
Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Network programming

2
Java and C# in depth

Concurrency and distribution

The notions of concurrency and distribution are logically

distinct:

 concurrency refers to time (parallel execution)

 distribution refers to space (remote execution)

In practice, programming distributed systems often requires to

deal with concurrency too (remote location implies possible

parallelism).

In this presentation, we focus on models of network

communication that are central to distributed system

programming.

3
Java and C# in depth

From concurrent to distributed systems

Multiprocessor Multicomputer Distributed

system

Node

configuration

CPU CPU, RAM, net

interface

Complete

computer

Node peripherals All shared Shared excluding

maybe disks

Full set per node

Location Same rack Same room Possibly worldwide

Internode

communication

Shared RAM Dedicated

interconnect

Traditional network

Operating

systems

One, shared Multiple, same Possibly all

different

File systems One, shared One, shared Each node has

own

Administration One organization One organization Many organizations

From: A. S. Tanenbaum, Modern operating systems, 3rd edition, 2009.

4
Java and C# in depth

Models of distributed systems

There are many different models of distributed computing

 Client/server (e.g., TCP)

 Object-oriented middlewares (e.g., RMI, CORBA)

 Web services

 Document-based (e.g., the WWW)

 File-system based (e.g., NFS, Samba)

 Tuple spaces (e.g., Linda)

 Publish/subscribe (e.g., IBM Websphere MQ)

 Map/reduce (e.g., Hadoop)

 Grids

5
Java and C# in depth

Challenges of network programming

 Heterogeneity

 Openness

 Security

 Scalability and load balancing

 Failure handling (partial failures)

 Concurrency

 Programming abstractions (transparency)
 (list adapted from G. Cugola)

A distributed system is a system where I can’t get my work done

because a computer has failed that I’ve never even heard of.

 -- Leslie Lamport

6
Java and C# in depth

Outline

 Client/server programming with sockets

 TCP

 UDP

 IP Multicast

 The Remote Procedure Call (RPC) model

 Java’s RMI

 C# (and .NET)’s WCF: remote objects as web services

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Client/server programming
with TCP/IP sockets

8
Java and C# in depth

The Internet protocol stack

The IP protocol belongs to a hierarchy of communication

protocols commonly known as TCP/IP stack

Physical

Link

Internet

Transport

Application HTTP, FTP, DNS, ...

TCP & UDP

IP, ICMP, ...

MAC (Ethernet)

9
Java and C# in depth

TCP and UDP

 End-to-end communication between nodes

 Each node is identified by an IP address and a port number

TCP (Transmission Control Protocol) is the main connection-

oriented (also: stream) internet protocol

 handshaking: a stable connection is established

 packet order is reconstructed

 reliable packet delivery (best effort)

UDP (User Datagram Protocol) is the main connectionless

(also: datagram) internet protocol

 stateless

 no acks, no retransmission

 unreliable but simple

10
Java and C# in depth

Socket communication

 Sockets are abstractions for distributed inter-process

communication

 Each socket instance provides a logical end point for a

communication flow

 The original socket API design dates back to Unix BSD

(circa 1982)

Sockets can support different communication protocols.

We focus on Internet sockets, based on the IP protocol

11
Java and C# in depth

Stream (TCP) socket communication

create
socket

connect

send

receive

close

create
socket

accept

receive

send

close

c

l

i

e

n

t

s

e

r

v

e

r

12
Java and C# in depth

Datagram (UDP) socket communication

create
socket

create
datagram

send

close

create
socket

create
datagram

receive

close

s

e

n

d

e

r

r

e

c

e

i

v

e

r

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Sockets in Java

14
Java and C# in depth

Stream sockets API in Java (java.net)

class Socket

 On client side: used to connect to server

 On server side: used to manage a connection with a single

client

class ServerSocket

 Only on server side: used to listen to any number of client

connection attempts

15
Java and C# in depth

Main API of class Socket

 new Socket(String host, int port)

Connect to host with name host (transparent name

resolution) on port port

 InputStream getInputStream()

Return a stream to read from the attached connection

 OutputStream getOutputStream()

Return a stream to write to the attached connection

 void close()

Close the attached connection (implicit with try with
resources)

16
Java and C# in depth

Main API of class ServerSocket

 new ServerSocket(int port)

Create a socket that listens on port port

 Socket accept()

Accept a connection (on the port where it’s listening) and
return a Socket object to communicate on that connection.

