
Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

C#: framework overview
and in-the-small features

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

C#: framework overview

3
Java and C# in depth

What’s in a name

Internal name of initial project: Cool (C-like Object Oriented Language)

 Ruled out by the trademark lawyers

Chief C# architect at Microsoft: Anders Hejlsberg

 Previously on Turbo Pascal & Delphi

Grounded in the .NET platform and CLI (Common Language Infrastructure)

“An imitation of Java”

 According to Java’s Bill Gosling

Version 1.0: 2001

Latest version: 5.0 (.NET Framework 4.5) (6.2013)

4
Java and C# in depth

C# platform goals (from ECMA standard)

 Simple, general-purpose, object-oriented

 Correct and robust

 strong type checking, array bounds checking, detecting

usage of uninitialized variables, automated memory

management, ...

 Component- and reusability-oriented

 Programmer-portable

 easy for developers coming from C/C++ and from other

.NET languages

 No direct competition with C in terms of performance

 Introduction of selected functional programming features

 Main motivation: dealing with data conveniently

5
Java and C# in depth

CLI: Common Language Infrastructure

• An open specification describing the

executable code and runtime environment

forming the .NET framework

• Implementations: MS .NET/CLR, MS .NET

Compact framework (portable devices and

Xbox 360), MS Silverlight (browsers), Mono

(cross-platform).

6
Java and C# in depth

CIL and Assemblies

 C# compilation produces CIL (Common Intermediate

Language) code

 Instruction set similar to Java bytecode

 object-oriented stack-based assembly code

 richer type system, real generics vs. Java’s type erasure

 CIL code is organized in assemblies

 for Windows platforms: .exe and .dll

 Executed by a Virtual Machine (VM)

 .NET on Windows platforms

 Mono for Linux/Unix

 Code generation usually with a JIT compiler

 AOT (Ahead-Of-Time) option also available

7
Java and C# in depth

Security

1. Of the language:

 Restricted: no pointers, no explicit memory de-allocation, checked
type casts, enforced array bounds

2. Of the runtime: CAS (Code Access Security)

 Evidence

 Any information associated with an assembly

 E.g., digital signature of publisher, URL, an hash
identifying the version, etc.

 Code group

 Associate evidences with permission types

 Associations vary according to environment-dependent
policies

3. Verification and validation

 Series of checks that make sure that the code does not do
anything clearly unsafe
 Checks can be quite conservative: safe code may be rejected

8
Java and C# in depth

Code generation: CLR

 CLR can denote two things:

 the runtime component of CLI

 Microsoft’s implementation of it for Windows platforms

 A JIT compiler converts CLI bytecode into native code
just before running it

 classes and methods are compiled dynamically just when
they are needed

 Alternatively, a AOT (Ahead-Of-Time) compiler
translates the whole application in native code

 NGEN (Native Image Generator) in Microsoft’s CLR

 not necessarily overall faster than JIT: certain dynamic
optimization can be done only with JIT

9
Java and C# in depth

CLR: more features

 Exception handling

 Memory management (garbage collection)

 Threads and concurrency

 Usually includes set of libraries:
FCL (Framework Class Libraries)

 Has other languages running on top of it

 VB.NET

 J# (transitional language from Java to C#)

 IronPython, IronRuby, IronScheme

 ...

10
Java and C# in depth

Command-line C#

 Compile

 csc a_file.cs // Microsoft .NET

mcs a_file.cs // Mono .NET

 Execute

 a_file.exe

./a_file.exe

 Generate XML documentation
csc /doc:docu.xml a_file.cs

mcs -doc:docu.xml a_file.cs

 Compile all .cs files in the current directory and pack
them in a DLL

 csc /target:library /out:a_library.dll *.cs

 mcs -target:library -out:a_library.dll *.cs

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

C#: in-the-small language features

12
Java and C# in depth

Encoding and formatting

 Uses unicode as encoding system: www.unicode.org

 Free format

 Blanks, tabs, new lines, form feeds are only used to keep

tokens separate

 Comments

 Single line: //Single line comment

 Multiple lines: /* non-nested, multi-line

 comment */

 Comment for XML documentation system:
 /** multi /// single-line

 line */

http://www.unicode.org

13
Java and C# in depth

Identifiers

 Maximum length: 255 characters

 Can start with _ or @ or a letter

 Cannot start with a digit or a symbol other than _ or @

 Cannot include / or –

 @ can appear only in the first position

 Cannot be a keyword

14
Java and C# in depth

Attributes are something else in C#

The counterparts to Java’s annotations

Meant to provide additional declarative information about

program entities, which can be retrieved at run-time.

