
Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

C#: reflection

2
Java and C# in depth

Outline

 Introductory detour: quines

 Basic reflection

 Built-in features

 Introspection

 Reflective method invocation

 Reflective code-generation

 What’s reflection good for

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Introductory detour: quines

4
Java and C# in depth

An introductory detour: quines

A quine is a program that outputs its own source code

 named after the philosopher Willard Van Orman Quine

and his studies of self-reference

 this is an example of reflection

In pseudocode, the basic algorithm for a quine is:

 Print the following sentence twice, the second time between quotes.

 “Print the following sentence twice, the second time between quotes.”

 Can you write a Quine in C#?

5
Java and C# in depth

C# quine

Adapted for C# from a Java quine by Bertram Felgenhauer

class S{public static void

Main(string[]a){string s="class S{public

static void Main(string[]a){string

s=;System.Console.Write(s.Substring(0,52)+(c

har)34+s+(char)34+s.Substring(52));}}";Syste

m.Console.Write(s.Substring(0,52)+(char)34+s

+(char)34+s.Substring(52));}}

6
Java and C# in depth

Reflection in C#

 The CLR loader loads assemblies into application domains

(boundaries around objects with the same application

scope)

 Assemblies contain modules which contain types which

contain members

 Reflection provides objects encapsulating assemblies,

modules and types. You can use it to e.g.:

 Access attributes (program’s metadata)

 Examine and create types inside assemblies

 Build new types at runtime

 Perform late binding: access methods and types created

at runtime

7
Java and C# in depth

Normal vs. reflective at a glance

Create an instance of MyClass and invoke the method

myMethod on the instance

 normal C# programming

MyClass o = new MyClass(); o.myMethod();

 with reflection

Type t = Type.GetType(”Reflection101.MyClass");

object o = Activator.CreateInstance(t);

t.InvokeMember("myMethod",

 BindingFlags.InvokeMethod, null, o, null);

// args: method name, binding bitmask,

bindings, target, list of actual arguments

C#’s reflection operates at assembly level

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Basic mechanisms for reflection

9
Java and C# in depth

Built-in reflection

Operator is checks for a type

 example: overriding Equals()

 public bool Equals(object obj){

 // Querying for a type at runtime

 if (!(obj is IntendedType) {

 return false;

 }

Operator typeof returns a Type object (see next slides)

10
Java and C# in depth

Getting a Type object

System.Type is the entry point

 provides meta-info for assemblies, modules, and types

 obtainable from an object reference or a value type

Type t1 = myObj.GetType();

int i = 7;

Type t2 = i.GetType();

 obtainable from a class name

Type t3 = typeof(Namesp.SomeClassName);

Type t4 =

Type.GetType(“Namesp.SomeClassName”);

11
Java and C# in depth

Getting info from a Type object

 Members: MemberInfo[] GetMembers()

 Constructors: ConstructorInfo[] GetConstructors()

 Fields: FieldInfo[] GetFields()

 Methods: MethodInfo[] GetMethods()

 Properties: PropertyInfo[] GetProperties()

 Attributes: IList<CustomAttributeData>
GetCustomAttributeData()

 Events: EventsInfo[] GetEvents()

 Base type: Type BaseType

 Generic arguments: Type[] GetGenericArguments()

There are similar variants of most of the methods above to get

information about a specific item, e.g.:

MethodInfo GetMethod(“aMethodName”)

12
Java and C# in depth

Introspecting non-public members

The getters in Type objects have variants that filter out

members according to certain “binding flags”.
 FieldInfo[] GetFields(BindingFlags b)

 MethodInfo[] GetMethods(BindingFlags b)

 ConstructorInfo[]

 GetConstructors(BindingFlags b)

Private members can be retrieved with these flags.

 For instance, to get all non-public methods declared

in Type t:

t.GetMethods(BindingFlags.Instance

 | BindingFlags.NonPublic);

13
Java and C# in depth

BindingFlags

An enum specifying flags that control binding and invocation

done via reflection. Examples:

 Instance instance members will be included

 NonPublic non-public members will be included

 InvokeMethod a method will be invoked

 SetField a field will be set

 Static static members will be included

 ...

14
Java and C# in depth

Combining flags with pipes

Multiple values can be combined with the logic pipe |

operator (“or” for bitmasks), e.g.

BindingFlags.Public | BindingFlags.SetField

specifies the operation of setting the value of a field,

provided it is public

The pipe operator is equivalent to a logical “and” on the

properties we want to add

This has to do with the values associated to the enum, which

are powers of 2 (see next page)

15
Java and C# in depth

The bits within

Suppose:

 [0 1 0 0 0 0] encodes A

 [0 0 0 1 0 0] encodes B

Then:

 [0 1 0 0 0 0] | [0 0 0 1 0 0] == [0 1 0 1 0 0]

 encodes A | B

It’s like adding items to a bucket: the ones just shift to the left

(they represent powers of 2) and they are never stacked on

top of each other. The “bucket” is the result of the or
operation

16
Java and C# in depth

Combining flags with ampersands

Suppose:

 [0 1 0 0 0 0] | [0 0 0 1 0 0] == [0 1 0 1 0 0]

 that is, A | B is encoded by C (the bucket)

What we actually do in the code is to check:

if ((theBucket & NonPublic) == NonPublic){...}

We check that A is in the bucket by computing C & A :

