Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Java: introduction to
object-oriented features

E'H Ziirich O
Chair of Software Engineering

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Java classes and objects

Classes and objects

0.

* The basic encapsulation unit is the class
= as in every object-oriented language
» A class is made of a number of features (or members)
= Instance variables (attributes, fields)
= methods
» Classes and features have different levels of visibility
= Objects are class instances

= and classes are sets of objects
» or blueprints for creating objects
= constructors are special methods to create new objects

= |In Java, objects are automatically destroyed when no
longer referenced (garbage collection)

* no destructors, but optional finalize methods

Java and C# in depth

A simple class example

package ch.ethz.inf.se.javacsharpindepth;
/**

* @dauthor John H. Doe
*/
public class MainClass {
// 'main’ must be all lowercase
public static void main (String[] args) {

Game myGame = new Game () ;
System.out.println ("Game starts!");
myGame . startGame () ;

Java and C# in depth 4

Attributes (instance variables, fields)

= Relate to a class instance

= Declared within the class curly brackets, outside any
method

= Visible at least within the class scope, within any method
of the class

= Automatically initialized to the default values

= 0 or 0.0 for numeric types, * \u0000’ for chars, null for
references, false for booleans

Java an d C# in depth 5

Methods (instance methods, member functiong)

= Relate to an instance and are declared within the class
curly brackets

= May have arguments
= Must have return type (possibly void)

boolean test(int i, boolean b) {
// some stuff here

return true;

« Constructors are “special” (more on this later)

Java an d C# in depth

Information hiding

Attribute and method visibility “modifiers™:
= public: visible everywhere

» protected: visible in the same package and in
subclasses (wherever they are)

= (*): visible in the same package
= private: visible only in the class in which it is defined

Class visibility
= Top level classes can only have default or public visibility

= Nested classes can have any chosen visibility level
= (except for inner classes: see later)

(*) No keyword for “package” visibility: it’ s the default

Java and C# in depth

7

: O]
Classes, packages, and files

» The Java language specification does not constrain how
classes and packages are stored in files.

= However, practically all implementations of the Java
platform follow Sun’s original conventions:
= one top-level public class per file
= compiled to one .class bytecode file

= packages hierarchically map to directories

= Example:
public class MyClass In package my.package

= |s stored in file: MyClass. java In subdirectory
my/package/ relative to the “sourcepath” root.

» |ts compiled version is in file MyClass.class In
subdirectory my/package/ relative to the “classpath”
root directory

= sourcepath and classpath often coincide Java and C# in depth

he static modifier

When applied to non-local variables and methods

Relates to a specific class, not to a class instance
Shared by every object of a certain class (in the JVM)
Accessed without creating any class object

Kind of like a global entity

Static methods can only reference static entities, locals,
and arguments (no instance members)

MyClass.myStaticAttribute
MyClass.myStaticMethod ()

The static modifier does not apply to top-level classes in

Java

Java and C# in depth

Constructors

= Same name as the class

= No return type (not even void)

= An argumentless constructor is provided by default
If no other constructor is explicitly given

Java an d C# in depth
10

Local variables

Declared within a method’ s scope
(denoted by curly brackets)

Visible only within the method’ s scope

De-allocated at method end

Not automatically initialized
= warning if no explicit initialization is given

Java and C# in depth
11

he keyword this

Refers to the current object.
Typical usage: bypass local variable shadowing attribute.

public class Card {
private int wvalue;

public int getValue () ({
return wvalue;

}

public void setValue(int wvalue) {
this.value = value;

Java an d C# in depth
12

Nested classes

©

A class defined inside another class, that may access its
private data. (Nested is the opposite of “top-level”.)

Variants of nested classes

= static nested class
* no references to the outer class (non-static) instance
» any visibility specifier

= Inner class: non-static nested class
= can reference the outer class instance
= any visibility specifier

= Anonymous (inner) class: inner class without a name,

defined in the middle of a method or initialization block

* no visibility specifiers allowed

= Local (inner) class: inner class with a name, defined in
the middle of a method or initialization block

= no visibility specifiers allowed Java and C# in depth

13

Static nested classes

A static nested class:

= can only reference static members of the enclosing class
(besides its own arguments and locals)

= can include both static and non-static members
* |tis used as a top-level class; nesting affects naming not

behavior

public class Nested ({
static class SN {

static int m()

{ return 5; }

int n()

{ return 3; }

// Client code:

int y = Nested.SN.m(); // 5

Nested.SN sn = new Nested.SN() ;

// 3

int x = sn.n();

Java and C# in depth

14

Inner classes

An inner (non-static nested) class:
= can reference the outer class instance

= all instances of the inner class refer to the instance of the
containing class used to create them

= can be instantiated only through an instance of the outer
class (cannot include static members, except constants)

public class Nested ({
int a;
class I {
int n()
{ return 3; }
int m()
{ return a; }

