

Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer Jiwon Shin

Lecture 9: Path Planning

Path planning

Getting to Zurich HB from RZ building

- Tram 6, 7 to Bahnhofstrasse/HB
- Tram 10 to Bahnhofplatz/HB
- Walk down on Weinbergstrasse to Central then to HB
- Walk down on Leonhard-Treppe to Walcheplatz to Walchebrücke to HB
- Bike down on Weinbergstrasse

Each path offers different cost in terms of

> Time

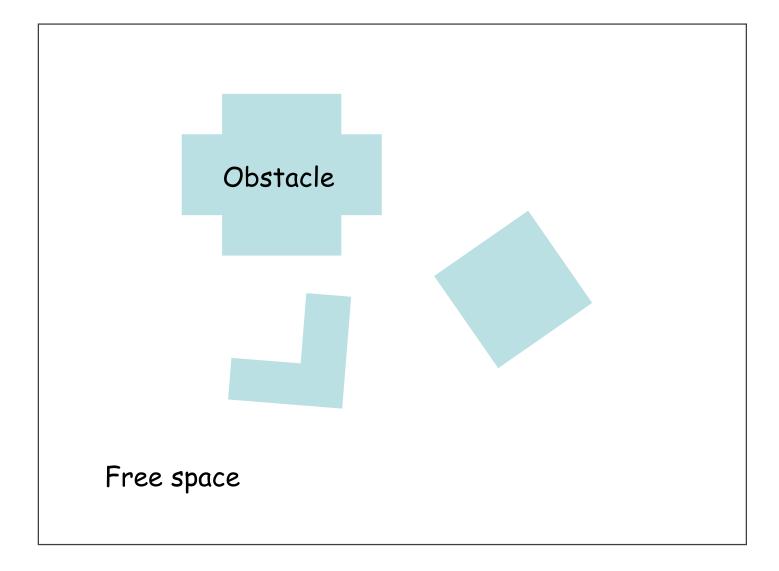
▶ ...

- Convenience
- Crowdedness
- ► Ease

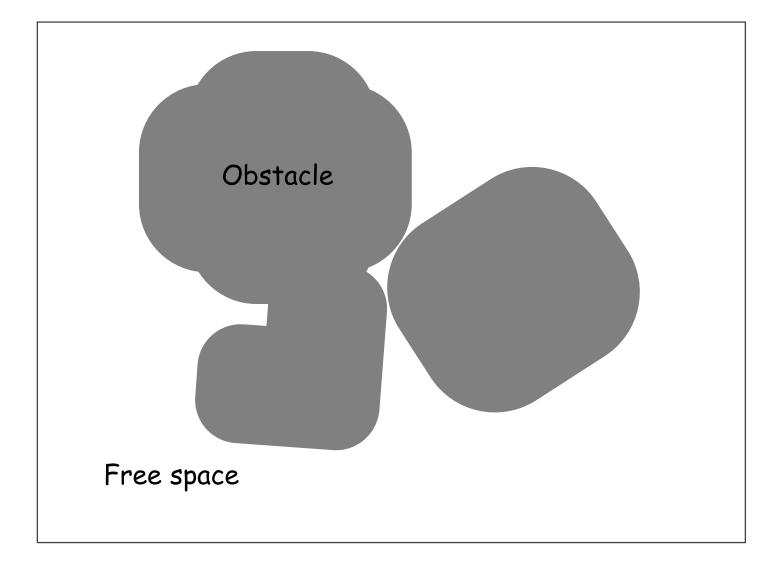
Path planning: a collection of discrete motions between a start and a goal

- Strategies
- Graph search
 - Covert free space to a connectivity graph
 - Apply graph search algorithm to find a path to the goal
- Potential field planning
 - Impose a mathematical function directly on the free space
 - Follow the gradient of the function to get to the goal

Configuration space: point-mass robot



Configuration space: circular robot



Configuration space C

- A set of all possible configurations of a robot
- > In mobile robots, configuration (pose) is represented by (x, y, θ)
- For a differential-drive robot, there are limited robot velocities in each configuration.

