Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer Jiwon Shin

Lecture 10: Robot Perception

Perception

http://pascallin.ecs.soton.ac.uk/challenges/VOC/databases.html#Caltech

Given visual input, understand the information the input contains

- Object location: object detection
- > Type of object: object classification
- > Exact object name: object recognition
- > Overall scene: scene understanding

Segmentation

Segmentation: decomposition of an image into consistent regions

- > Data that belong to the same region have similar properties
 - Similar color, texture, surface normal, etc.
- Data that belong to different regions have different properties
 - Different color, texture, surface normal, etc.

- Segmentation as clustering
 - Partitioning: divide an image into coherent regions
 - Grouping: group together elements of similar properties

Image segmentation

Divide an image into sensible regions using pixel intensity, color, texture, etc.

- Background substracton
- Clustering
- Graph-based

Background subtraction

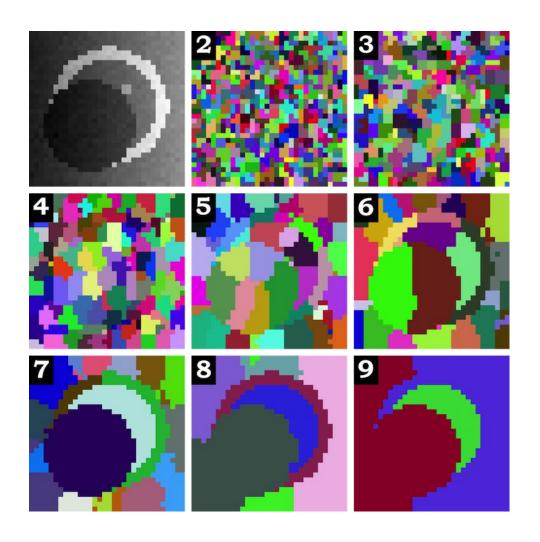


Background subtraction

- Subtract an estimate of the appearance of the background from the image
- Consider areas of large absolute difference to be foreground

- Obtaining a good estimate of the background is non-trivial
 - Changes in environment, lighting, weather, etc.
 - Use a moving average
- > Threshold

Agglomerative clustering



Agglomerative clustering

- Consider each data point as a cluster
- Recursively merge the clusters with the smallest inter-cluster distance until the result is satisfactory

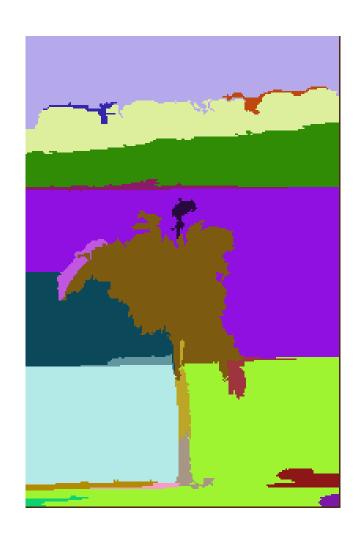
- Inter-cluster distance
 - Distance between closest elements
 - Distance between farthest elements
 - Average distance between elements
- Number of clusters

K-means clustering

K-means clustering

- Choose k data points as seed points
- Recursively assign each data point to the cluster whose center is the closest and recalculate the cluster mean until the center does not change

- Segments are not connected in image
 - Using pixel coordinates would break up large regions
- Determining k is non-trivial



Felzenszwalb, P. and Huttenlocher, D. 2004. "Efficient Graph-Based Image Segmentation" International Journal of Computer Vision, Volume 59, Number 2.

- Represent image as a graph, each pixel being a node of a graph
- > Edges are formed between neighboring pixels
- Merge the nodes such that nodes belonging to the same segment more similar to one another than nodes at the boundary of two segments

> Internal difference of a cluster c:

$$Int(C) = \max_{e \in MST(C,E)} w(e)$$

 \triangleright Difference between clusters c_1, c_2 :

$$Dif(C_1, C_2) = \min_{v_i \in C_1, v_j \in C_2, (v_i, v_j) \in E} w((v_i, v_j))$$

