
Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Java: framework overview
and in-the-small features

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Java: framework overview

3
Java and C# in depth

What’s in a name

Initially was “Oak” (James Gosling, 1991), then “Green”

 Ruled out by the trademark lawyers

Twelve people locked in a room together with a “naming consultant”

 “How does this thing make you feel?”

 “What else makes you feel that way?”

After listing and sorting, 12 names were sent to the lawyers

 #1 was “Silk”

 Gosling’s favorite was “Lyric” (#3)

 “Java” was # 4

Version 1.0: 1995, latest stable version: 7 Update 51 (14.1.14)

Coming next (Java SE 8, 18.3.2014):

 lambda expressions (closures)

 embedded JavaScript

4
Java and C# in depth

Java platform goals

 Write Once, Run Anywhere

 Built-in security

 Automatic memory management

 API + documentation generation

 Object-Oriented

 Familiar C/C++ syntax

5
Java and C# in depth

Write once, run anywhere

compiler .class/

.jar

network

H

w

Class loader

Bytecode

verifier
JIT compiler

Interpreter

JVM

.java

e
x
e

c

6
Java and C# in depth

Bytecode

 Intermediate format resulting from Java

compilation

 Instruction set of an architecture that

 is stack-oriented (no registers)

 provides capability (object access rights)

 1 bytecode instruction = 1 byte

 Executed by any platform-specific Virtual

Machine (VM)

7
Java and C# in depth

Bytecode format

 JVM loads class file gets a stream of bytecodes

 One bytecode instruction: opcode + ≥0 operands

 Each opcode is associated with a mnemonic

 03 iconst_0 // pushes int 0 on stack

 3b istore_0 // pops int from stack to local in pos 0

 84 00 01 iinc 0, 1 // increments local in pos 0 by 1

 1a iload_0 // pushes int from local in pos 0 on stack

 05 iconst_2 // pushes int 2 on stack

 68 imul // pops 2 int values, multiplies them and puts

the result on the stack

8
Java and C# in depth

Example of bytecode translation

class SimpleMath{

 byte inflexible_add(){

 byte x = 2;

 byte y = 2;

 byte z = (byte) (x + y);

 return z;

 }

}

9
Java and C# in depth

Bytecode example

Opcode mnemonics Meaning

iconst_2 push an integer constant 2 into the stack

istore_1 pop into local in pos 1 (x)

iconst_2 push an integer constant 2 into the stack

istore_2 pop into local in pos 2 (y)

iload_1 push x into the stack

iload_2 push y into the stack

iadd sum the two top values on the stack and push the result

int2byte convert result into byte

istore_3 pop into local in pos 3 (z)

iload_3 push z into the stack

ireturn return result (z)

10
Java and C# in depth

JVM overview

.java compiler .class

.jar

network

H

w

Class loader

Bytecode

verifier
JIT compiler

Interpreter

JVM

e
x
e

c

11
Java and C# in depth

Security: language restrictions and support

 No pointers, no explicit memory de-allocation

 Checked type casts (at compile time and
runtime)

 Enforced array bounds (at runtime)

 Security APIs

 SecurityManager (standard security)

 XML digital signature, Public Key
Infrastructure, cryptographic services,
authentication

12
Java and C# in depth

Security: class loaders

 Take care of files and file systems

 Locate libraries and dynamically load
classes

 Partition classes into realms (e.g. local
machine, local network, all the rest) and
restrict what they can do

13
Java and C# in depth

Security: Bytecode verifier

 Verifier checks bytecode using a “theorem prover”

 Branches always to valid locations

 Data always initialized

 Types of parameters of bytecode instructions
always correct

 Data and methods access checked for visibility

 Arbitrary bit patterns cannot get used as an
address

 No operand stack overflows and underflows

14
Java and C# in depth

JVM: code generation

.java compiler .class

.jar

network

H

w

Class loader

Bytecode

verifier
JIT compiler

Interpreter

JVM

e
x
e

c

15
Java and C# in depth

Code generation: HotSpot

 The interpreter is the software CPU of the JVM

 Examines each bytecode and executes a unique native
procedure

 No native code is produced

 A JIT “compiler” converts the bytecode into native code
just before running it

 Keeps a log (cache) of the native code that it has to run to
execute each bytecode

 May optimize substituting often occurring short sets of
instructions (“hot spots”) with shorter/faster ones

 Like the back-end of a traditional compiler, the java
compiler being the front-end

 HotSpot is the default SUN JVM since 2000

16
Java and C# in depth

HotSpot client and server

 HotSpot client VM

 For platforms typically used for client applications (e.g.
GUI)

 Tuned for reducing start-up time and memory footprint

 Invoked by using –client when launching an app

 HotSpot server VM

 For all platforms

 Tuned for max program execution speed

 Invoked by using –server when launching an app

 Both use an interpreter to launch applications, and an
adaptive compiler optimizing code hot spots

 They use different code inline policies and heap defaults

17
Java and C# in depth

JVM Overview

.java compiler .class

.jar

network

H

w

Class loader

Bytecode

verifier
JIT compiler

Interpreter

JVM

e
x
e

c

18
Java and C# in depth

JVM: more features

 Automated exception handling

 Provides “root cause” debugging info for every exception

 Responsible for garbage collection

 Ships as JRE (VM + libraries)

 Can have other languages run on top of it, e.g.