For path planning, assume that

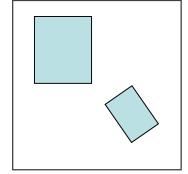
- \succ the robot is holonomic
- > the robot has a point-mass
 - Must inflate the obstacles in a map to compensate

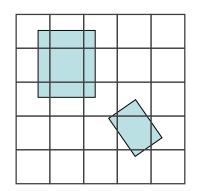
Path planning: graph search

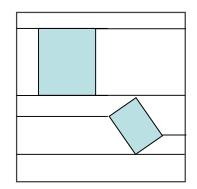
Graph construction

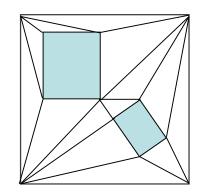
- Visibility graph
- > Voronoi diagram
- Exact cell decomposition
- Approximate cell decomposition
- Graph search
 - Deterministic graph search
 - Randomized graph search

Graph construction

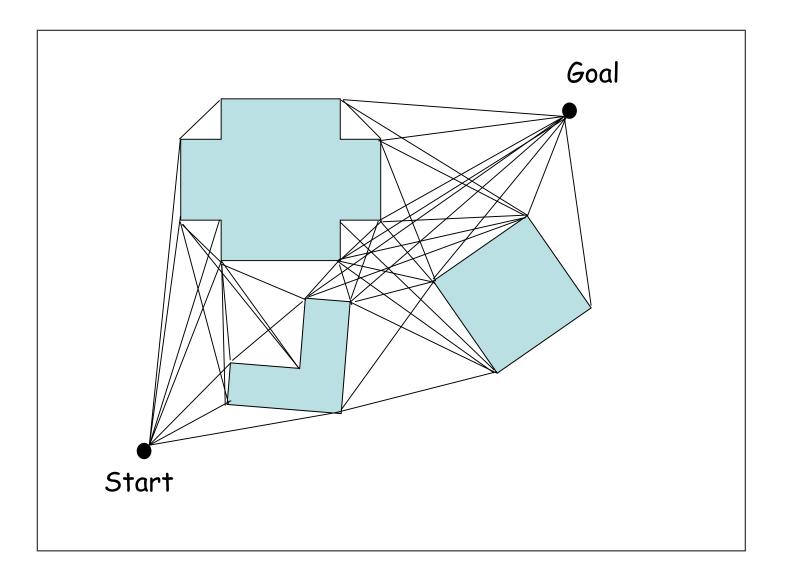








Visibility graph



•

Visibility graph

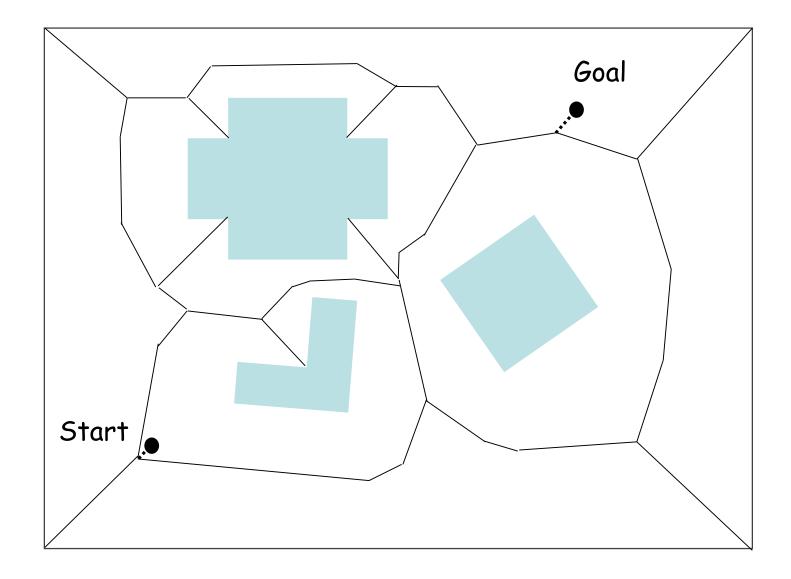
Advantages

- Optimal path in terms of path length
- Simple to implement

Issues

- Number of edges and nodes increase with the number of obstacle polygons
- Resulting path takes the robot as close as possible to obstacles
 - A modification to the optimal solution is necessary to ensure safety