// Client code:

Nested n = new Nested() ;
Nested.I 1 = n.new I();
int x = i.n(); // 3
n.a =5;

Nested.I j = n.new I();

int y=3j.m(); // 5 == 1i.m()

Javaand C#in aeptn

15

O]
Anonymous and local classes

An anonymous or local (inner) class:
= can reference the outer class members

= all instances of the inner class refer to the instance of the
containing class used to create them

» put cannot access local variables of its enclosing class
(except constants)

= cannot include static members, except constants

* Anonymous classes have essentially the same restrictions
as local classes but have no name

= typically used to wrap operations into an object that can
be passed around

= this usage will be superseded by lambda expressions in
Java 8 and later.

Java and C# in depth

16

: O]
Anonymous inner class example

public void start(int num) {
// ActionlListener is an interface that includes
// a method actionPerformed
ActionlListener listener = new ActionlListener ()

// anonymous inner class starts here

{

public void actionPerformed (ActionEvent e) {
// reaction code here

}

}; // anonymous inner class ends here
// other code here

Which design pattern does this example suggest?

Java and C# in depth
17

: O]
Anonymous inner class example

public void start(int num) {
// ActionlListener is an interface that includes
// a method actionPerformed
ActionlListener listener = new ActionlListener ()

// anonymous inner class starts here

{

public void actionPerformed (ActionEvent e) {
// reaction code here

}

}; // anonymous inner class ends here
// other code here

This Is an instance of the observer design pattern

Java and C# in depth
18

Method overloading

Using the same name with different argument list
= |ist can differ in length, argument type, or both

Example: constructors

Method signature: name + arguments list
* The return type is not part of the signature

Tip: overloading may reduce readability: don’ t abuse it

Java and C# in depth

19

Method overloading with subtypes X

When a method name is overloaded with argument types that

are related by inheritance, method resolution selects the
“closest” available type.

Example: Student is a subtype of Person
class X {
// vl
void foo (Person p) { }
// v2
void foo (Student p) { }
}

X x = new X();
x.foo(new Person()); // Executes vl
x.foo(new Student()); // Executes v2

Java and C# in depth

20

Method overloading with subtypes X

When a method name is overloaded with argument types that
are related by inheritance, method resolution selects the
“closest” available type.

Example: Student is a subtype of Person

class Y { void foo (Person p) { ... } }
class Z { void foo (Student p) { ... } }
Y vy = new Y();
y.foo(new Person()); // OK
y.foo(new Student()); // OK

N

V4 new Z();

z .foo (new Person()); // Error
z.foo(new Student()); // OK

Java and C# in depth
21

Operator overloading

= No custom operator overloading is possible

11 7

= Only "+~ for String Is overloaded at language level

System.out.println(
“Custom operator overloading ~ +
“would have been nice..”)

Java and C# in depth

22

Method argument passing X

= All the primitive types are passed by value

* Inside the method body we work with a local copy
= We return information using the return keyword

= (Object) Reference types are passed by value too, but:

* What is passed by value is the reference (i.e., an object
address)

= Consequently, a method can change the state of the
object attached to the actual arguments through the
reference

Java and C# in depth

23

Variable number of arguments

To pass a variable number of arguments to a method:
= Use a collection (including arrays)
» From Java 5.0: varargs arguments “...”

public void write(String ... someStrings) ({
for (String aString : someStrings) ({
System.out.println (aString) ;

= This is just syntactic sugar for an array
= You can pass an array as actual

* The varargs argument must be the only one of its kind
and the last one in the signature

Java and C# in depth

24

Block initializers (a.k.a. initialization blocks)

Similar to “anonymous” method bodies

= without sighature and return type, only curly brackets and
possibly the static modifier

The code within them is executed during initialization

Can be static or non-static

Useful to perform some computation before the
constructors are invoked

= Factor out code common to multiple constructors
= Initialize £inal static variables

Java and C# in depth

25

Finalizer methods

The Object class includes a method:
protected void finalize()

which can be overridden in any class.
The £finalize method is called just before garbage collection
= May never be called, if an object is not collected

= No real-time guarantee that the object is collected right
after finalize is executed

What' s for: do some final clean-up upon object disposal
= E.g.: resources not properly released beforehand
It is not meant for general release of resources

» Files and other I/O resources have “close/destroy’
methods, which should be called explicitly

’

Java and C# in depth

26

m Ziirich O
Chair of Software Engineering

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Inheritance, polymorphism,
and dynamic dispatching

Inheritance

« We can explicitly “extend” from one class only
= Otherwise, every class implicitly extends Object

= Public and protected inherited fields and methods are
available in the descendant.

= Package-visible (no visibility specifiers) inherited
members are visible only in descendants within the
same package.