 JRuby (Ruby)

 Rhino (JavaScript)

 Jython (Python)

 Scala

 From 6.0 scripting languages can be mixed with Java code

19
Java and C# in depth

Command-line Java

 Compile

javac MainClass.java

 Execute

java MainClass

 Generate documentation

javadoc MainClass.java

 Generate an archive from .class files in current dir

jar cf myarchive.jar *.class

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Java: in-the-small language features

21
Java and C# in depth

Encoding and formatting

 Uses unicode as encoding system: www.unicode.org

 Free format

 Blanks, tabs, new lines, form feeds are only used to keep

tokens separate

 Comments

 Single line: //Single line comment

 Multiple lines: /* non-nested, multi-line

 comment*/

 Javadoc comment: /** processed by javadoc */

http://www.unicode.org

22
Java and C# in depth

Identifiers

 No restriction on length

 Case sensitive

 Cannot start with a digit

 Cannot include / or -

 Cannot be a keyword

23
Java and C# in depth

Annotations

Meta-data about programs

 Compiler flags
e.g: @Deprecated, @Override, @SuppressWarnings

 Information that can be used for compilation (or other

forms of code analysis)
e.g.: @Inherited, application-defined such as @RevisionId

 Some runtime processing

e.g.: application-defined

24
Java and C# in depth

Keywords

 Literals null, true, false are also reserved

abstract double int super

boolean else interface switch

break extends long synchronized

byte final native this

case finally new throw

catch float package throws

char for private transient

class (goto) protected try

(const) if public void

continue implements return volatile

default import short while

do instanceof

25
Java and C# in depth

Operators

 Access, method call: ., [], ()

 Postfix: expr++, expr-- (R to L)

 Other unary: ++expr, --expr, +, -, ~, !, new, (aType)

 Arithmetic: *, /, %

 Additive: +, -

 Shift: <<, >>, >>>

 Relational: <, >, <=, >=, instanceof

 Equality: ==, !=

 Logical (L to R): &, ^, |, &&, ||

 Ternary: condition ? (expr1):(expr2) (R to L)

 Assignment: =, +=, -=, *=, /=, %=, &=, ^=, |=, <<=,

>>=, >>>=

 Precedence: from top to bottom

 Tip: don’t rely too much on precedence rules: use parentheses

26
Java and C# in depth

Type system basics

 Primitive types
 boolean, byte, short, int, long, char,

float, double

 Reference types

 class, interface, []

 null

 Automatic widening conversions (no precision loss)

 byte to short to int to long

 char to int, int to double, float to double

 Automatic widening conversions (possible precision loss)

 int to float, long to float, long to double

 A cast is required for narrowing conversions

int i = 3; long j = 5; i = (int) j

27
Java and C# in depth

Widening conversions with precision loss

float g(int x){

 return x;

}

...

int i = 1234567890;

float f = g(i);

System.out.println(i - (int)f)

// output: -46

...

28
Java and C# in depth

Wrapper types and autoboxing

 For each primitive type there is a wrapper type

 Boolean, Byte, Short, Integer, Long,

Character, Float, Double

 Starting from 5.0, autoboxing provides automatic

conversions between primitive and wrapper types

 Pro: reduces code complexity

 Cons: not efficient, sometimes unexpected behavior

29
Java and C# in depth

Some surprises of autoboxing

new Integer(7).equals(7)

new Long(7).equals(7)

new Integer(7).equals(new (Long(7)))

new Integer(7) == 7

new Long(7) == 7

new Integer(7) == new Long(7)

// true

//false. True if equals(7L)

// compiler error

// true

// true

// false

30
Java and C# in depth

Control flow: conditional branch

Same syntax as in C/C++

 if (booleanExpr)

 {

 // do something

 }

 else // else is optional

 {

 // do something else

 }

31
Java and C# in depth

Control flow: loops

while (booleanExpr)

{

 // execute body

 // until booleanExpr becomes false

}

do

{

 // execute body (at least once)

 // until booleanExpr becomes false

}

while (booleanExpr);

32
Java and C# in depth

Control flow: for loop

for (int i=0; i < n; i++)

{

 // execute loop body n times

}

// equivalent to the following

int i=0;

while (i < n)

{

 // executes loop body n times

 i++;

}

33
Java and C# in depth

Control flow: enhanced for loop

Introduced in Java 5.0

 for (variable : collection)

 {

 // loop body

 }

 collection is an array or an object of a class that

implements interface Iterable

 more on classes and interfaces later

 Executes the loop body for every element of the
collection, assigned iteratively to variable

34
Java and C# in depth

Control flow: switch selector

switch (Expr)

{

 case Value1: instructions;

 break;

 case Value2: instructions;

 break;

 // ...

 default: instructions;

}

Expr can be of type:

 byte, short, int, char (or wrapped counterparts)

 enum types

 String (compared with equals) (new in Java 7)

35
Java and C# in depth

Breaking the control flow: break

label: [while | do | for]

 Identifies a loop

 (Or a code block)

break optionalLabel;

 Within a loop or a switch

 No label: exit the loop or switch

 With label:

 within loop: jump out of the loop to label
optionalLabel

 within switch: jump out of switch block to label
optionalLabel

36
Java and C# in depth

Breaking the control flow: continue

label: [while | do | for]

 Identifies a loop

 (Or a code block)

continue optionalLabel;

 Within a loop

 No label: skip the remainder of the current iteration and
continue with the next iteration

 With label:

 skip the remainder of the current iteration and
continue with the next iteration of the loop with label
optionalLabel