Voronoi diagram



•

Voronoi diagram

- For each point in free space, compute its distance to the nearest obstacle.
- > At points that are equidistant to two or more obstacles, create ridge points.
- > Connect the ridge points to create the Voronoi diagram

Voronoi diagram

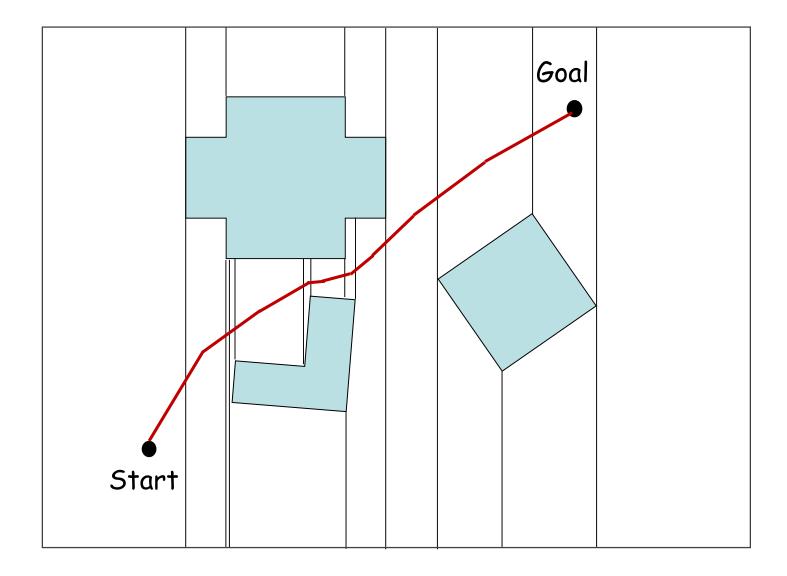
Advantages

- Maximize the distance between a robot and obstacles
 - Keeps the robot as safe as possible
- Executability
 - A robot with a long-range sensor can follow a Voronoi edge in the physical world using simple control rules: maximize the readings of local minima in the sensor values.

Issues

> Robots with short-range sensor may fail to localize.

Exact cell decomposition



•

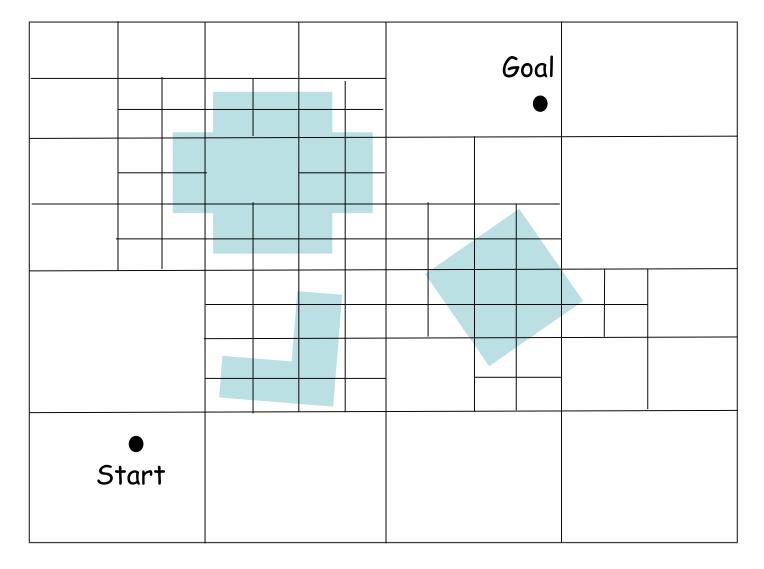
Advantages

- In a sparse environment, the number of cells is small regardless of actual environment size.
- > Robots can move around freely within a free cell.

