
Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

C#: introduction to
object-oriented features

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

C# classes and objects

3
Java and C# in depth

Classes and objects

 The basic encapsulation unit is the class

 as in every object-oriented language

 A class is made of a number of features (or members)

 fields (instance variables)

 methods

 Classes and features have different levels of visibility

 Objects are class instances

 and classes are sets of objects

 or blueprints for creating objects

 constructors are special methods to create new objects

 in C#, objects are automatically destroyed when no

longer referenced (garbage collection)

 destructor syntax exists, but to create finalizer methods

4
Java and C# in depth

A simple class example

namespace JavaCsharpInDepth

{

 using System;

 public class MainClass {

 /// <author> John H. Doe </author>

 // ‘Main’ must be capitalized!

 public static void Main(String[] args)

 {

 Game myGame = new Game();

 Console.WriteLine("Game starts!");

 myGame.startGame();

 }

}

5
Java and C# in depth

Main method

In C#, the Main static method can be:

with argument String[] args

without arguments

returning void

returning int

This is different than in Java, where the format of main is fixed

6
Java and C# in depth

Fields (instance variables)

 Relate to a class instance

 Declared within the class curly brackets, outside any

method

 Visible at least within the class scope, within any method

of the class

 Automatically initialized to the default values

 0 or 0.0 for numeric types, ’\0’ for chars, null for

references, false for booleans, the value associated with

0 for enum, a default initialization of members for struct

 Warning: in standard C# parlance, “attributes” denote a

kind of annotation, not fields

7
Java and C# in depth

Methods (instance methods)

 Relate to an instance and are declared within the class

curly brackets

 May have arguments

 Must have return type (possibly void)

 Constructors are “special” (more on this later)

 Also special members in C#:

 properties, delegate, event

 They don’t exist in Java as such

 More on these later

8
Java and C# in depth

Information hiding (a.k.a. access modifiers)

Field and method visibility

 public: visible everywhere

 protected: visible within the class and in subclasses

 internal: visible in the same assembly (basically, the

same compiled CIL file)

 this is the default visibility for top-level types

 internal protected: class, subclasses, and in the

same assembly

 private: visible only within the class

 this is the default visibility for class members

Class visibility

 Classes can use all access modifiers except protected

9
Java and C# in depth

The static modifier

When applied to fields and methods

 Relates to a specific class, not to a class instance

 Shared by every object of a certain class

 Accessed without creating any class object

When applied to a class

 The class must contain only static fields and methods

 The class cannot be instantiated

10
Java and C# in depth

Constructors

 Same name as the class

 No return type (not even void)

 An argumentless constructor is provided by default

if no other constructor is explicitly given

11
Java and C# in depth

Local variables

 Declared within a method’s scope

(denoted by curly brackets)

 Visible only within the method’s scope

 De-allocated at method end

 Not automatically initialized

 Must be initialized before usage

 compiler checks this in a conservative way

12
Java and C# in depth

The keyword this

Refers to the current object

public class Card {

 private int value;

// this is a property

 public int Value {

 get { return value; }

 set { this.value = value; }

 }

}

13
Java and C# in depth

Nested classes

It’s a class defined inside another class

Less expressive than Java’s nested inner classes: in C#, the

nesting controls visibility only, not behavior. Hence:

 There need not be a relation between instances of the

nested class and instances of the containing class

 In general, the nested class cannot access members of

the containing class

 A nested class can’t be anonymous

C#’s delegates replace one of the main usages of Java’s

(anonymous) inner classes: wrappers of operations handling

events

14
Java and C# in depth

Nested classes: example usages

Nested classes may be used to:

 Declare helper classes used by the containing class but

whose details are irrelevant to clients of the containing

class.
 class PersonList : IEnumerable<Person> {

 // implementation of the list

 private class PersonEnumerator :

 IEnumerator<Person> {

 // enumerator customized for Persons

 } // clients only know about the interface

 public IEnumerator<Person> GetEnumerator() {

 return new PersonEnumerator(this);

 }

 Group together a number of tightly related variants of the

containing class and dispatch them to clients with static

methods (as in the factory design pattern).

