
Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

C#: introduction to
object-oriented features

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

C# classes and objects

3
Java and C# in depth

Classes and objects

 The basic encapsulation unit is the class

 as in every object-oriented language

 A class is made of a number of features (or members)

 fields (instance variables)

 methods

 Classes and features have different levels of visibility

 Objects are class instances

 and classes are sets of objects

 or blueprints for creating objects

 constructors are special methods to create new objects

 in C#, objects are automatically destroyed when no

longer referenced (garbage collection)

 destructor syntax exists, but to create finalizer methods

4
Java and C# in depth

A simple class example

namespace JavaCsharpInDepth

{

 using System;

 public class MainClass {

 /// <author> John H. Doe </author>

 // ‘Main’ must be capitalized!

 public static void Main(String[] args)

 {

 Game myGame = new Game();

 Console.WriteLine("Game starts!");

 myGame.startGame();

 }

}

5
Java and C# in depth

Main method

In C#, the Main static method can be:

with argument String[] args

without arguments

returning void

returning int

This is different than in Java, where the format of main is fixed

6
Java and C# in depth

Fields (instance variables)

 Relate to a class instance

 Declared within the class curly brackets, outside any

method

 Visible at least within the class scope, within any method

of the class

 Automatically initialized to the default values

 0 or 0.0 for numeric types, ’\0’ for chars, null for

references, false for booleans, the value associated with

0 for enum, a default initialization of members for struct

 Warning: in standard C# parlance, “attributes” denote a

kind of annotation, not fields

7
Java and C# in depth

Methods (instance methods)

 Relate to an instance and are declared within the class

curly brackets

 May have arguments

 Must have return type (possibly void)

 Constructors are “special” (more on this later)

 Also special members in C#:

 properties, delegate, event

 They don’t exist in Java as such

 More on these later

8
Java and C# in depth

Information hiding (a.k.a. access modifiers)

Field and method visibility

 public: visible everywhere

 protected: visible within the class and in subclasses

 internal: visible in the same assembly (basically, the

same compiled CIL file)

 this is the default visibility for top-level types

 internal protected: class, subclasses, and in the

same assembly

 private: visible only within the class

 this is the default visibility for class members

Class visibility

 Classes can use all access modifiers except protected

9
Java and C# in depth

The static modifier

When applied to fields and methods

 Relates to a specific class, not to a class instance

 Shared by every object of a certain class

 Accessed without creating any class object

When applied to a class

 The class must contain only static fields and methods

 The class cannot be instantiated

10
Java and C# in depth

Constructors

 Same name as the class

 No return type (not even void)

 An argumentless constructor is provided by default

if no other constructor is explicitly given

11
Java and C# in depth

Local variables

 Declared within a method’s scope

(denoted by curly brackets)

 Visible only within the method’s scope

 De-allocated at method end

 Not automatically initialized

 Must be initialized before usage

 compiler checks this in a conservative way

12
Java and C# in depth

The keyword this

Refers to the current object

public class Card {

 private int value;

// this is a property

 public int Value {

 get { return value; }

 set { this.value = value; }

 }

}

13
Java and C# in depth

Nested classes

It’s a class defined inside another class

Less expressive than Java’s nested inner classes: in C#, the

nesting controls visibility only, not behavior. Hence:

 There need not be a relation between instances of the

nested class and instances of the containing class

 In general, the nested class cannot access members of

the containing class

 A nested class can’t be anonymous

C#’s delegates replace one of the main usages of Java’s

(anonymous) inner classes: wrappers of operations handling

events

14
Java and C# in depth

Nested classes: example usages

Nested classes may be used to:

 Declare helper classes used by the containing class but

whose details are irrelevant to clients of the containing

class.
 class PersonList : IEnumerable<Person> {

 // implementation of the list

 private class PersonEnumerator :

 IEnumerator<Person> {

 // enumerator customized for Persons

 } // clients only know about the interface

 public IEnumerator<Person> GetEnumerator() {

 return new PersonEnumerator(this);

 }

 Group together a number of tightly related variants of the

containing class and dispatch them to clients with static

methods (as in the factory design pattern).