Typical usages:

 Debugging information

e.g.: line number in the source where a method is called
[CallerLineNumber]

 Information for code analysis/compilation

e.g.: to compile certain code only in debugging mode
[Conditional (“DEBUG”)]

 Compiler flags

e.g.: to generate a warning during compilation
[Obsolete (“You should use class X instead”)]

15
Java and C# in depth

Keywords
abstract as base bool

break by byte case

catch char checked class

const continue decimal default

delegate do double descending

explicit event extern else

enum false finally fixed

float for foreach from

goto group if implicit

in int interface internal

into is lock long

new null namespace object

operator out override orderby

params private protected public

readonly ref return switch

struct sbyte sealed short

sizeof stackalloc static string

select this throw true

try typeof uint ulong

unchecked unsafe ushort using

var virtual volatile void

while where yield

16
Java and C# in depth

Operators

 Primary: ., (), [], x++, x--, new, typeof,

 checked, unchecked

 Unary: +, -, !, ~, ++x, --x, (aType)x

 Multiplicative: *, /, %

 Additive: +, -

 Shift: <<, >>

 Relational: <, >, <=, >=, is, as

 Equality: ==, !=

 Logical (precedence left to right): &, ^, |, &&, ||

 Conditional: condition ? (expr1):(expr2)

 Assignment: =, +=, -=, *=, /=, %=, &=, |=, ^=, <<=,

>>=

 Precedence: from top to bottom

 Tip: don’t rely too much on precedence rules: use parentheses

17
Java and C# in depth

Overflow handling

int i = 2147483647 + 10; // compiler error

int ten = 10

int j = 2147483647 + ten; /* no compiler error.

Result: -2147483639. Overflow checking can be

enabled by compiler options, environment

configuration or the checked keyword. */

Console.WriteLine(checked(2147483647 + ten));

// OverflowException

Console.WriteLine(unchecked(2147483647 + 10));

// no compiler error. Result: -2147483639

18
Java and C# in depth

Type system: value types

 Basic value types

 sbyte, short, int, long, byte, ushort,

uint, ulong, decimal, float, double, bool,

char

 struct

 enum

 Nullable types for value types
 int? n = null; ...

 if (n != null){int m = n.Value}

 int p = n ?? 7 //null coalescing operator:

 //if n != null p = n, otherwise p = 7

19
Java and C# in depth

Type system: reference types

 [] (array)

 class

 interface

 delegate

 event

 Pointers

 restricted to blocks marked unsafe

 unsafe blocks can be executed only with certain
permissions enabled

20
Java and C# in depth

Widening conversions with precision loss

float g(int x){

 return x;

}

...

int i = 1234567890;

float f = g(i);

Console.writeline(i - (int)f)

// output: -46

...

21
Java and C# in depth

Boxing and unboxing

 Variables of value types are stored on the stack

 Variables of reference types are stored on the heap

 Boxing transforms a value type into a reference of type
object and is implicit

int i = 2; object o = i;

i o

 Unboxing transforms a reference of type object into a

value type and requires a cast
object o = 3; int i = (int)o;

2 int
2

22
Java and C# in depth

Control flow: conditional branch

Same syntax as in C/C++/Java

 if (booleanExpr)

 {

 // do something

 }

 else // else is optional

 {

 // do something else

 }

23
Java and C# in depth

Control flow: loops

while (booleanExpr)

{

 // execute body

 // until booleanExpr becomes false

}

do

{

 // execute body (at least once)

 // until booleanExpr becomes false

}

while (booleanExpr);

24
Java and C# in depth

Control flow: for loop

for (int i=0; i < n; i++)

{

 // execute loop body n times

}

// equivalent to the following

int i=0;

while (i < n)

{

 // execute loop body n times

 i++;

}

25
Java and C# in depth

Control flow: foreach loop

 foreach (variable in collection)

 {

 // loop body

 }

 collection is an array or an object of a class that

implements IEnumerable

 Executes the loop body for every element of the
collection, assigned iteratively to variable

26
Java and C# in depth

Control flow: switch selector
switch (Expr) {

 case value: instructions;

 break;

 case value: instructions;

 break;

 // ...

 default: instructions;

 break;

}

 Expr can be an integer or string expression

 break is required after each non-empty block

 Including the default block

 Fall through forbidden
unless an instructions block is empty

27
Java and C# in depth

Breaking the control flow: break and continue

break;

 Within a loop or a switch

 Exit the loop or switch

continue;

 Within a loop

 Skip the remainder of the current iteration and continue
with the next iteration

28
Java and C# in depth

Breaking the control flow: goto

Label: instruction

 Identifies an instruction (possibly compound, such as a
loop)

goto Label;

 Anywhere

 Transfer control directly to the labeled statement

goto case value;

goto default;

 Within a switch (replacing standard break
terminator)

 Transfer control to the corresponding case or to the
default