(Block until a connection is established. You will use

threading to implement non-blocking behavior.)

 void close()

Dispose the server socket (implicit with try with resources)

17
Java and C# in depth

TCP Client in Java: example (1/2)

String host = “localhost”;

int port = 100;

try (

 // Create the socket and connect

 Socket s = new Socket(host, port);

 // Setup output stream to send data to server

 PrintWriter out = new

 PrintWriter(s.getOutputStream(), true);

 // Setup input stream to receive data from server

 BufferedReader in = new BufferedReader(new

 InputStreamReader(s.getInputStream()));

) {

 System.out.println(“Client: connected”);

18
Java and C# in depth

TCP Client in Java: example (2/2)

try (/* See previous slide */)

 {

 System.out.println(“Client: connected”);

 // Send a series of messages

 out.println(“First message”);

 out.println(“Second message”);

 out.println(“Last message”);

 // Receive one message

 String msg = in.readLine();

 if (msg != null)

 System.out.println(“Client receives: “ + msg);

 } catch (IOException e) {

 System.err.println(“Connection problem”);

 }

19
Java and C# in depth

TCP Server in Java: example (1/2)

int port = 100;

try (// Create the server socket

 ServerSocket servSock = new ServerSocket(port);

) {

 // Accept consecutive client connections

 while (true) {

 try (// Accept a client

 Socket s = servSock.accept();

 // Output stream to send data to client

 PrintWriter out = new

 PrintWriter(s.getOutputStream(), true);

 // Input stream to receive data from client

 BufferedReader in = new BufferedReader(new

 InputStreamReader(s.getInputStream()));

) {

 System.out.println(“Server: accepted”);

20
Java and C# in depth

TCP Server in Java: example (2/2)

try (/* See previous slide */) {

 // Read three messages from client

 for (int i = 0; i < 3; i++) {

 String msg = in.readLine();

 System.out.println(“Server received: “ + msg);

 }

 // Send closing message to client

 out.println(“All done.”);

} catch (IOException e) {

 System.err.println(“Accept problem”);

 }

} // while (true)

} // outermost try (...)

 catch (IOException e) {

 System.err.println(“Setup problem”);

}

do {

 msg = in.readLine();

 if (msg != null) {

 System.out.println("Server receives:

" + msg);

 // Send back message to client

 out.println(msg);

 }

} while (msg != null);

 // Accept consecutive client connections

 while (true) {

 try (// Accept a client

 Socket s = servSock.accept();

 // Output stream to send data to client

 PrintWriter out = new

 PrintWriter(s.getOutputStream(), true);

 // Input stream to receive data from client

 BufferedReader in = new BufferedReader(new

 InputStreamReader(s.getInputStream()));

) {

 System.out.println(“Server: accepted”);

21
Java and C# in depth

Datagram sockets API in Java (java.net)

class DatagramSocket

 To send datagrams to their recipients using UDP

 To receive datagrams using UDP while listening on a certain

port

class DatagramPacket

 Wrap a message (payload) and its recipient (address & port)

22
Java and C# in depth

Main API of class DatagramSocket

 new DatagramSocket()

Setup a socket to send datagrams (binding on any port)

 new DatagramSocket(int port)

Setup a socket to receive datagrams on port port

 void send(DatagramPacket p)

Send datagram p through socket

 void receive(DatagramPacket p)

Receive datagram through socket and store it in p.

