
Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Concurrency: a crash course

2
Java and C# in depth

Concurrent computing

Applications designed as a collection of computational units

that may execute in parallel

 logical vs. physical parallelism

 parallel vs. distributed

What’s concurrency good for?

 improved user experience

 applications carry out several tasks at once

 better usage of resources

 interactive computing

 performance

 clusters and multi-core CPUs

3
Java and C# in depth

Processes and threads

Concurrency can have two levels of granularity, according to

what is the unit of parallel computation

 Processes

 the abstraction of a running program

 includes program counter, registers, variables, ...

 different processes have independent address spaces

 Threads

 an independent thread of execution within a process

 a “lightweight process”

 threads within the same process share the address

space

This brief introduction refers to threads, but the same notions

apply to processes as well

4
Java and C# in depth

Coordination of threads

Threads need to coordinate when accessing the shared

memory to avoid race conditions

 inconsistent access to shared resources

-- shared memory

s: shared INTEGER

invariant s ≥ 0 end

-- thread A -- thread B

if s > 0 then s := 0

 s := s – 1

end

What happens if B executes just after A has tested
the if condition (before the decrement)?

5
Java and C# in depth

Coordination of threads

Coordination must guarantee mutual exclusion when

accessing shared resources

 a section of code that accesses some shared resource is

called critical region

 at any given time, no more than one thread should be in

the critical region

-- A’s crit. reg. -- B’s crit. reg.

if s > 0 then s := 0

 s := s – 1

end

6
Java and C# in depth

Coordination mechanisms for shared memory

A few coordination mechanisms, roughly in increasing level of

abstraction

We won’t specifically discuss how to use synchronization

mechanisms to avoid problems such as deadlocks,

starvation, livelocks, etc.

Locks

 a lock is a variable (or an object) that is owned by no

more than one thread at a time

 locks can be acquired and released

 guarding with locks the access to critical regions is a way

to ensure mutual exclusion

7
Java and C# in depth

Coordination mechanisms for shared memory

Mutexes

 a way to implement locks

 a mutex is a binary variable accessed with primitives
lock and unlock

 lock: if the mutex is unlocked acquire the lock, otherwise

suspend execution

 unlock : release the lock and resume all suspended

executions

 the lock and unlock operations are guaranteed to be

non-interruptible

8
Java and C# in depth

Mutex: example

-- shared memory

s: shared INTEGER

invariant s ≥ 0 end

-- mutex

m: MUTEX

-- thread A -- thread B

m.lock m.lock

if s > 0 then s := 0

 s := s – 1 m.unlock

end

m.unlock

9
Java and C# in depth

Coordination mechanisms for shared memory

Semaphores

 generalization of mutexes

 an integer variable that can be atomically incremented
(up) and decremented, if its value is positive (down)

 invented by Dijkstra (1965)

 support more complex waiting conditions than mutexes,

for example involving multiple resources

10
Java and C# in depth

Coordination mechanisms for shared memory

Monitors

 a collection of routines (methods) that are guaranteed

mutually exclusive access to shared resources

 no more than one routine in the monitor is active at once

 in other words: only one thread can be active in a monitor

at any instant

 threads within the same monitor coordinate with signals

 a thread may not be able to proceed because it needs
some other thread’s work. Then it can wait and yield

control to other threads.

 when a thread performs an action that some other threads
may be waiting for it can signal it and wake them up

(interrupting their waiting)

 invented by Brinch Hansen (1973) and Hoare (1974)

11
Java and C# in depth

Monitors: example

monitor mon

 s: INTEGER

 invariant s ≥ 0 end

 decrement do

 if s > 0 then s := s – 1 end

 end

 set_zero do

 s := 0

 end

end -- monitor

