
Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer
Jiwon Shin

Lecture 6: Localization

This lecture is based on “Probabilistic Robotics” by Thrun, Burgard, and Fox (2005).

3

Localization: process of locating an object in space

Types of localization

 Global localization: initial pose unknown

 Markov localization

 Particle filter localization

 Local localization: initial pose known

 Kalman filter localization

Localization

Map Perception

Landmarks

Actuation

4

Probabilistic robotics

Uncertainty!

 Environment, sensor, actuation, model, algorithm

 Represent uncertainty using the calculus of probability theory

Probability theory

 X: random variable

 Can take on discrete or continuous values

 P(X = x), P(x) : probability of the random variable X taking on a value x

 Properties of P(x)

 P(X = x) >= 0

 x P(X = x) = 1 or x p(X = x) = 1

5

Probability

 P(x,y) : joint probability

 P(x,y) = P(x) P(y) : X and Y are independent

 P(x | y) : conditional probability of x given y

 P(x | y) = p(x) : X and Y are independent

 P(x,y | z) = P(x | z) P(y | z) : conditional independence

 P(x | y) = P(x,y) / P(y)

 P(x,y) = P(x | y) P(y) = P(y | x) P(x)

 P(x | y) =
P(y | x) P(x)

P(y)
=

likelihood ∙ prior
evidence

: Bayes’ rule

 P(y) = x P(x,y) = x P(y | x) P(x) : Law of total probability

6

Bayes’ rule

P(door=open | sensor=far)

=
P(far | open) P(open)

P(far)

=
P(far | open) P(open)

P(far | open) P(open) + P(far | closed) P(closed)

7

Bayes’ filter

bel(xt) = p(xt | z1:t, u1:t) : belief on the robot’s state xt at time t

Compute robot’s state: bel(xt)

 Predict where the robot should be based on the control u1:t

 Update the robot state using the measurement z1:t

8

Markov localization

a b c d

Measurement

World

9

Markov localization

Belief

Predict

Update

10

Update

Predict

Markov localization

Markov_localize (belt-1: ARRAY[BELIEF_ROBOT_POSE];

ut: ROBOT_CONTROL;

zt: SENSOR_MEASUREMENT;

m: MAP) : BELIEF_ROBOT_POSE

local

bel*t : ARRAY[BELIEF_ROBOT_POSE_PARTICLE]

belt : ARRAY[BELIEF_ROBOT_POSE_PARTICLE]

xt : ROBOT_POSE

do

create bel*t.make_from_array(belt-1)

create belt.make_from_array(belt-1)

from i := belt.lower until i > belt.upper loop

xt := belt[i].pose

bel*t[i] := ∫p(xt | ut, xt-1, m) belt-1(xt-1) dxt-1

belt[i] := η p(zt | xt-1, m) bel*t[i]

i := i + 1

end

Result := belt
end

11

Representation of the robot states

(0,0,0)

bel(x,y,θ)

x

y

θ

12

Markov localization

 Can be used for both local localization and global localization

 If the initial pose (x*0) is known: point-mass distribution

• bel(x0) = 1 if x0 = x∗0

0 otherwise

 If the initial pose (x*0) is known with uncertainty Σ:

Gaussian distribution with mean at x*0 and variance Σ

• bel(x0) = det(2𝜋Σ)−
1

2 exp −
1

2
x0 −x∗0

𝑇Σ−1 x0 −x∗0

 If the initial pose is unknown: uniform distribution

• bel(x0) =
1

|x|

 Computationally expensive

 Higher accuracy requires higher grid resolution

13

What if we keep track of multiple robot pose?

Measurement

14

Particle filter

A sample-based Bayes filter

 Approximate the posterior bel(xt) by a finite number of particles

 Each particle represents the probability of a particular state

vector given all previous measurements

 The distribution of state vectors within the particle is

representative of the probability distribution function for the

state vector given all prior measurements

15

Importance sampling

Generate samples from a distribution

Ef[I(x ∈ A)] = ∫f(x) I(x ∈ A) dx

= ∫f(x)/g(x) g(x) I(x ∈ A) dx

= Eg[w(x) I(x ∈ A)]

f(x) : target distribution

g(x) : proposal distribution – f(x) > 0 g(x) > 0

x

p(x)

16

Update
Predict

particle_filter_localize (Xt-1: ARRAY[BELIEF_ROBOT_POSE_PARTICLE];

ut: ROBOT_CONTROL;

zt: SENSOR_MEASUREMENT;

m: MAP) : ARRAY[BELIEF_ROBOT_POSE_PARTICLE]

local

Хt : ARRAY[BELIEF_ROBOT_POSE_PARTICLE]

xt : ROBOT_POSE

do

create Хt.make_from_array(Xt-1)

from i := Xt-1.lower until i > Xt-1.upper loop

xt-1 := Xt-1[i].pose

Xt[i].pose := sample_motion_model(xt-1, ut, tcurrent - tprevious)