Minimum internal difference:

$$ightharpoonup MInt(C_1, C_2) = \min(Int(C_1) + \tau(C_1), Int(C_2) + \tau(C_2))$$

$$\tau(C) = \frac{k}{|C|}$$

 \triangleright A boundary exists between c_1 and c_2 if $Dif(C_1, C_2) > MInt(C_1, C_2)$

Regions of consistent properties are grouped together

Issues

Number and quality of segments depend on the parameter k, smoothing factor, and minimum number of nodes

Range data segmentation

- Generally, we can use image segmentation algorithms by replacing intensity, color, or texture by surface normal
- Group together areas of consistent surface normal

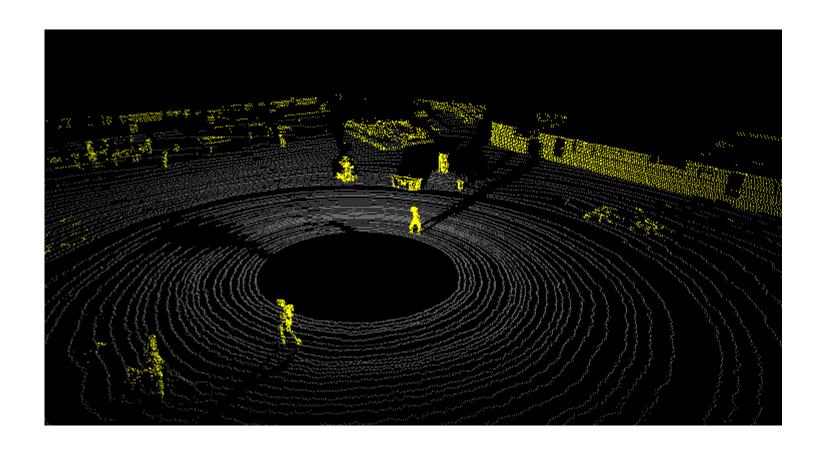
Surface normal computation

$$x_u \equiv \frac{\partial x}{\partial u}$$

$$x_v \equiv \frac{\partial x}{\partial v}$$

$$N = \frac{1}{|x_u \times x_v|} (x_u \times x_v)$$

Ground segmentation

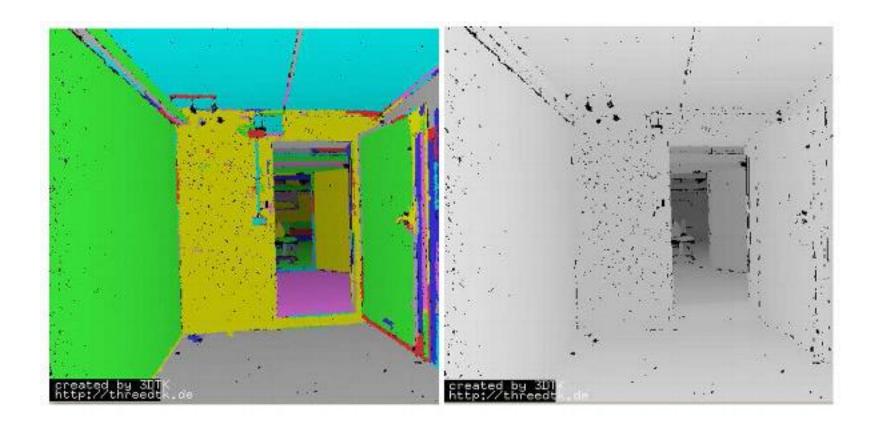


Ground segmentation

> Extract all points below a certain height

- Data are noisy
 - Objects will also lose information
- > Wall cannot be segmented out
- > Ground is not always planar

Plane segmentation



Plane segmentation

- Find a plane that minimize the average distance between a set of points and the surface
- > Recursively merge the surface patches

- > Not every object is planar
 - Curved objects will be segmented into several segments

Classifier

- Take a set of labeled examples
- Determine a rule that assign a label to any new example using the labeled examples

- \succ Training dataset (x_i, y_i)
 - $\succ x_i$: measurements of the properties of objects
 - > y_i: label
- \triangleright Goal: given a new, plausible x, assign it a label y.

