
Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer
Jiwon Shin

Andrey Rusakov

Lecture 8: Software Engineering Tools



2

A Story of a Woodcutter

...

-“I must be losing my strength”, the woodcutter 

thought. 

- “When was the last time you sharpened your 

axe?” the boss asked.

- “Sharpen? I had no time to sharpen my axe. 

I have been very busy trying to cut trees…”



3

Engineering Tools

Why do we use tools?

Because things we usually create are complicated and with 

tools we can create them easier.

Presenter
Presentation Notes
We use tools to make the engineering process easier.



4

Software Engineering (revision)

SE - the multi-person construction of multi-version software 

(David Parnas, 1975)

Presenter
Presentation Notes
The chances you will create software alone are very low.
The software you create will change over time.
The software you create will be much more sophisticated than “Hello World”.



5

Software quality factors (revision)

Correctness
Robustness
Security
Ease of use
Ease of learning
Efficiency

Process

Product 

Extendibility
Reusability
Portability

Immediate

Long-term

Timeliness
Cost-effectiveness
Predictability
Reproducibility
Self-improvement

Security
Robustness

Errors

Correctness

Specification

“Reliability”

Hostility



6

Benefits of Using Tools

Tools

• Minimize time of routine operations

• Minimize human factor

• Provide more information about the system

• Provide more information about the process



7

Text editors vs. IDEs

IDEs provide:

• Syntax highlighting/checking

• Auto completion

• Feature “navigation” (e.g. Go to the definition)

• Refactoring tools (see following slides)

General purpose text editors can also offer some of these features!

One of the main advantages of using general purpose text editor: 

you don’t have to install any additional software in order to start 

writing your code.

Presenter
Presentation Notes
What is important: the input format for the compiler is a text file (doesn’t matter in which editor it was created).



8

Refactoring

Code refactoring is a "disciplined technique for 

restructuring an existing body of code, altering its 

internal structure without changing its external behavior"

Presenter
Presentation Notes
Refining the code without changing its functionality.



9

Refactoring techniques

Techniques that allow for more abstraction
 Encapsulate Field
 Generalize Type
 Replace type-checking code with State/Strategy
 Replace conditional with polymorphism

Techniques for breaking code apart into more logical pieces
 Componentization
 Extract Class
 Extract Method

Techniques for improving names and location of code
 Move Method or Move
 Rename Method or Rename Field
 Pull Up
 Push Down

Presenter
Presentation Notes
Techniques that allow for more abstraction
Encapsulate Field – force code to access the field with getter and setter methods
Generalize Type – create more general types to allow for more code sharing
Replace type-checking code with State/Strategy[6]
Replace conditional with polymorphism [7]
Techniques for breaking code apart into more logical pieces
Componentization breaks code down into reusable semantic units which present clear, well-defined, simple-to-use interfaces.
Extract Class moves part of the code from an existing class into a new class.
Extract Method, to turn part of a larger method into a new method. By breaking down code in smaller pieces, it is more easily understandable. This is also applicable to functions.
Techniques for improving names and location of code
Move Method or Move Field – move to a more appropriate Class or source file
Rename Method or Rename Field – changing the name into a new one that better reveals its purpose
Pull Up – in OOP, move to a superclass
Push Down – in OOP, move to a subclass



10

Refactoring Tools: Examples

Integrated refactoring tools:

• Eclipse

• NetBeans

• EiffelStudio

• MS VisualStudio

ReSharper

Presenter
Presentation Notes
www.jetbrains.com/resharper/




11

Debuggers

Integrated debuggers:

• EiffelStudio

• MS VisualStudio

• Eclipse

GDB (GNU Debugger) – a command-line debugger for several languages, 

including C and C++

DDD (Data Display Debugger) - is a graphical front-end for command-line 

debuggers such as GDB

Valgrind (memory debugger)

Presenter
Presentation Notes
“GNU Debugger”
A debugger for several languages, including C and C++
It allows you to inspect what the program is doing at a certain point during execution.