Java and C# in depth

28

Overriding and dynamic dispatching

= QOverriding: method redefinition in a subclass

= Overriding rule:

» (before Java 5.0) overriding method must have the same
signature and return type as in the superclass

» (from Java 5.0) overriding method must have the same
signature as in the superclass and a covariant return type
of the superclass

= Annotation @Override avoids compiler warning
= Dynamic dispatching applies
= The keyword £inal prevents overriding in subclasses
= Overriding cannot reduce the visibility of a method
* e.g.. from public to private

= No overriding for static methods oo ond o et

Covariant return types example

In Java 5.0 the return type of an overridden method can be
a subtype of the base method’ s return type.

class Account { ... }
class SavingsAccount extends Account { ... }

class AccountManager ({
public Account getAccount() { ... }

class SavingsAccountManager extends AccountManager ({
public SavingsAccount getAccount() { ... }

Java and C# in depth

30

Casting and Polymorphism

Casting is C++/Java/C# jargon to denote polymorphic
assignments.

" et S be an ancestor of T (thatis, T —»* 5)

=Upcasting: an object of type T is attached to a reference of
type S

=Downcasting: an object of type S is attached to a
reference of type T

class Vehicle;

class Car extends Vehicle;

Vehicle v =(Vehicle)new Car(); // upcasting
Car c = (Car)new Vehicle(); // downcasting

Java and C# in depth

31

Casting in Java

0.

=Upcasting is implicit
= For primitive types, upcasting means assigning a
“smaller” type to a “larger” compatible type

" byte 10 shortto int 10 long 10 float {0 double
(Long to £1loat may actually lose precision)

= char 10 int
= For reference types, upcasting means assigning a
subtype to a supertype, that is:
» a subclass to superclass
= an implementation of an interface X to that interface X
» an interface X to the implementation of an ancestor of X
*Downcasting must be explicit
= can raise runtime exceptions if it turns out to be
Impossible
*No casts are allowed for reference types outside the

Inheritance hierarchy Java and C# in depth

32

he instanceof keyword

0.

* The instanceof keyword performs runtime checking of
the dynamic type of a reference variable

= Syntax: aVariable instanceof aType
= |s the object attached to avariable compatible with
aType?

= Compatible means of aType or one of its subtypes

Java and C# in depth

33

Shadowing

0.

Variables with the same name and different (but overlapping)
scopes:

A local variable shadows an attribute with the same
name: use this to access the attribute

A subclass attribute shadows a superclass attribute with
the same name

Polymorphism does not apply

» if a reference is superclass type and attached object is
subclass type, the superclass variable is used

Tip: avoid If possible (it may decrease readability)

Java and C# in depth

34

he final modifier ©

= final class
= Cannot be inherited from

= £final attribute, argument, or local variable

» |t s a constant: cannot be redefined and must be initialized

= (If it’ s a reference: the object state can change)

= final static attributes can only be initialized by block
Initializers

= final (non-static) attributes can be set only once, and

must be set by every constructor of the class (whenever
initializers haven’ t already set them).

= Style tip: constant names are capitalized

« final method
= Cannot be overridden v and Cr nceptn

m Ziirich O
Chair of Software Engineering

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

The object creation process

he keyword super

= Enables invocation of a superclass method from within
an overriding method in a subclass

= Can be used to explicitly invoke a constructor of the
superclass (see next example)

Java an d C# in depth
37

. “
Chained constructors

Any constructor implicitly starts by executing the
argumentless constructor of the parent class, unless:

= A specific constructor of the superclass is invoked
using super(...)

» Another specific constructor of the same class is
Invoked using this (.. .)

» [f used, super(...) orthis(...) mustbe the
first instruction

Java and C# in depth

38

Chained constructors: example

public class CreatureCard extends Card {

int value;

public CreatureCard(String name) {
super (name) ;
// class-specific initializations
value = 7;

public CreatureCard(int value) {
this (“Big Monster’) ;
// class-specific initializations
this.value = value;

} Java and C# in depth

39

Object creation process 7

MyClass obj = new MyClass() ;
(static members are initialized before)

= new allocates memory for a MyClass instance
(all attributes, including inherited ones)

= |nitializes all attributes to default values

If constructor references If constructor references
super (explicitly or by this (another constructor
default): X):

1.Recursive call to 1. Recursive call to other
constructor of superclass constructor X

2.Execute MyClass’s 2. Execute rest of originally
Initializers in their textual called constructor body
order

3.Execute constructor body oo ons oot

Object creation process: example

public class Person ({

int age = 1;

public class Student extends Person {
{ age = 6; }
double gpa = age/2;
public Student() { gpa += 1.0; }

Person pl = new Person() ; // age =1

6, gpa

Person p2 = new Student(); // age 4.0

Java and C# in depth
41