$$p(k \mid x) = \frac{p(x \mid k) p(k)}{p(x)} \propto p(x \mid k) p(k)$$

Given x

- > Assign label k to x if
 - \rightarrow p(k|x) > p(i|x) for all i \neq k and p(k|x) > threshold
- \triangleright Assign a random k label between $k_1, ..., k_j$ if
 - > $p(k_1 | x) = ... = p(k_i | x) > p(i | x)$ for all i ≠ k
- > Do not assign a label if
 - \triangleright p(k|x) > p(i|x) for all i ≠ k and p(k|x) ≤ threshold

Nearest neighbor classifier

Given x

- \triangleright Determine M training example that are nearest: $x_1, ..., x_M$
- > Determine class k that has the largest representation n in the set
- Assign label k to x if n > threshold
- Assign no label otherwise

Feature extraction

Feature: a piece of information relevant for solving a computational task, e.g., locating an object in an image

- > Raw data
- > Histogram
- Pyramid of histograms
- Shape

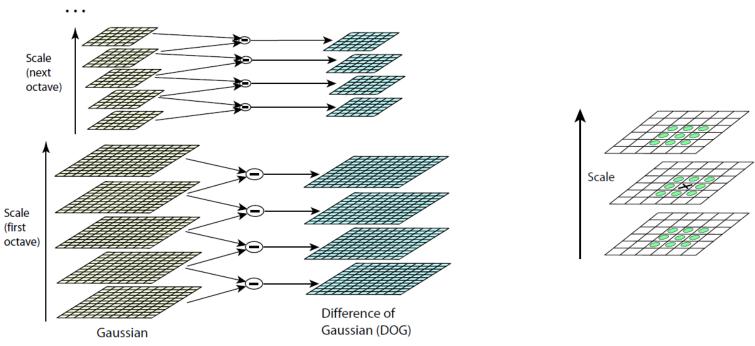
Histogram

- > Compute a histogram of intensity or color
- > Compute the correlation between example and test

- Loss of the structural information
- Dimensionality

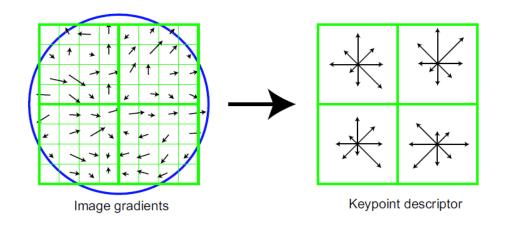
Scale Invariant Feature Transform

Scale Invariant Feature Transform (SIFT)



- > Identify locations and scales that are identifiable from different views of the same object
 - \triangleright L(x, y, σ) = G(x, y, σ) * I(x, y)
- Detect extrema (local minimum or maximum)

Scale Invariant Feature Transform



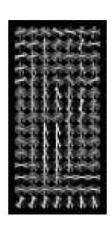
- > Remove points of low contrast or poorly localized on an edge
- Orientation assignment

$$m(x,y) = \sqrt{(L(x+1,y) - L(x-1,y))^2 + (L(x,y+1) - L(x,y-1))^2}$$

$$\theta(x,y) = \tan^{-1} \frac{L(x,y+1) - L(x,y-1)}{L(x+1,y) - L(x-1,y)}$$

Create a keypoint descriptor: 16 histograms (4x4 grid), each with 8 orientation bins, containing a total of 128 elements.

Histogram of Oriented Gradient



- Divide the image into small rectangular or radial cells
- ➤ Each cell accumulates a weighted local 1-D histogram of gradient directions over the pixels of the cell
- > Normalize each cell by the energy over larger regions

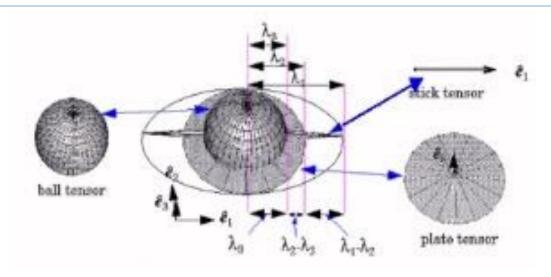
Shape factor

0

- \triangleright Compute eigenvectors: λ_1 , λ_2 , λ_3
 - \triangleright Point/Spherical: $λ_1 ≈ λ_2 ≈ λ_3$
 - \triangleright Planar: $λ_1 ≈ λ_2 ≫ λ_3$
 - ≥ Elongated: $λ_1 ≫ λ_2 ≈ λ_3$