15
Java and C# in depth

Method overloading

 Using the same name with different argument list

 list can differ in length, argument type, or both

 Example: constructors

 Method signature: name + arguments list

 The return type is not part of the signature

 Tip: overloading may reduce readability: don’t abuse it

16
Java and C# in depth

Method overloading with subtypes

When a method name is overloaded with argument types that

are related by inheritance, method resolution selects the

“closest” available type.

Example: Student is a subtype of Person

 class X {

 // v1

 void foo (Person p) { }

 // v2

 void foo (Student p) { }

 }

X x = new X();

x.foo(new Person()); // Executes v1

x.foo(new Student()); // Executes v2

17
Java and C# in depth

Method overloading with subtypes

When a method name is overloaded with argument types that

are related by inheritance, method resolution selects the

“closest” available type.

Example: Student is a subtype of Person

 class Y { void foo (Person p) { ... } }

 class Z { void foo (Student p) { ... } }

Y y = new Y();

y.foo(new Person()); // OK

y.foo(new Student()); // OK

Z z = new Z();

z.foo(new Person()); // Error

z.foo(new Student()); // OK

18
Java and C# in depth

Operator overloading

 Operator overloading is possible with the operator

keyword

public class Complex {

 private int re, im;

 public Complex(int re, int im) {

 this.re = re;

 this.im = im;

 }

 public static Complex operator +(Complex c1, Complex c2) {

 return new Complex(c1.re + c2.re, c1.im + c2.im);

 }

}

19
Java and C# in depth

Operator overloading (cont’d)

The following operators can be overloaded:

 Unary: + - ! ~ ++ -- true false

 Binary: + - * / % & | ^ << >> == != > < >= <=

If you overload a binary operator +, the += operator is

implicitly overloaded, too

Same for - and -=, * and *=, etc.

Cast operators are also overloaded by defining explicit

conversion operations

At least one argument of the overloaded operator must

belong to the class where the overloading definition occurs

Operators don’t have to be static and can have side effects

but think twice before relying on this feature!

20
Java and C# in depth

Conversion operators

Using the keywords explicit and implicit, we can define

conversion operators

public class Point {

 private double x, y;

 public Point(double x, double y) { ... }

 // explicit conversion: x --> (x, x)

 public static explicit operator Point(double x) {

 return new Point(x, x);

 }

 // implicit conversion: any string --> (0, 0)

 public static implicit operator Point(string s) {

 return new Point(0.0, 0.0);

 }

}

21
Java and C# in depth

Conversion operators

Using the keywords explicit and implicit, we can define

conversion operators

public class Point {

 // explicit conversion: x --> (x, x)

 public static explicit operator Point(double x) {...}

 // implicit conversion: any string --> (0, 0)

 public static implicit operator Point(string s) {...}

}

// Example client

Point p1 = (Point) 42.0; // p1 is (42.0, 42.0)

Point p2 = “abcde”; // p2 is (0.0, 0.0)

22
Java and C# in depth

Method argument passing

C# supports two argument passing semantics

 by value (the default)

 by reference (with the ref keyword)

 the “output parameter semantics” (with the out keyword)

is a variant of the reference semantics

23
Java and C# in depth

By-value argument passing

This is the default (no keywords)

 All the primitive types are passed by value

 Inside the method body we work with a local copy

 We return information using the return keyword

 (Object) Reference types are passed by value too, but:

 What is passed by value is the reference (i.e, an object

address)

 Consequently, a method can change the state of the

object attached to the actual arguments through the

reference

24
Java and C# in depth

By-value argument passing

This is the default (no keywords)

 public void no_swap(int i, int j) {

 int tmp = i;

 i = j; j = tmp;

 }

 ...

 int a, b;

 a = 3 ; b = 5;

 no_swap(a, b);

 // a == 3 && b == 5

25
Java and C# in depth

By-reference argument passing

With the ref keyword

 The method can modify directly the value of the actual

argument in the caller

 The caller must use the ref keyword too

(rationale: it enhances the clarity of what’s going on)

