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Lecture 6: Localization

This lecture is based on “Probabilistic Robotics” by Thrun, Burgard, and Fox (2005).
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Localization: process of locating an object in space

Types of localization

 Global localization: initial pose unknown

 Markov localization

 Particle filter localization

 Local localization: initial pose known

 Kalman filter localization

Localization

Map Perception

Landmarks

Actuation
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Probabilistic robotics

Uncertainty!

 Environment, sensor, actuation, model, algorithm

 Represent uncertainty using the calculus of probability theory

Probability theory

 X: random variable

 Can take on discrete or continuous values

 P(X = x), P(x) : probability of the random variable X taking on a value x

 Properties of P(x)  

 P(X = x) >= 0

  x P(X = x) = 1 or  x p(X = x) = 1
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Probability

 P(x,y) : joint probability 

 P(x,y) = P(x) P(y) : X and Y are independent

 P(x | y) : conditional probability of x given y

 P(x | y) = p(x) : X and Y are independent

 P(x,y | z) = P(x | z) P(y | z) : conditional independence

 P(x | y) = P(x,y) / P(y)

 P(x,y)   = P(x | y) P(y) = P(y | x) P(x)

 P(x | y) = 
P(y | x) P(x)

P(y)
= 

likelihood ∙ prior
evidence

: Bayes’ rule

 P(y) =  x P(x,y) =  x P(y | x) P(x) : Law of total probability



6

Bayes’ rule

P(door=open | sensor=far) 

= 
P(far | open) P(open)

P(far)

= 
P(far | open) P(open)

P(far | open) P(open) + P(far | closed) P(closed)
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Bayes’ filter

bel(xt) = p(xt | z1:t, u1:t) : belief on the robot’s state xt at time t

Compute robot’s state: bel(xt) 

 Predict where the robot should be based on the control u1:t

 Update the robot state using the measurement z1:t
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Markov localization

a b c d

Measurement

World



9

Markov localization

Belief

Predict

Update
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Update

Predict

Markov localization

Markov_localize ( belt-1: ARRAY[BELIEF_ROBOT_POSE]; 

ut: ROBOT_CONTROL;

zt: SENSOR_MEASUREMENT; 

m: MAP) : BELIEF_ROBOT_POSE

local

bel*t : ARRAY[BELIEF_ROBOT_POSE_PARTICLE]

belt : ARRAY[BELIEF_ROBOT_POSE_PARTICLE]

xt : ROBOT_POSE

do

create bel*t.make_from_array( belt-1 )

create belt.make_from_array( belt-1 )

from i := belt.lower until i > belt.upper loop

xt := belt[i].pose 

bel*t[i] := ∫p(xt | ut, xt-1, m) belt-1(xt-1) dxt-1

belt[i] := η p(zt | xt-1, m) bel*t[i]

i := i + 1

end

Result := belt
end
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Representation of the robot states

(0,0,0)

bel(x,y,θ)

x

y

θ
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Markov localization

 Can be used for both local localization and global localization

 If the initial pose (x*0) is known: point-mass distribution

• bel(x0) =  1 if x0 = x∗0

0 otherwise

 If the initial pose (x*0) is known with uncertainty Σ: 

Gaussian distribution with mean at x*0 and variance Σ

• bel(x0) = det(2𝜋Σ)−
1

2 exp −
1

2
x0 −x∗0

𝑇Σ−1 x0 −x∗0

 If the initial pose is unknown: uniform distribution

• bel(x0) = 
1

|x|

 Computationally expensive

 Higher accuracy requires higher grid resolution
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What if we keep track of multiple robot pose?

Measurement
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Particle filter

A sample-based Bayes filter

 Approximate the posterior bel(xt) by a finite number of particles

 Each particle represents the probability of a particular state 

vector given all previous measurements

 The distribution of state vectors within the particle is 

representative of the probability distribution function for the 

state vector given all prior measurements
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Importance sampling

Generate samples from a distribution

Ef[ I(x ∈ A) ] = ∫f(x) I(x ∈ A) dx

= ∫f(x)/g(x) g(x) I(x ∈ A) dx

= Eg[ w(x) I(x ∈ A) ] 

f(x) : target distribution

g(x) : proposal distribution – f(x) > 0  g(x) > 0 

x

p(x)
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Update
Predict

particle_filter_localize ( Xt-1: ARRAY[BELIEF_ROBOT_POSE_PARTICLE]; 

ut: ROBOT_CONTROL;

zt: SENSOR_MEASUREMENT; 

m: MAP) : ARRAY[BELIEF_ROBOT_POSE_PARTICLE]

local

Хt : ARRAY[BELIEF_ROBOT_POSE_PARTICLE]

xt : ROBOT_POSE

do

create Хt.make_from_array( Xt-1 )

from i := Xt-1.lower  until  i > Xt-1.upper  loop

xt-1 := Xt-1[i].pose

Xt[i].pose := sample_motion_model( xt-1, ut, tcurrent - tprevious )