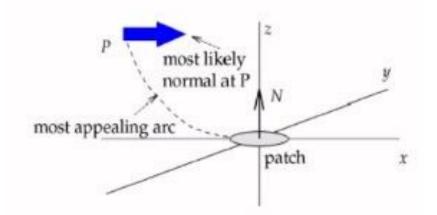
- > Many different objects have similar shape factor
- > Shape factor of an object can depend on the point of view

Tensor voting



- > 2x2 or 3x3 matrix that captures both the orientation information and its confidence/saliency
 - > Shape defines the type of information (point, surface, etc.)
 - Size represents the saliency
- Each token is first decomposed into the basis tensors, and then broadcasts its information to its neighbors.

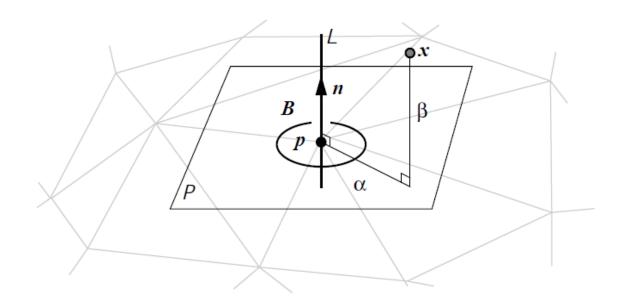
Tensor voting



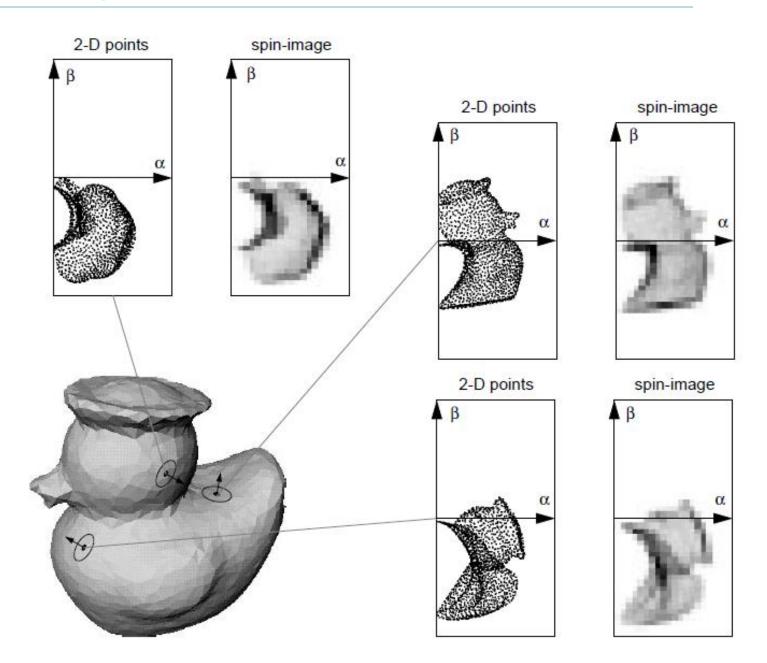
The magnitude of the vote decays with distance and curvature:

$$V(d,\rho) = e^{-\frac{d^2 + c\rho^2}{\sigma^2}}$$

- > d is the distance along the smooth path
- \triangleright p is the curvature of the path
- > c controls the degree of decay
- σ controls the size of the voting neighborhood
- Accumulate the votes by adding the matrices
- > Analyze the tensor by eigen decomposition



Spin image



- > Collect a histogram of points
 - > The resolution of the histogram
 - The size of the histogram
- To compare two spin images P and Q
 - Compute the correlation between two images

$$R(P,Q) = \frac{N \sum p_{i} q_{i} - \sum p_{i} \sum q_{i}}{\sqrt{(N \sum p_{i}^{2} - (\sum p_{i})^{2})(N \sum q_{i}^{2} - (\sum q_{i})^{2})}}$$

Can also apply PCA, remove the mean spin image and compute the Euclidean norm