 If a reference type is passed by reference the method

can change the value of the reference itself in the caller

26
Java and C# in depth

By-reference argument passing

With the ref keyword

 public void swap(ref int i, ref int j) {

 int tmp = i;

 i = j; j = tmp;

 }

 ...

 int a, b;

 a = 3 ; b = 5;

 swap(ref a, ref b);

 // a == 5 && b == 3

27
Java and C# in depth

Output arguments

With the out keyword

 This is meant to mark arguments used as “additional

returned values”

 In practice, it achieves a semantics which is very similar
to the ref keyword

 The differences:

 a ref argument must be initialized by the caller

before calling the method

 an out argument must be written by the callee before

the method returns

28
Java and C# in depth

Variable number of arguments

To pass a variable number of arguments to a method:

 Use a collection (including arrays)

 Use a params argument

 public void write(params String[] someStrings) {

 foreach (String aString in someStrings) {

 Console.Write(aString);

 }

 }

 This is just syntactic sugar for an array

 You can pass an array as actual

 The params argument must be the only one of its

kind and the last one in the signature

29
Java and C# in depth

Static constructors

 Similar to “static block initializers” in Java

 No arguments, no return type, no visibility specifiers

 The code within them is executed before the first

instance of the class is created or any static member is

referenced

30
Java and C# in depth

Destructors (finalizer methods)

Any class C may include a destructor method:

 ~C()

which is syntactic sugar for overriding Object.Finalize in

any class.

The destructor method is called just sometime after an object

becomes inaccessible

 The destructor may not be called at all (e.g. if running

process terminates first)

 No guarantee on when a destructor is called during

garbage collection

What’s for: do some final clean-up upon object disposal

 E.g.: resources not properly released beforehand

It is not meant for general release of resources

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Inheritance, polymorphism,
and dynamic dispatching

32
Java and C# in depth

Inheritance

 We can explicitly inherit from one class only

 A class C inheriting from D:
 public class C : D

 Otherwise, every class implicitly inherits from Object

 Visible (i.e., public and protected) inherited fields
and methods are available in the heir

33
Java and C# in depth

Overriding and dynamic dispatching

Overriding: method redefinition in a subclass

Overriding rule:

 overriding method must have the same signature and

return type as in the superclass

 covariant return types are not allowed in C#

 (Something similar can be obtained with genericity)

Unlike Java: static dispatching applies by default.

34
Java and C# in depth

Overriding and dynamic dispatching

There are two types of method redefinition in C#:

 With the new keyword (hiding/shadowing)

 dynamic dispatching does not apply

 if you don’t write new you get a warning but hiding

semantic is assumed

 can change the visibility of the method

 With the override keyword (overriding)

 dynamic dispatching does apply

 only allowed if method is declared as virtual in

parent class

 cannot change the visibility of the method

 An override method implicitly remains virtual until it is

declared as sealed

35
Java and C# in depth

Overriding and dynamic dispatching

public class A { public virtual void Do() { } }

// virtual; hence both types of redefinition

 are possible

public class B : A { public new void Do() { } }

// non-polymorphic redefinition

public class C : A { public override void Do() { } }

// polymorphic redefinition

A x = new B(); x.Do(); // static dispatching

B y = new B(); y.Do(); // static dispatching

A z = new C(); z.Do(); // dynamic dispatching

36
Java and C# in depth

Casting and Polymorphism

Casting is C++/Java/C# jargon to denote polymorphic
assignments.

Let S be an ancestor of T (that is, T →* S)

Upcasting: an object of type T is attached to a reference of
type S

Downcasting: an object of type S is attached to a
reference of type T

class Vehicle;

class Car extends Vehicle;

Vehicle v =(Vehicle)new Car(); // upcasting

Car c = (Car)new Vehicle(); // downcasting

37
Java and C# in depth

Casting in C#

Upcasting is implicit

 For primitive types, upcasting means assigning a
“smaller” type to a “larger” compatible type

 byte to short to int to long to float to double
(long to float may actually lose precision)

 char to int

 For reference types, upcasting means assigning a
subtype to a supertype, that is:

 a subclass to superclass

 an implementation of an interface X to that interface X

 an interface X to the implementation of an ancestor of X

Downcasting must be explicit

can raise runtime exceptions if it turns out to be impossible

We can use conversions (see before) to mock casts of
reference types outside the inheritance hierarchy.