(Block until a datagram is received.)

 void close()

Tear down socket

23
Java and C# in depth

Main API of class DatagramPacket

 new DatagramPacket(byte[] b, int len)

Setup a packet to receive datagrams of length len

 new DatagramPacket(byte[] b, int len,

 InetAddress a, int port)

Setup a packet to send datagram with payload b of length

len to address a on port port

 byte[] getData()

Datagram payload as byte array

 int getLength()

Datagram length

 int getOffset()

Datagram offset

24
Java and C# in depth

UDP sender in Java: example

InetAddress addr = InetAddress.getByName(“localhost”);

int port = 100;

String msg = “That’s all folks.”

// Create socket

DatagramSocket s = new DatagramSocket();

// Create datagram

DatagramPacket p = new

 DatagramPacket(msg.getBytes(), msg.length(),

 addr, port);

// Send datagram through socket

s.send(p);

// The socket could be reused for other datagrams

s.close();

25
Java and C# in depth

UDP receiver in Java: example

int port = 100;

// Create socket

DatagramSocket s = new DatagramSocket(port);

// Create datagram (to store received message)

DatagramPacket p = new DatagramPacket(new byte[17], 17);

// Receive datagram

s.receive(p);

// Convert payload to string

String msg = new

 String(p.getData(), p.getOffset(), p.getLength());

System.out.println(“Received message: " + msg);

// The socket could reused for other datagrams

s.close();

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Sockets in C#

27
Java and C# in depth

Stream sockets API in C# (System.Net)

class Socket

 On client side: used to connect to server

 On server side: used to manage a connection with a single

client

 More flexible than Java’s: supports all kinds of sockets (also

datagram and non-Internet)

 More complicated than Java’s: more verbose client code,

different alternative usages for the same functionality.

class TcpListener

 Only on server side: used to listen to any number of client

connection attempts

 Encapsulate functionalities also available through Socket

28
Java and C# in depth

Main API of class Socket

 new Socket(AddressFamily.InterNetwork,

SocketType.Stream, ProtocolType.Tcp)

Initialize socket for IPv4 TCP stream communication.

 void Connect(string host, int port)

Connect to host with name host (transparent name

resolution) on port port

 int Receive(byte[] buf)

Receive message in buf and return number of bytes

received

 void Send(byte[] buf)

Send message buf (encoded as byte array)

 void Close()

Close the attached connection

29
Java and C# in depth

Main API of class TcpListener

 new TcpListener(IPAddress addr, int port)

Create a socket that listens at address addr on port port

 void Start()

Begin listening on socket

 Socket AcceptSocket()

Accept a connection (where it’s listening) and return a
Socket object to communicate on that connection. (Block

until a connection is established. Use threading or Async

method variants to have non-blocking behavior.)

 void Stop()

Dispose the server socket.

30
Java and C# in depth

TCP Client in C#: example (1/2)

string host = “localhost”;

int port = 100;

try {

 // Create IPv4 stream TCP socket

 Socket s = new Socket(AddressFamily.InterNetwork,

 SocketType.Stream, ProtocolType.Tcp);

 // Connect to server

 s.Connect(host, port);

 Console.WriteLine(“Client: connected”);

 // Prepare first payload

 byte[] msg = Encoding.ASCII.GetBytes(

 “First message”);

31
Java and C# in depth

TCP Client in C#: example (2/2)

 // Send first message

 s.Send(msg);

 // Omitted: prepare and send 2nd and 3rd messages

 ...

 // Receive one message

 byte[] buf = new byte[128];

 int recv = s.Receive(buf);

 if (recv > 0)

 Console.WriteLine(“Client receives: “ +

 Encoding.ASCII.GetString(buf));

 // Dispose socket (better: in finally)

 s.Close();

 } catch (SocketException) {

 Console.Error.WriteLine(“Connection problem”);

 }

32
Java and C# in depth

TCP Server in C#: example (1/2)

int port = 100;

IPAddress addr = IPAddress.Parse("127.0.0.1");

try {

 // Create TCP listener socket

 TcpListener servSock = new TcpListener(addr, port);

 // Start listening

 servSock.Start()