Issues

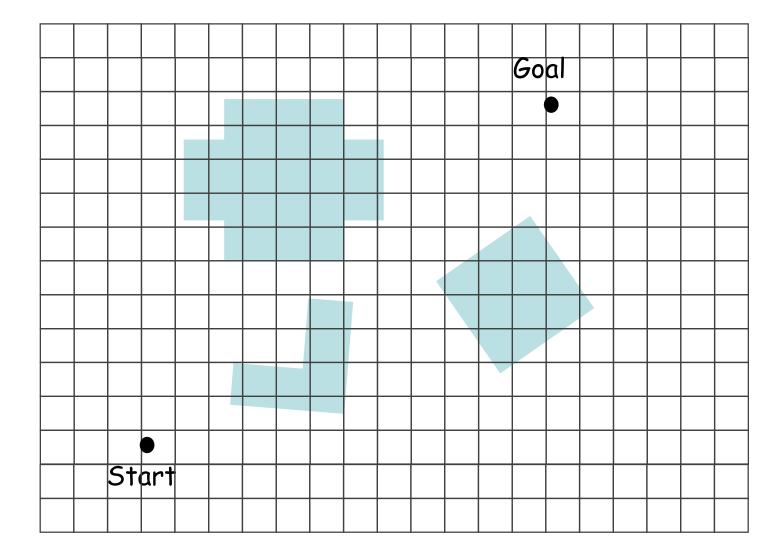
The number of cells depends on the destiny and complexity of obstacles in the environment

Approximate cell decomposition



Variable-size cell decomposition

Approximate cell decomposition



Fixed-size cell decomposition

Variable-size

- Recursively divide the space into rectangles unless
 - > A rectangle is completely occupied or completely free
- Stop the recursion when
 - > A path planner can compute a solution, or
 - > A limit on resolution is attained

Fixed-size

- Divide the space evenly
 - > The cell size is often independent of obstacles

Approximate cell decomposition

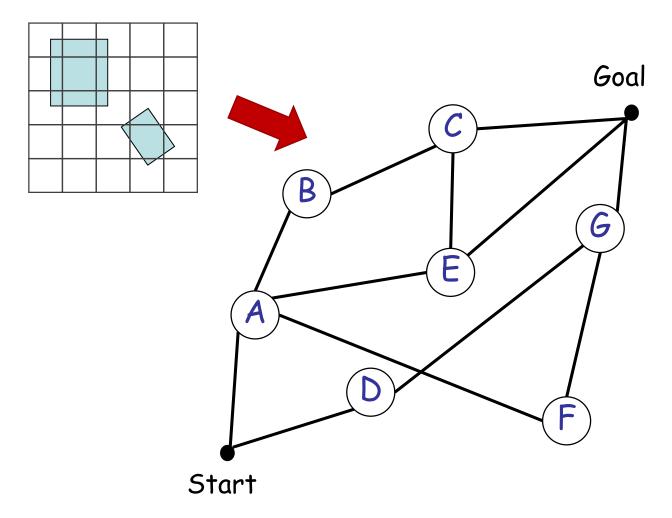
Advantages

Low computational complexity

Issues

> Narrow passage ways can be lost

Graph search



Deterministic graph search

Convert the environment map into a connectivity graph Find the best path (lowest cost) in the connectivity graph