15
Java and C# in depth

Method overloading

 Using the same name with different argument list

 list can differ in length, argument type, or both

 Example: constructors

 Method signature: name + arguments list

 The return type is not part of the signature

 Tip: overloading may reduce readability: don’t abuse it

16
Java and C# in depth

Method overloading with subtypes

When a method name is overloaded with argument types that

are related by inheritance, method resolution selects the

“closest” available type.

Example: Student is a subtype of Person

 class X {

 // v1

 void foo (Person p) { }

 // v2

 void foo (Student p) { }

 }

X x = new X();

x.foo(new Person()); // Executes v1

x.foo(new Student()); // Executes v2

17
Java and C# in depth

Method overloading with subtypes

When a method name is overloaded with argument types that

are related by inheritance, method resolution selects the

“closest” available type.

Example: Student is a subtype of Person

 class Y { void foo (Person p) { ... } }

 class Z { void foo (Student p) { ... } }

Y y = new Y();

y.foo(new Person()); // OK

y.foo(new Student()); // OK

Z z = new Z();

z.foo(new Person()); // Error

z.foo(new Student()); // OK

18
Java and C# in depth

Operator overloading

 Operator overloading is possible with the operator

keyword

public class Complex {

 private int re, im;

 public Complex(int re, int im) {

 this.re = re;

 this.im = im;

 }

 public static Complex operator +(Complex c1, Complex c2) {

 return new Complex(c1.re + c2.re, c1.im + c2.im);

 }

}

19
Java and C# in depth

Operator overloading (cont’d)

The following operators can be overloaded:

 Unary: + - ! ~ ++ -- true false

 Binary: + - * / % & | ^ << >> == != > < >= <=

If you overload a binary operator +, the += operator is

implicitly overloaded, too

Same for - and -=, * and *=, etc.

Cast operators are also overloaded by defining explicit

conversion operations

At least one argument of the overloaded operator must

belong to the class where the overloading definition occurs

Operators don’t have to be static and can have side effects

but think twice before relying on this feature!

20
Java and C# in depth

Conversion operators

Using the keywords explicit and implicit, we can define

conversion operators

public class Point {

 private double x, y;

 public Point(double x, double y) { ... }

 // explicit conversion: x --> (x, x)

 public static explicit operator Point(double x) {

 return new Point(x, x);

 }

 // implicit conversion: any string --> (0, 0)

 public static implicit operator Point(string s) {

 return new Point(0.0, 0.0);

 }

}

21
Java and C# in depth

Conversion operators

Using the keywords explicit and implicit, we can define

conversion operators

public class Point {

 // explicit conversion: x --> (x, x)

 public static explicit operator Point(double x) {...}

 // implicit conversion: any string --> (0, 0)

 public static implicit operator Point(string s) {...}

}

// Example client

Point p1 = (Point) 42.0; // p1 is (42.0, 42.0)

Point p2 = “abcde”; // p2 is (0.0, 0.0)

22
Java and C# in depth

Method argument passing

C# supports two argument passing semantics

 by value (the default)

 by reference (with the ref keyword)

 the “output parameter semantics” (with the out keyword)

is a variant of the reference semantics

23
Java and C# in depth

By-value argument passing

This is the default (no keywords)

 All the primitive types are passed by value

 Inside the method body we work with a local copy

 We return information using the return keyword

 (Object) Reference types are passed by value too, but:

 What is passed by value is the reference (i.e, an object

address)

 Consequently, a method can change the state of the

object attached to the actual arguments through the

reference

24
Java and C# in depth

By-value argument passing

This is the default (no keywords)

 public void no_swap(int i, int j) {

 int tmp = i;

 i = j; j = tmp;

 }

 ...

 int a, b;

 a = 3 ; b = 5;

 no_swap(a, b);

 // a == 3 && b == 5

25
Java and C# in depth

By-reference argument passing

With the ref keyword

 The method can modify directly the value of the actual

argument in the caller

 The caller must use the ref keyword too

(rationale: it enhances the clarity of what’s going on)