 // Accept consecutive client connections

 while (true) {

 try { // Accept a client

 Socket s = servSock.AcceptSocket();

33
Java and C# in depth

TCP Server in C#: example (2/2)

 // Read three messages from client

 for (int i = 0; i < 3; i++) {

 byte[] buf = new byte[128];

 int recv = s.Receive(buf);

 Console.WriteLine(“Server received: “ +

 Encoding.ASCII.GetString(buf));

 }

 // Send closing message to client

 s.Send(Encoding.ASCII.GetBytes(“All done.”));

} catch (SocketException) {

 Console.Error.WriteLine(“Accept problem”);

 }

} // while (true)

} // outermost try (...)

// Omitted: dispose resources, catch exceptions

...

34
Java and C# in depth

Datagram sockets API in C# (System.Net)

class Socket

 To send datagrams to their recipients using UDP

 To receive datagrams using UDP while listening on a certain

port

class UdpClient

 Only on receiver side: used to listen to and receive

datagrams

 Encapsulate functionalities also available through Socket

class IPEndPoint

 Encapsulate IP address and port information

 Used to initialize UdpClient

35
Java and C# in depth

API of class Socket for UDP

 new Socket(AddressFamily.InterNetwork,

SocketType.Dgram, ProtocolType.Udp)

Initialize socket for IPv4 UDP datagram communication.

 void SendTo(byte[] buf, IPEndPoint ep)

Send message buf (encoded as byte array) to remote ep.

36
Java and C# in depth

Main API of class UdpClient

 new UdpClient(int port)

Create a socket that listens on port port

 byte[] Receive(ref IPEndPoint ep)

Receive datagram through socket and return it.
Store in ep information about the remote sender.

(Block until a datagram is received.)

 void Close()

Tear down listener

37
Java and C# in depth

Main API of class IPEndPoint

 new IPEndPoint(IPAddress.Any, 0);

Setup a placeholder endpoint (“any” address), to be

overwritten when receiving datagrams.

 new IPEndPoint(IPAddress addr, int port);

Setup an endpoint corresponding to addr and port, to

send datagrams to.

To get an IPAddress from symbolic host name:

Dns.GetHostEntry(host).AddressList[0];

Note that GetHostEntry returns in general several IP

addresses for a host; here we pick the first one.

38
Java and C# in depth

UDP sender in C#: example

IPAddress addr =

 Dns.GetHostEntry(“localhost”).AddressList[0];

int port = 100;

byte[] buf =

 Encoding.ASCII.GetBytes(“That’s all folks.”);

// Create socket

Socket s = new Socket(AddressFamily.InterNetwork,

 SocketType.Dgram, ProtocolType.Udp);

// Create destination endpoint

IPEndPoint endpoint = new IPEndPoint(addr, port);

// Send datagram through socket to endpoint

s.SendTo(buf, endpoint);

// The socket could be reused for other datagrams

s.Close();

39
Java and C# in depth

UDP receiver in C#: example

int port = 100;

// Create UDP listener socket

UdpClient s = new UdpClient(port);

// Create placeholder endpoint (to store sender info)

IPEndPoint ep = new IPEndPoint(IPAddress.Any, 0);

// Receive datagram

byte[] buf = s.Receive(ref ep);

// Convert payload to string

string msg =

 Encoding.ASCII.GetString(buf, 0, buf.Length);

Console.WriteLine(“Received message: " + msg);

// The socket could reused for other datagrams

s.Close();

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

The Remote Procedure
Call (RPC) Model

41
Java and C# in depth

Remote Procedure Call

Client/server communication (using TCP or other protocols)

takes place at a lower level of abstraction than application

programming. Thus, programming applications with a lot of

communication is complex, as it requires to deal with I/O

primitives directly.

The Remote Procedure Call (RPC) mechanism raises the level

of abstraction by transparently supporting procedure calls that

are executed on remote processes. Thus, application

programmers write usual code, whereas the RPC

infrastructures takes care of distribution.