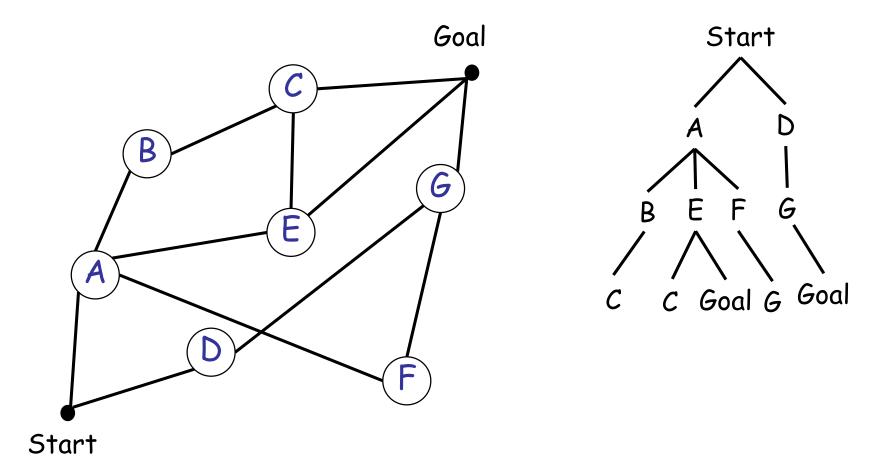
 $f(n) = g(n) + \varepsilon h(n)$

- > f(n): Expected total cost
- > g(n): Path cost
- h(n): Heuristic cost
- ε: Weighting factor
- n: node/grid cell

g(n) = g(n') + c(n, n')

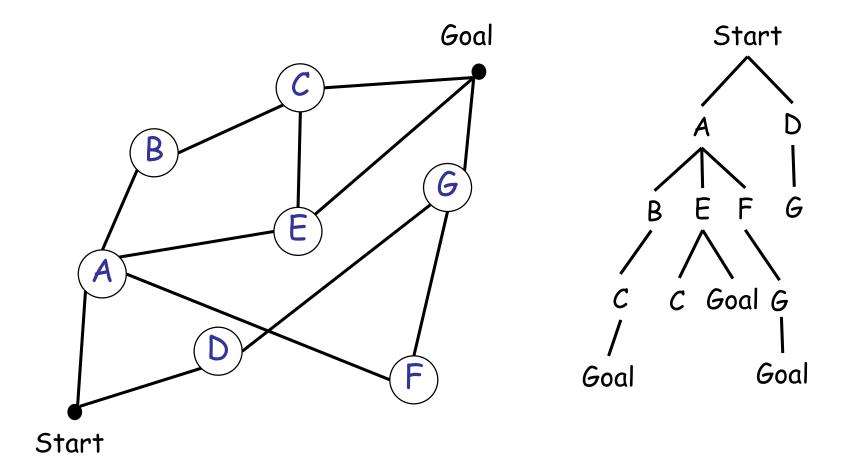
c(n, n'): edge traversal cost

Breadth-first search



f(n) = g(n) where c(n, n') = 1

Depth-first search



f(n) = g(n) where c(n, n') = 1

•

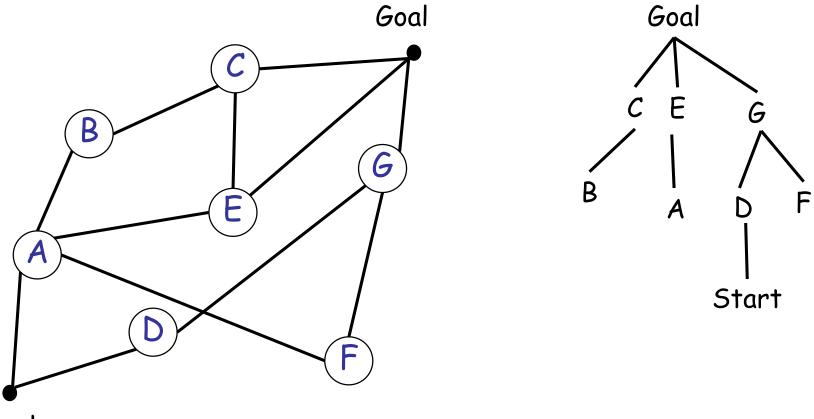
Breadth-first

- All the paths need to be stored.
- > When a path to the goal is

Depth-first

- Expand each node up to the deepest level of the graph first.
- May revisit previously visited nodes or redundant paths.
- Reduction in space complexity:
 Only need to store a single
 node