38
Java and C# in depth

The is and as keywords

 The is keyword performs runtime checking of the dynamic

type of a reference variable

 Syntax: aVariable is aType

 Is the object attached to aVariable compatible with

aType?

 Compatible means of aType or one of its subtypes

 The as keywords performs a conversion; if the conversion

fails, the reference takes value null

 Syntax: aVariable as aType

 If aVariable is aType is the case, it is equivalent to:

 (aType) aVariable

 Otherwise, it is equivalent to null

39
Java and C# in depth

Shadowing

Variables with the same name and different (but overlapping)
scopes:

 A local variable shadows a field with the same name:
use this to access the field

 For fields, only shadowing redefinitions are allowed

 use the new keyword to avoid warnings

 For methods, we’ve seen the two different types of
redefinition

40
Java and C# in depth

The sealed class modifier

 sealed class

 Cannot be inherited from

 sealed method or field

 Can’t have further override (but must itself be an

override)

 Further new redefinitions are still allowed

 To have constant (local) variables: use keyword const

41
Java and C# in depth

Using new after sealed

Using new after sealed is allowed, but it is as if dynamic

dispatching “stops” at the sealed class:

class C { virtual void foo() {} }

class D : C { sealed override void foo() {} }

class E : D { new void foo() {} }

E v1 = E();

C v2 = new D();

v1.foo(); // calls definition in E

v2.foo(); // calls definition in D

C v3 = new E();

v3.foo(); // calls definition in D

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

The object creation process

43
Java and C# in depth

The keyword base

 Enables invocation of a superclass method or

constructor from within an overriding method in a

subclass

 regardless of whether the overriding was with dynamic or

static dispatching

 Can be used to explicitly invoke a constructor of the

superclass (see next example)

44
Java and C# in depth

Chained constructors

Any constructor implicitly starts by executing the
argumentless constructor of the parent class, unless:

 A specific constructor of the superclass is invoked
using base(...)

 Another specific constructor of the same class is
invoked using this(...)

 base(...) or this(...) must occur after the
signature of the constructor, separated by a colon

45
Java and C# in depth

Chained constructors

public class CreatureCard : Card {

 int value;

 public CreatureCard(String name)

 : base(name) {

 //specific initializations

 value = 7;

 }

 public CreatureCard(int value)

 : this(“Big Monster”) {

 //specific initializations

 this.value = value;

 }

}

46
Java and C# in depth

Object creation process

 MyClass obj = new MyClass();

(static members are initialized before)

 new allocates memory for a MyClass instance
(all attributes, including inherited ones)

 initializes all attributes to default values

If constructor references
base (explicitly or by

default):

1. Execute MyClass’s

initializers in their textual

order

2. Recursive call to

constructor of superclass

3. Execute constructor body

If constructor references
this (another constructor

X):

1. Recursive call to other

constructor X

2. Execute rest of originally

called constructor body

47
Java and C# in depth

Object creation process: example

public class Person {

 protected int age = 1;

}

public class Student : Person {

 protected double gpa;

 public Student() {

 age = 6;

 gpa = age/2 + 1.0;

 }

}

Person p1 = new Person(); // age = 1

Person p2 = new Student(); // age = 6, gpa = 4.0

48
Java and C# in depth

Example (closer to intentions in Java)

public class Person {

 protected int age;

 public Person() : this(1) {}

 public Person(int age) { this.age = age; }

}

public class Student : Person {

 protected double gpa;

 public Student() : base(6) {

 gpa = age/2 + 1.0;

 }

}

Person p2 = new Student(); // age = 6, gpa = 4.0