GDB has an interactive shell. It can recall history with the arrow keys, auto-complete words (most of the time) with the TAB key, and has other nice features.

gcc [other flags] -g <source files> -o <output file>
(gdb) file prog1.x
(gdb) run
(gdb) break file1.c:6
(gdb) break my_func
(gdb) continue
(gdb) step
(gdb) next
(gdb) print my var
break file1.c:6 if i >= ARRAYSIZE

GNU DDD is a graphical front-end for command-line debuggers such as GDB, DBX, WDB, Ladebug, JDB, XDB, the Perl debugger, the bash debugger bashdb, the GNU Make debugger remake, or the Python debugger pydb. Besides “usual'' front-end features such as viewing source texts, DDD has become famous through its interactive graphical data display, where data structures are displayed as graphs.

The Valgrind tool suite provides a number of debugging and profiling tools that help you make your programs faster and more correct. 
The most popular of these tools is called Memcheck. 
It can detect many memory-related errors that are common in C and C++ programs and that can lead to crashes and unpredictable behavior.
valgrind --tool=memcheck program_name arg1 arg2 …
valgrind --leak-check=full program_name arg1 arg2 …




12

Profilers & Performance analyzers

Integrated profilers

• Eclipse

• MS VisualStudio

• NetBeans

• EiffelStudio

Intel VTune



13

Testing

Unit testing

• JUnit

• NUnit

• CppUnit

• Autotest

GUI testing

• Selenium (web applications)

Testing multi-threaded applications

• ConTest

Presenter
Presentation Notes
ConTest - A Tool for Testing Multi-threaded Java Applications (IBM)




14

Test-Driven Development

TDD cycle:

• Add a test

• Run all tests and see if the new one fails

• Write some code

• Run tests

• Refactor code

• Repeat



15

Version control

SVN

Git

Mercurial

Presenter
Presentation Notes
SCCS (Source Code Control System), 1972
RCS (Revision Control System), 1982
CVS (Concurrent Version Control), 1986
SVN (Apache Subversion), 2000

BitKeeper
Monotone

Git, 7 April 2005 (Linus Torvalds, Junio Hamano)

Mercurial, 19 April 2005 (Matt Mackall)



16

SVN client 2SVN client 1

SVN

SVN server

Repository

CommitCommit
Update Update

Local working copy 1 Local working copy 2



17

SVN

Common operations:

• checkout

• diff

• update

• commit

Common terms:

• Diff

• Revision

• Branch

• Merge



18

Hg client 1

Mercurial (Hg)

Local repository 1

Mercurial server

Remote repository

PushPush
Pull Pull

Local working copy 1

Hg client 2

Local repository 2

Local working copy 2

Commit Update Commit Update



19

Bug trackers, Issue trackers

JIRA

Bugzilla

Redmine

Trac

Jazz



20

Build tools

Ant

Maven

Cmake



21

Continious Integration

Jenkins

Teamcity



22

Object-oriented analysis and design

BON

UML

Presenter
Presentation Notes
Business Object Notation
Unified Modeling Language

Graphics vs. text representation. Reversibility.
Not bound to specific programming language.

EiffelStudio Diagram Tool.




	Robotics Programming Laboratory��Bertrand Meyer�Jiwon Shin�Andrey Rusakov
	A Story of a Woodcutter
	Engineering Tools
	Software Engineering (revision)
	Software quality factors (revision)
	Benefits of Using Tools
	Text editors vs. IDEs
	Refactoring
	Refactoring techniques
	Refactoring Tools: Examples
	Debuggers
	Profilers & Performance analyzers
	Testing
	Test-Driven Development
	Version control
	SVN
	SVN
	Mercurial (Hg)
	Bug trackers, Issue trackers
	Build tools	
	Continious Integration
	Object-oriented analysis and design