Dijkstra's algorithm



Start

f(n) = g(n) + 0 * h(n)

dijkstra_shortest_path (map: GRID_MAP; start_cell: GRID_CELL; goal_cell: GRID_CELL)
 local

```
c: GRID_CELL
```

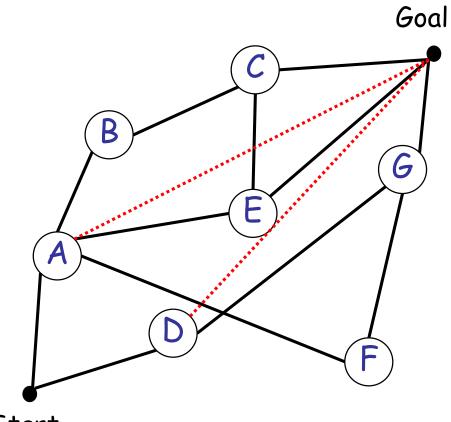
do

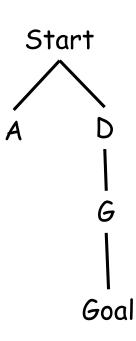
end

Dijkstra's algorithm

```
initialize_all_cells ( start_cell : GRID_CELL )
do
     across grid_cells as c loop
     if c = start_cell then
         c.set_distance( 0 )
         c.set_visited( true )
     else
         c.set_distance( (create {REAL_32}).max_value )
         c.set_visited( false )
     end
     end
end
```

```
update_expected_cost_cost ( start_cell : GRID_CELL )
local
    d : REAL_32
do
    across neighboring_cells( start_cell ) as c loop
    d := start_cell.distance + start_cell.compute_distance( c )
    if d < c.distance and not c.is_visited then
        c.distance := d
        c.previous_vertex := start_cell
        end
    end
end</pre>
```





Start

f(n) = g(n) + h(n)

A*_shortest_path (map: GRID_MAP; start_cell: GRID_CELL; goal_cell: GRID_CELL)
 local

c : GRID_CELL

do

```
map.initialize_open_list( start_cell )
    map.set_goal( goal_cell )
    from until map.is_closed(goal_cell) or not map.has_open_vertices loop
         c := map.loweset_expected_cost_cell_in_open_list
         map.move_to_closed_list( c )
         across map.neighboring_cells( c ) as n loop
              if not map.is_occupied(n) and not map.is_in_closed_list(n) then
                  if not map.is_in_open_list( n ) then
                       map.add_to_open_list( n, c )
                   elseif map.has_lower_expected_cost(n, c) then
                       map.update_open_list( n, c )
                  end
              end
          end
    end
end
```

```
initialize_open_list ( cell : GRID_CELL )
   do
         cell.set_g_score(0)
         cell.compute_f_score( heurist_cost(cell, goal_cell) )
         open_list.add( cell )
   end
add_to_open_list ( cell : GRID_CELL; parent_cell : GRID_CELL )
   do
         cell.set_previous_cell( parent_cell )
         cell.set_g_score( parent_cell.g_score + compute_distance( cell, parent_cell ) )
         cell.compute_f_score( heurist_cost(cell, goal_cell) )
         open_list.add( cell )
```

end

has_lower_expected_cost (cell : GRID_CELL; parent_cell : GRID_CELL) : BOOLEAN local

```
q_score : REAL_32
         f score : REAL 32
   do
         g_score := parent_cell.g_score + compute_distance( cell, parent_cell )
         f_score := g_score + heuristic_cost( cell, goal_cell )
         if f_score < cell.f_score then
               Result := true
         else
               Result := false
         end
   end
update_open_list ( cell : GRID_CELL; parent_cell : GRID_CELL )
   do
```

```
cell.set_previous_cell( parent_cell )
cell.set_g_score( parent_cell.g_score + compute_distance( cell, parent_cell ) )
cell.compute_f_score( heurist_cost(cell, goal_cell) )
```