[0 1 0 1 0 0] & [0 1 0 0 0 0] == [0 1 0 0 0 0] == A

17
Java and C# in depth

Object creation with reflection

// s contains the name of the created class

// it may come from any runtime input

string s = GetClassNameFromInput();

// set the class name here

Type t = Type.GetType(s);

// create an Object

Object o = System.Activator.CreateInstance(t);

// cast if we know the class name statically

MyCls o =

(MyCls)(System.Activator.CreateInstance(t));

18
Java and C# in depth

Method invocation with reflection

Let’s use reflection to invoke private method “SetInfo” on

object o of class c; the method has signature (string, int)

// get a Type object from o

 Type t = o.GetType();

// set the binding flags for a private method

 BindingFlags bf = BindingFlags.InvokeMethod

 | BindingFlags.NonPublic;

// set the actual value of the arguments

 Object[] a = {"aVal", 4};

// invoke the method on object o (of class c)

 t.InvokeMember("SetInfo", bf, null, o, a);

19
Java and C# in depth

Type.InvokeMember method

Object InvokeMember(string name, BindingFlags

bitmask, Binder binder, Object target, Object[]

args);

name: method name

bitmask: bitmask to specify how to conduct the search

binder: enables binding (e.g. selection of an overloaded method)

target: object on which to invoke the selected member

args: array containing the args to pass to the member to invoke

t.InvokeMember("SetInfo", bf, null, o, a);

passing null for the binder argument selects the

DefaultBinder property, which applies to most common

cases. If you need different behavior, inherit from Binder and

pass an instance of that instead of null

20
Java and C# in depth

Reflection and exceptions

Reflection may trigger run-time exceptions such as:

 From System

 TypeLoadException

 UnauthorizedAccessException

 MissingMemberException

 MissingFieldException

 MissingMethodException

 From System.Reflection

 TargetException

 TargetInvocationException

 TargetParameterCountException

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Reflective code-generation

22
Java and C# in depth

Reflective code generation

 We may need to change the behavior of a method at

runtime

 Code generation is a solution

 You can use the services collected in the
System.Reflection.Emit namespace to edit directly

CIL code

 Class-to-class transformation is another example of code

generation (similarly to what we have seen in Java)

23
Java and C# in depth

Steps to realize a dynamic HelloWorld

1. Create a dynamic assembly and a module

2. Create a new type for the Main method

3. Create the Main method

4. Generate the Intermediate Language (IL) for Main

5. Create a Type object for the result of the previous process

6. Invoke the Main

7. Set the entry point for the application

8. Save the executable file

The sample code in the following pages is by Joel Pobar (slightly adapted):

http://blogs.msdn.com/b/joelpob/archive/2004/01/21/61411.aspx

24
Java and C# in depth

Code using System.Reflection.Emit (1/3)

using System; using System.Reflection;

using System.Reflection.Emit; using System.Threading;

namespace EmitHelloWorld

class MainClass {

 public static void main(String[] args) {

 //step 1: create a dynamic assembly and a module

 AssemblyName assemblyName = new AssemblyName();

 assemblyName.Name = "HelloWorld";

 AssemblyBuilder assemblyBuilder =

Thread.GetDomain().DefineDynamicAssembly(assemblyName,

AssemblyBuilderAccess.RunAndSave);

 ModuleBuilder module =

 assemblyBuilder.DefineDynamicModule("HelloWorld.exe");

25
Java and C# in depth

Code using System.Reflection.Emit (2/3)

// step 2: create a new type for the Main method

TypeBuilder typeBuilder = module.DefineType("HelloWorldType",

TypeAttributes.Public | TypeAttributes.Class)

// step 3: create the Main method

MethodBuilder methodbuilder = typeBuilder.DefineMethod("Main",

MethodAttributes.HideBySig

| MethodAttributes.Static | MethodAttributes.Public, typeof(

void), new Type[]{typeof(string[])});

// step 4: generate the IL for Main

ILGenerator ilGenerator = methodbuilder.GetILGenerator();

ilGenerator.EmitWriteLine("hello, world");

ilGenerator.Emit(OpCodes.Ret);

26
Java and C# in depth

Code using System.Reflection.Emit (3/3)

// step 5: create a Type object for the result of the previous

process

Type helloType = typeBuilder.CreateType();

// step 6: invoke the Main method

helloType.GetMethod("Main").Invoke(null, new string[] {null});

// step 7: set the entry point for the application

assemblyBuilder.SetEntryPoint

(methodbuilder, PEFileKinds.ConsoleApplication);

// step 8: Save the executable file

assemblyBuilder.Save("HelloWorld.exe");

}

}

}

27
Java and C# in depth

What’s reflection good for

 Class browsers

 Object inspectors

 Code analysis tools

 Testing applications

 Enterprise server code

28
Java and C# in depth

The reflection trade-off

 Powerful reflection mechanisms increase flexibility

 Powerful solutions to specific problems

 Very useful for infrastructure code

 Flexibility comes at a price

 Performance penalty

 Security restrictions (reflective code may not run in

certain restricted environments)

 Encapsulation violation

 More code, more difficult to understand

29
Java and C# in depth

Performance overhead with reflection

 Class construction overhead

 One-time cost, usually negligible

 Execution overhead

 A reflexive call is typically slower than a normal call

 Can be significant if the application does heavy usage of

reflection

 Bottom line: choose reflection when and where is the right

design choice