 If a reference type is passed by reference the method

can change the value of the reference itself in the caller

26
Java and C# in depth

By-reference argument passing

With the ref keyword

 public void swap(ref int i, ref int j) {

 int tmp = i;

 i = j; j = tmp;

 }

 ...

 int a, b;

 a = 3 ; b = 5;

 swap(ref a, ref b);

 // a == 5 && b == 3

27
Java and C# in depth

Output arguments

With the out keyword

 This is meant to mark arguments used as “additional

returned values”

 In practice, it achieves a semantics which is very similar
to the ref keyword

 The differences:

 a ref argument must be initialized by the caller

before calling the method

 an out argument must be written by the callee before

the method returns

28
Java and C# in depth

Variable number of arguments

To pass a variable number of arguments to a method:

 Use a collection (including arrays)

 Use a params argument

 public void write(params String[] someStrings) {

 foreach (String aString in someStrings) {

 Console.Write(aString);

 }

 }

 This is just syntactic sugar for an array

 You can pass an array as actual

 The params argument must be the only one of its

kind and the last one in the signature

29
Java and C# in depth

Static constructors

 Similar to “static block initializers” in Java

 No arguments, no return type, no visibility specifiers

 The code within them is executed before the first

instance of the class is created or any static member is

referenced

30
Java and C# in depth

Destructors (finalizer methods)

Any class C may include a destructor method:

 ~C()

which is syntactic sugar for overriding Object.Finalize in

any class.

The destructor method is called just sometime after an object

becomes inaccessible

 The destructor may not be called at all (e.g. if running

process terminates first)

 No guarantee on when a destructor is called during

garbage collection

What’s for: do some final clean-up upon object disposal

 E.g.: resources not properly released beforehand

It is not meant for general release of resources

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Inheritance, polymorphism,
and dynamic dispatching

32
Java and C# in depth

Inheritance

 We can explicitly inherit from one class only

 A class C inheriting from D:
 public class C : D

 Otherwise, every class implicitly inherits from Object

 Visible (i.e., public and protected) inherited fields
and methods are available in the heir

33
Java and C# in depth

Overriding and dynamic dispatching

Overriding: method redefinition in a subclass

Overriding rule:

 overriding method must have the same signature and

return type as in the superclass

 covariant return types are not allowed in C#

 (Something similar can be obtained with genericity)

Unlike Java: static dispatching applies by default.

34
Java and C# in depth

Overriding and dynamic dispatching

There are two types of method redefinition in C#:

 With the new keyword (hiding/shadowing)

 dynamic dispatching does not apply

 if you don’t write new you get a warning but hiding

semantic is assumed

 can change the visibility of the method

 With the override keyword (overriding)

 dynamic dispatching does apply

 only allowed if method is declared as virtual in

parent class

 cannot change the visibility of the method

 An override method implicitly remains virtual until it is

declared as sealed

35
Java and C# in depth

Overriding and dynamic dispatching

public class A { public virtual void Do() { } }

// virtual; hence both types of redefinition

 are possible

public class B : A { public new void Do() { } }

// non-polymorphic redefinition

public class C : A { public override void Do() { } }

// polymorphic redefinition

A x = new B(); x.Do(); // static dispatching

B y = new B(); y.Do(); // static dispatching

A z = new C(); z.Do(); // dynamic dispatching

36
Java and C# in depth

Casting and Polymorphism

Casting is C++/Java/C# jargon to denote polymorphic
assignments.

Let S be an ancestor of T (that is, T →* S)

Upcasting: an object of type T is attached to a reference of
type S

Downcasting: an object of type S is attached to a
reference of type T

class Vehicle;

class Car extends Vehicle;

Vehicle v =(Vehicle)new Car(); // upcasting

Car c = (Car)new Vehicle(); // downcasting

37
Java and C# in depth

Casting in C#

Upcasting is implicit

 For primitive types, upcasting means assigning a
“smaller” type to a “larger” compatible type

 byte to short to int to long to float to double
(long to float may actually lose precision)

 char to int

 For reference types, upcasting means assigning a
subtype to a supertype, that is:

 a subclass to superclass

 an implementation of an interface X to that interface X

 an interface X to the implementation of an ancestor of X

Downcasting must be explicit

can raise runtime exceptions if it turns out to be impossible

We can use conversions (see before) to mock casts of
reference types outside the inheritance hierarchy.