First implementation for Sun Unix in the early 1980s. That

model is still widely used over the Internet (ONC RPC).

42
Java and C# in depth

RPC Communication

application

middleware

network
services

application

middleware

network
services

call t.op()

RPC call

I/O call

network communication

local call

call result

43
Java and C# in depth

RPC: interfaces and abstraction

An interface between the application code and the operations

that can be invoked remotely ensures that the RPC

mechanism is transparent and doesn’t break the abstraction.

 An Interface Definition Language (IDL) is used to define an

RPC interface: signatures of available operations

 Stubs for every node are automatically generated from IDL

definitions:

 map IDL onto the application language

 Different nodes may even use different runtimes and

languages, as long as the middleware takes care of

conversions

 handle serialization and marshaling (data representation

conversion) to make parameter passing transparent

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

RPC in Java: Remote
Method Invocation (RMI)

45
Java and C# in depth

Remote Method Invocation in Java

Remote Method Invocation (RMI) is Java’s standard

mechanism for RPC

 Limited to communication between applications written in

Java or other languages that run on the JVM

 Since RMI is essentially mono-language, its IDL reuses
Java’s interface mechanism

 Addresses specific requirements of the object-oriented

model (semantics of argument passing, object creation,

polymorphism)

RMI offers a limited set of basic functionalities. The Java

framework offers more advanced services (built on top of RMI)

in other components such as Jini.

46
Java and C# in depth

RMI interfaces and implementations

A remote object is an object that is accessible (whose methods

are callable) remotely.

Remote objects are:

 instances of classes implementing an interface that

extends java.rmi.Remote and

 exported (i.e., registered with the middleware) by calling
UnicastRemoteObject.exportObject

 exporting is implicit if the remote object’s class extends
java.rmi.server.UnicastRemoteObject

Methods of remote objects:

 may throw java.rmi.RemoteException

 have arguments of serializable or remote class types

47
Java and C# in depth

RMI interfaces: example

import java.rmi.*;

public interface RCellInterface extends Remote {

 // Operations

 public void setVal(int val)

 throws RemoteException;

 public int getVal()

 throws RemoteException;

 // argument of remote class type

 public void setOther(RCellInterface rc)

 throws RemoteException;

}

48
Java and C# in depth

RMI implementation: example

public class RCell

 extends UnicastRemoteObject implements RCellInterface {

 public RCell() throws RemoteException {

 setVal(1);

 // implicitly exported because

 // extending UnicastRemoteObject

 }

 // omitted setVal and getVal: setter and getter

 // Set rc to -value of this

 public void setOther(RCellInterface rc)

 throws RemoteException {

 rc.setVal(-getVal());

 }

}

49
Java and C# in depth

RMI remote objects, references, proxies

Remote objects are accessed in Java applications through

remote references (references pointing to remote objects)

Remote references are passed around just like local

references (passed as arguments, returned as results)

The application code cannot distinguish between references to

local and to remote objects

 with the exception of argument passing: see later

In the runtime environment, remote references point to

proxy objects for the remote objects

 proxies are generated automatically as
instances of RemoteStub

50
Java and C# in depth

The RMI registry
Using the rmiregistry service, RMI server applications can

offer remote references to clients

 The registry maps symbolic names to remote objects hosted

by the server

 The registry runs local to the server, and only server-side

applications can register objects in it

Clients can query the registry and obtain remote references
through class java.rmi.Naming

 Remote lookup(String name)

Return a remote reference for symbolic name name

 String[] list(String name)

List all symbolic names registered on registry name

 void bind(String name, Remote obj)

Register remote object obj under symbolic name

51
Java and C# in depth

RMI server with registry: example

A server that registers a remote object of class RCell under

symbolic name RCinst:

try {

 // Start registry

 // (alternatively from command line)

 LocateRegistry.createRegistry(port);

 // Create instance of RCell

 RCellInterface rc = new RCell();

 // Register rc under name "RCinst"