Xt[i].weight := compute_sensor_measurement_prob(zt, m)

i := i + 1

end

Result := resample(Хt)

end

Particle filter localization

17

Sampling from motion model

sample_motion_mode (x: ROBOT_POSE;

u: ROBOT_CONTROL

Δt: REAL_64) : ROBOT_POSE

local

x’: ROBOT_POSE

u’: ROBOT_CONTROL

do

u’.v := Gaussian_sample(u.v, α1 u.σv
2 + α2 u.σω

2)

u’.ω := Gaussian_sample(u.ω, α3 u.σv
2 + α4 u.σω

2)

x’.x := x.x –
u’.v
u’.ω

sin(x.θ) +
u’.v
u’.ω

sin(x.θ + u’.ω Δt)

x’.y := x.y +
u’.v
u’.ω

cos(x.θ) -
u’.v
u’.ω

cos(x.θ + u’.ω Δt)

x’.θ := x.θ + u’.ωΔt + Gaussian_sample(0, α5 u.σv
2 + α6 u.σω

2) Δt

Result := x’

end

18

Resampling

w1 w2 w3 wn

w1 w2 w3 wn

Roulette wheel sampling

Stochastic universal sampling

distance between two samples = total weight / number of samples

starting sample: random number in [0, distance between samples]

19

Particle filter localization

 Global localization

 Track the pose of a mobile robot without knowing the initial
pose

 Can handle kidnapped robot problem with little modification

 Insert some random samples at every iteration

 Insert random samples proportional to the average
likelihood of the particles

 Approximate

 Accuracy depends the number of samples

20

If we know the initial pose, can we do better?

Estimate the robot pose with a Gaussian distribution!

Measurement

21

Properties of Gaussian distribution

),(~
),(~

22

2

abaNY
baXY

NX

 2

2

2

1

22

2

2

1

2

1

12

2

2

1

2

2

212

222

2

111
1

,~)()(
),(~

),(~

NXpXp

NX

NX

),(~
),(~

T
AABANY

BAXY

NX

 1

2

1

1

2

21

1

1

21

2

21

222

111 1
,~)()(

),(~

),(~

NXpXp

NX

NX

Univariate

Multivariate

22

Kalman filter localization

A special case of Markov localization

Assumptions:

 The system is linear (describable as a system of linear equations)

 The noise in the system has a Gaussian distribution

 The error criteria is expressed as a quadratic equation (e.g. sum-
squared error)

23

Kalman filter localization

Belief

Predict

Update

24

Update

Predict

Kalman_filter (xt-1: ROBOT_POSE;

ut: ROBOT_CONTROL;

zt: SENSOR_MEASUREMENT) : ROBOT_POSE

local

μt-1, μ*t, μt : MEAN_ROBOT_POSE

Σt-1, Σ*t, Σt : ROBOT_POSE_COVARIANCE

Kt : KALMAN_GAIN

do

μt-1 := xt-1.mean

Σt-1 := xt-1.covariance

μ*t := At μt-1 + Bt ut

Σ*t := At Σt-1 At
T + Rt

Kt := Σ*t Ct
T (Ct Σ*t Ct

T + Qt) -1

μt := μ*t + Kt (zt - Ct μ*t)

Σt := (I - Kt Ct) Σ*t

Result := create {ROBOT_POSE}.make_with_variables(μt, Σt)

end

Kalman filter

25

Kalman filter: prediction

μ*t = At μt-1 + Bt ut

 system state estimation for time t

Σ*t = At Σt-1 At
T + Rt

 estimation the system uncertainty

At: process matrix that describes how the state evolves from t to t-1
without controls or noise

Bt: matrix that describes how the control ut changes the state from t
to t-1

Rt : Process noise covariance

26

Kalman filter: update

Kt = Σ*t Ct
T (Ct Σ*t Ct

T + Qt) -1

 Kalman gain: how much to trust the measurement

 The lower the measurement error relative to the process
error, the higher the Kalman gain will be

μt = μ*t + Kt (zt - Ct μ*t)

 update μt with measurement

Σt = (I - Kt Ct) Σ*t

 estimate uncertainty of μt

Ct: measurement matrix relating the state variable and measurement

Qt: measurement noise covariance

27

Update

Predict

Extended_Kalman_filter (xt-1: ROBOT_POSE;

ut: ROBOT_CONTROL;

zt: SENSOR_MEASUREMENT) : ROBOT_POSE

local

μt-1, μ*t, μt : MEAN_ROBOT_POSE

Σt-1, Σ*t, Σt : ROBOT_POSE_COVARIANCE

Kt : KALMAN_GAIN

do

μt-1 := xt-1.mean

Σt-1 := xt-1.covariance

μ*t := g(ut, μt-1) -- linearized state transition : g(ut, xt-1) = g(ut, xt-1) + Gt (xt-1 - ut-1)

Σ*t := Gt Σt-1 Gt
T + Rt

Kt := Σ*t Ht
T (Ht Σ*t Ht

T + Qt) -1

μt := μ*t + Kt (zt – h(μ*t)) -- linearized measurement: h(xt) = h(u*t) + Ht (xt – u*t)

Σt := (I - Kt Ht) Σ*t

Result := create {ROBOT_POSE}.make_with_variables(μt, Σt)

end

Extended Kalman filter

28

Kalman filter localization

 Local localization

 Locally linearize update matrices for non-linear systems

 Unimodal model is not always realistic for many robot situations

 Matrix inversion is expensive

 Limits the number of possible state values