Xt[i].weight := compute_sensor_measurement_prob(zt, m)

i := i + 1

end

Result := resample(Хt)

end

Particle filter localization
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Sampling from motion model

sample_motion_mode ( x: ROBOT_POSE; 

u: ROBOT_CONTROL

Δt: REAL_64 ) : ROBOT_POSE

local

x’: ROBOT_POSE

u’: ROBOT_CONTROL

do

u’.v := Gaussian_sample( u.v, α1 u.σv
2 + α2 u.σω

2 )

u’.ω := Gaussian_sample( u.ω, α3 u.σv
2 + α4 u.σω

2)

x’.x := x.x –
u’.v
u’.ω

sin( x.θ ) + 
u’.v
u’.ω

sin( x.θ + u’.ω Δt )

x’.y := x.y + 
u’.v
u’.ω

cos( x.θ ) -
u’.v
u’.ω

cos( x.θ + u’.ω Δt )

x’.θ := x.θ + u’.ωΔt + Gaussian_sample( 0, α5 u.σv
2 + α6 u.σω

2 ) Δt

Result := x’

end
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Resampling

w1 w2 w3 wn

w1 w2 w3 wn

Roulette wheel sampling

Stochastic universal sampling

distance between two samples = total weight / number of samples

starting sample: random number in [0, distance between samples]
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Particle filter localization

 Global localization

 Track the pose of a mobile robot without knowing the initial 
pose

 Can handle kidnapped robot problem with little modification

 Insert some random samples at every iteration

 Insert random samples proportional to the average 
likelihood of the particles 

 Approximate

 Accuracy depends the number of samples
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If we know the initial pose, can we do better?

Estimate the robot pose with a Gaussian distribution!

Measurement
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Properties of Gaussian distribution
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Kalman filter localization

A special case of Markov localization

Assumptions:

 The system is linear (describable as a system of linear equations)

 The noise in the system has a Gaussian distribution

 The error criteria is expressed as a quadratic equation (e.g. sum-
squared error)
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Kalman filter localization

Belief

Predict

Update
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Update

Predict

Kalman_filter ( xt-1: ROBOT_POSE;

ut: ROBOT_CONTROL; 

zt: SENSOR_MEASUREMENT ) : ROBOT_POSE

local

μt-1, μ*t, μt : MEAN_ROBOT_POSE

Σt-1, Σ*t, Σt : ROBOT_POSE_COVARIANCE

Kt : KALMAN_GAIN

do

μt-1 := xt-1.mean

Σt-1 := xt-1.covariance

μ*t := At μt-1 + Bt ut

Σ*t := At Σt-1 At
T + Rt

Kt := Σ*t Ct
T (Ct Σ*t Ct

T + Qt) -1

μt := μ*t + Kt (zt - Ct μ*t)

Σt := (I - Kt Ct) Σ*t

Result := create {ROBOT_POSE}.make_with_variables( μt, Σt )

end

Kalman filter
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Kalman filter: prediction

μ*t = At μt-1 + Bt ut

 system state estimation for time t

Σ*t = At Σt-1 At
T + Rt

 estimation the system uncertainty

At: process matrix that describes how the state evolves from t to t-1 
without controls or noise

Bt: matrix that describes how the control ut changes the state from t 
to t-1

Rt : Process noise covariance
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Kalman filter: update

Kt = Σ*t Ct
T (Ct Σ*t Ct

T + Qt) -1

 Kalman gain: how much to trust the measurement

 The lower the measurement error relative to the process 
error, the higher the Kalman gain will be

μt = μ*t + Kt (zt - Ct μ*t) 

 update μt with measurement 

Σt = (I - Kt Ct) Σ*t 

 estimate uncertainty of μt 

Ct: measurement matrix relating the state variable and measurement

Qt: measurement noise covariance
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Update

Predict

Extended_Kalman_filter ( xt-1: ROBOT_POSE;

ut: ROBOT_CONTROL; 

zt: SENSOR_MEASUREMENT ) : ROBOT_POSE

local

μt-1, μ*t, μt : MEAN_ROBOT_POSE

Σt-1, Σ*t, Σt : ROBOT_POSE_COVARIANCE

Kt : KALMAN_GAIN

do

μt-1 := xt-1.mean

Σt-1 := xt-1.covariance

μ*t := g(ut, μt-1) -- linearized state transition : g(ut, xt-1) = g(ut, xt-1) + Gt (xt-1 - ut-1) 

Σ*t := Gt Σt-1 Gt
T + Rt

Kt := Σ*t Ht
T (Ht Σ*t Ht

T + Qt) -1

μt := μ*t + Kt (zt – h(μ*t)) -- linearized measurement: h(xt)  = h(u*t) + Ht (xt – u*t)

Σt := (I - Kt Ht) Σ*t

Result := create {ROBOT_POSE}.make_with_variables( μt, Σt )

end

Extended Kalman filter
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Kalman filter localization

 Local localization

 Locally linearize update matrices for non-linear systems

 Unimodal model is not always realistic for many robot situations

 Matrix inversion is expensive 

 Limits the number of possible state values


