
Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

C#: overview by example

2
Java and C# in depth

Bank Account

A Bank Account

maintain a balance (in CHF) of the total amount of money

balance can go negative

can open an account with an initial sum of money

can deposit money on the account

deposit possible only for a nonnegative amount of money

can withdraw money from the account

withdraw possible only for a nonnegative amount of money

C# implementation: BankAccount class

 public class BankAccount {

 ...

 }

3
Java and C# in depth

Attribute balance

maintain a balance (in CHF) of the total amount of money

 public class BankAccount {

 // Attribute 'balance', inaccessible by clients

 private int balance;

 // Definition of setter and getter for 'balance'

 public int Balance {

 get { return balance; }

 protected set { balance = value; }

 }

 ...

 }

4
Java and C# in depth

Constructor: open a new account

can open an account with an initial sum of money

 public class BankAccount {

 ...

 // no-args constructor

 public BankAccount() { Balance = 0;}

 // 1-arg constructor

 public BankAccount(int initialBalance) {

 if (initialBalance >= 0) {

 Balance = initialBalance;

 }

 else throw new BankAccountException(“…”)

 }

 ...

 }

5
Java and C# in depth

Method deposit

can deposit money on the account

deposit possible only for a nonnegative amount of money

 public class BankAccount {

 ...

 // deposit 'amount'

 // don't do anything if 'amount' < 0

 public void deposit(int amount) {

 if (amount >= 0) {

 balance = balance + amount;

 }

 }

 ...

 }

6
Java and C# in depth

Method withdraw

can withdraw money on the account

withdraw is effective only for a nonnegative amount of money

 public class BankAccount {

 ...

 // withdraw allowed ‘amount’

 // access restricted only to “some” clients

 protected virtual int withdraw(int amount) {

 if (amount >= 0) {

 balance = balance – amount;

 return 0;

 }

 else { return -1; }

 }

 ...

 }

7
Java and C# in depth

Premium Bank Account

A special Bank Account:

basic functionalities as in a regular Bank Account

has a minimum balance and a fixed fee

if the balance goes below the minimum balance, the fee is automatically

deducted from the balance

example:

minimum balance = 200, fee = 15

if a withdrawal brings the balance down to 150, an additional 15 is

deducted, so the final balance after the deposit is 135

C# implementation:

 PremiumBankAccount class inheriting from BankAccount

 public class PremiumBankAccount : BankAccount {

 ...

 }

8
Java and C# in depth

New attributes

 has a minimum balance and a fee

 public class PremiumBankAccount : BankAccount {

 public const int minimumBalance = 200;

 public const int lowBalanceFee = 15;

 ...

 }

9
Java and C# in depth

New constructor

 construction is as in the BankAccount class

 public class PremiumBankAccount : BankAccount {

 ...

 // constructor

 public PremiumBankAccount(int initialBalance)

 if(initialBalance >= minimumBalance) {

 Balance = initialBalance;}

 else{

 throw new

PremiumBankAccountException(“…”); }

 }

 ...

 }

10
Java and C# in depth

Redefining withdraw

if the balance goes below the minimum balance, the fee is automatically

deducted from the balance

 public class PremiumBankAccount : BankAccount {

 ... // overrides corresponding method in

BankAccount

 protected override int withdraw(int amount) {

 int res = base.withdraw (amount);

 if (res == 0 && Balance < minimumBalance) {

 Balance = Balance - lowBalanceFee;

 return 0; }

 else {if (res == -1)

 {return -1;}

 else

 {return 0;}

 }

 }

 ...}

11
Java and C# in depth

Clients of the BankAccount Class

 A client class which runs two instances of BankAccount
using System;

public class BankClient {

 public static void Main(String[] args) {

 BankAccount ba = new BankAccount(0);

 BankAccount bap = new PremiumBankAccount(250);

 Console.WriteLine(ba.Balance);

 Console.WriteLine(bap.Balance);

 ba1.deposit(1800);

 ba2.deposit(100);

 Console.WriteLine(ba.Balance);

 Console.WriteLine(bap.Balance);

 }

}

12
Java and C# in depth

Running a C# application (under Linux)

> mcs bankAccount.cs

> ./bankAccount.exe

 0

 250

 1800

 135

