger}=A_{t} \Sigma_{t-1} A_{t}^{\top}+R_{t}\)
> estimation the system uncertainty
\(A_{t}:\) process matrix that describes how the state evolves from \(\dagger\) to \(t-1\) without controls or noise
\(B_{+}\): matrix that describes how the control \(u_{t}\) changes the state from \(t\) to \(t-1\)
\(R_{t}\) : Process noise covariance

\section*{Kalman filter: update}
\[
K_{t}=\Sigma^{\star}{ }_{+} C_{t}^{\top}\left(C_{+} \Sigma^{\star}+C_{t}^{\top}+Q_{t}\right)^{-1}
\]
> Kalman gain: how much to trust the measurement
> The lower the measurement error relative to the process error, the higher the Kalman gain will be
\[
\mu_{t}=\mu^{\star}+K_{t}\left(z_{t}-C_{\dagger} \mu^{\star}{ }_{\dagger}\right)
\]
\(>\) update \(\mu_{+}\)with measurement
\(\Sigma_{t}=\left(I-K_{t} C_{t}\right) \Sigma^{\star}{ }_{t}\)
> estimate uncertainty of \(\mu_{t}\)
\(C_{\dagger}:\) measurement matrix relating the state variable and measurement
\(Q_{\dagger}\) : measurement noise covariance

\section*{Extended Kalman filter}
```

Extended_Kalman_filter ( $x_{t-1}:$ ROBOT_POSE;
$u_{+}$: ROBOT_CONTROL;
$z_{+}$: SENSOR_MEASUREMENT ) : ROBOT_POSE
local
$\mu_{t-1}, \mu^{\star}{ }_{+}, \mu_{t}$ : MEAN_ROBOT_POSE
$\Sigma_{t-1}, \Sigma^{\star}{ }_{+}, \Sigma_{\dagger}:$ ROBOT_POSE_COVARIANCE
$K_{t}$ : KALMAN_GAIN
do
$\mu_{t-1}:=x_{t-1}$. mean
$\Sigma_{t-1}:=x_{t-1}$.covariance
Predict $\mu_{t}^{\star}:=g\left(u_{t}, \mu_{t-1}\right)-$ linearized state transition: $g\left(u_{t}, x_{t-1}\right)=g\left(u_{t}, x_{t-1}\right)+G_{t}\left(x_{t-1}-u_{t-1}\right)$
$\Sigma^{\star}:=G_{\dagger} \Sigma_{t-1} G_{\dagger}^{\top}+R_{+}$
$K_{t}:=\Sigma^{\star}{ }_{+} H_{t}^{\top}\left(H_{t} \Sigma^{\star}{ }_{+} H_{t}^{\top}+Q_{t}\right)^{-1}$
Update
$\mu_{t}:=\mu^{\star}{ }_{t}+K_{t}\left(z_{t}-h\left(\mu^{*}{ }_{+}\right)\right)-$linearized measurement: $h\left(x_{t}\right)=h\left(u^{\star}{ }_{+}\right)+H_{t}\left(x_{t}-u^{\star}{ }_{t}\right)$
$\Sigma_{+}:=\left(I-K_{+} H_{+}\right) \Sigma^{\star}{ }_{+}$

```
        Result := create \(\left\{\right.\) ROBOT_POSE\}.make_with_variables \(\left(\mu_{\dagger}, \Sigma_{\dagger}\right)\)
end
> Local localization
- Locally linearize update matrices for non-linear systems
> Unimodal model is not always realistic for many robot situations
> Matrix inversion is expensive
> Limits the number of possible state values```