Dijkstra algorithm vs A* algorithm

Dijkstra ≻ f(n) = g(n)

- → H(n) = 0
- When computed from the goal, the best path from any cell to the goal can be found

A*

- F(n) = g(n) + ε h(n)
 h(n) = || n − n_{goal} ||
- ε = 1 leads to the optimal A* solution
- ε > 1 results in a greedy solution

- Initialize a tree
- Add nodes to the tree until a termination condition is triggered
- During each step:
 - > Pick a random configuration q_{rand} in the free space.
 - > Compute the tree node q_{near} closest to q_{rand}
 - > Grow an edge (with a fixed length) from q_{near} to q_{rand}
 - > Add the end q_{new} of the edge if it is collision free

Advantages

> Can address situations in which exhaustive search is not an option.

Issues

- Cannot guarantee solution optimality.
- Cannot guarantee deterministic completeness.
- > If there is a solution, the algorithm will eventually find it as the number of nodes added to the tree grows to infinity.

- ➤ Graph search
 - Covert free space to a connectivity graph
 - > Apply graph search algorithm to find a path to the goal
- Potential field planning
 - Impose a mathematical function directly on the free space
 - Follow the gradient of the function to get to the goal

Pontential field

Create a gradient to direct the robot to the goal position

Main idea

- > Robots are attracted toward the goal.
- > Robots are repulsed by obstacles.

 $\mathsf{F}(\mathsf{q}) = - \nabla \mathsf{U}(\mathsf{q})$

- > F(q): artificial force acting on the robot at the position q = (x, y)
- > U(q): potential field function
- PU(q): gradient vector of U at position q

$$V(q) = U_{attractive}(q) + U_{repulsive}(q)$$

$$F(q) = F_{attractive}(q) + F_{repulsive}(q) = -\nabla U_{attractive}(q) - \nabla U_{repulsive}(q)$$

$$U_{\text{attractive}}(q) = \frac{1}{2} k_{\text{attrative}} \cdot \rho^2_{\text{goal}}(q)$$

k_{attrative}: a positive scaling factor
 ρ_{goal}(q): Euclidean distance ||q - q_{goal}||

$$F_{\text{attractive}}(q) = - \nabla U_{\text{attractive}}(q)$$

= - k_{attrative} p_{goal}(q) \nabla p_{goal}(q)
= - k_{attrative} (q - q_{goal})

> Linearly converges toward 0 as the robot reaches the goal

Repulsive potential

$$U_{\text{repulsive}}(q) = \begin{cases} \frac{1}{2} \ k_{\text{repulsive}} \left(\begin{array}{c} \frac{1}{\rho(q)} - \frac{1}{\rho_0} \end{array} \right)^2 & \rho(q) \le \rho_0 \\ 0 & \rho(q) > \rho_0 \end{cases}$$

- k_{repulsive}: a positive scaling factor
 ρ(q): minimum distance from q to an object
 α i distance of influence of the chiest
- \succ ρ_0 : distance of influence of the object

$$\begin{aligned} \mathsf{F}_{\text{repulsive}}(q) &= - \nabla \mathsf{U}_{\text{repulsive}}(q) \\ &= \begin{cases} \mathsf{k}_{\text{repulsive}} \left(\begin{array}{c} \frac{1}{\rho(q)} - \frac{1}{\rho_0} \end{array} \right) \frac{1}{\rho^2(q)} & \frac{q - qobstacle}{\rho(q)} & \rho(q) \leq \rho_0 \\ 0 & \rho(q) \leq \rho_0 \end{cases} \end{aligned}$$

> Only for convex obstacles that are piecewise differentiable

Potential field

Advantages

- > Both plans the path and determines the control for the robot.
- > Smoothly guides the robot towards the goal.

Issues

- > Local minima are dependent on the obstacle shape and size.
- Concave objects may lead to several minimal distances, which can cause oscillation