38
Java and C# in depth

The is and as keywords

 The is keyword performs runtime checking of the dynamic

type of a reference variable

 Syntax: aVariable is aType

 Is the object attached to aVariable compatible with

aType?

 Compatible means of aType or one of its subtypes

 The as keywords performs a conversion; if the conversion

fails, the reference takes value null

 Syntax: aVariable as aType

 If aVariable is aType is the case, it is equivalent to:

 (aType) aVariable

 Otherwise, it is equivalent to null

39
Java and C# in depth

Shadowing

Variables with the same name and different (but overlapping)
scopes:

 A local variable shadows a field with the same name:
use this to access the field

 For fields, only shadowing redefinitions are allowed

 use the new keyword to avoid warnings

 For methods, we’ve seen the two different types of
redefinition

40
Java and C# in depth

The sealed class modifier

 sealed class

 Cannot be inherited from

 sealed method or field

 Can’t have further override (but must itself be an

override)

 Further new redefinitions are still allowed

 To have constant (local) variables: use keyword const

41
Java and C# in depth

Using new after sealed

Using new after sealed is allowed, but it is as if dynamic

dispatching “stops” at the sealed class:

class C { virtual void foo() {} }

class D : C { sealed override void foo() {} }

class E : D { new void foo() {} }

E v1 = E();

C v2 = new D();

v1.foo(); // calls definition in E

v2.foo(); // calls definition in D

C v3 = new E();

v3.foo(); // calls definition in D

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

The object creation process

43
Java and C# in depth

The keyword base

 Enables invocation of a superclass method or

constructor from within an overriding method in a

subclass

 regardless of whether the overriding was with dynamic or

static dispatching

 Can be used to explicitly invoke a constructor of the

superclass (see next example)

44
Java and C# in depth

Chained constructors

Any constructor implicitly starts by executing the
argumentless constructor of the parent class, unless:

 A specific constructor of the superclass is invoked
using base(...)

 Another specific constructor of the same class is
invoked using this(...)

 base(...) or this(...) must occur after the
signature of the constructor, separated by a colon

45
Java and C# in depth

Chained constructors

public class CreatureCard : Card {

 int value;

 public CreatureCard(String name)

 : base(name) {

 //specific initializations

 value = 7;

 }

 public CreatureCard(int value)

 : this(“Big Monster”) {

 //specific initializations

 this.value = value;

 }

}

46
Java and C# in depth

Object creation process

 MyClass obj = new MyClass();

(static members are initialized before)

 new allocates memory for a MyClass instance
(all attributes, including inherited ones)

 initializes all attributes to default values

If constructor references
base (explicitly or by

default):

1. Execute MyClass’s

initializers in their textual

order

2. Recursive call to

constructor of superclass

3. Execute constructor body

If constructor references
this (another constructor

X):

1. Recursive call to other

constructor X

2. Execute rest of originally

called constructor body

47
Java and C# in depth

Object creation process: example

public class Person {

 protected int age = 1;

}

public class Student : Person {

 protected double gpa;

 public Student() {

 age = 6;

 gpa = age/2 + 1.0;

 }

}

Person p1 = new Person(); // age = 1

Person p2 = new Student(); // age = 6, gpa = 4.0

48
Java and C# in depth

Example (closer to intentions in Java)

public class Person {

 protected int age;

 public Person() : this(1) {}

 public Person(int age) { this.age = age; }

}

public class Student : Person {

 protected double gpa;

 public Student() : base(6) {

 gpa = age/2 + 1.0;

 }

}

Person p2 = new Student(); // age = 6, gpa = 4.0