 Naming.rebind("//localhost:" + port +

 "/RCinst", rc);

}

 catch (RemoteException e) { ... }

52
Java and C# in depth

RMI argument passing semantics

In a remote call o.m(a), where o is a remote object:

 if a is a reference to a remote object, the actual

argument is passed by reference (usual Java semantics)

 if a is a reference to a local (plain Java) object, the actual

argument is passed by copy

 the object pointed by a is deep-copied as in serialization

 m works on the copy only, the original object is unchanged

The same applies to returned values (local objects are copied)

Advantages: simpler implementation and less communication

Disadvantages: breaks abstraction (distribution is not

completely hidden), still not very flexible

53
Java and C# in depth

RMI client application: example

A client that gets a remote object under symbolic name
RCinst and calls setOther() on it.

try {

 // Get access to registry

 LocateRegistry.getRegistry(host, port);

 // Query for remote instance of RCell

 RCellInterface rc = (RCellInterface)

 Naming.lookup("//" + host + ":" + port +

 "/RCinst");

 // Remote call with remote argument

 rc.setOther(rc); // Just like a local call!

 // If rc stored 1 before the call, it now stores...

 ...

54
Java and C# in depth

Remote call with local argument: example

public interface RCellInterface extends Remote {

 // argument of serializable class type

 public void setOther(LCell c)

 throws RemoteException;

 // LCell is like RCell but without remoting

}

In the client:
LCell c = new LCell(); c.setVal(2);

// Remote call with local argument

rc.setOther(c); // Argument c passed by copy!

// c stored 2 before the call, and it now stores...

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

RPC in C#: Services of
Windows Communication

Foundation (WCF)

56
Java and C# in depth

Remote objects in C# using services

The Windows Communication Foundation (WCF) is .NET’s

framework for distribution.

WCF follows the (web) service model of distribution.

Web services are:

 A software system designed to support interoperable

machine to machine interaction over a network -- W3C

 An API accessible over a network, executed on a remote

system hosting the requested service

57
Java and C# in depth

Services and distributed objects

Concretely, web services provide features similar to distributed

objects and middleware, with some important differences:

 they target heterogeneous languages and platforms,

and high decoupling

 they rely on a specific set of standard protocols

 WSDL, UDDI, SOAP

 they support higher-level models than RPC

 SOA and RESTFUL

We’re now presenting the essential WCF API for services that

provides similar functionalities as RPC

58
Java and C# in depth

A high-level view of service technology

Source: http://en.wikipedia.org/wiki/Web_services

Client

endpoint

Server

endpoint

1

3

2

59
Java and C# in depth

Fundamental concepts of WCF
Endpoint: access point where services are made available.

Each endpoint is identified by:

 an address (typically a URL), which identifies the access

point

 a binding, which specifies the underlying communication

protocol to be used to access the service

A specific service available at a endpoint is further identified by:

 a contract, which defines the interface of the service (and

possibly other elements of its specification, such as

functional or performance guarantees)

 typically distinct data contract and operation contract

(arguments passed by copy)

 In C# defined using attributes and interface

60
Java and C# in depth

Data contract: example

An abstract cell that consists of an integer value.

using System.Runtime.Serialization;

[KnownType(typeof(LCell))]

[DataContract]

public abstract class AbstractCell {

 [DataMember]

 public abstract int Val { get; set; }

}

61
Java and C# in depth

Data contract implementation

A concrete implementation of the data contracts of
AbstractCell

[DataContract]

public class LCell : AbstractCell {

 protected int val;

 public LCell() { val = 7; }

 public override int Val {

 get { return val; }

 set { val = value; }

 }

}

62
Java and C# in depth

Operation contract: example

The interface of operations available as a service.

using System.ServiceModel;

[ServiceContract]

public interface IRCell {

 [OperationContract] void setVal(int val);

 [OperationContract] int getVal();

 [OperationContract] void setOther(AbstractCell rc);

}

Note: we have two implementations (setters/getters and

properties) of very similar functionality. This is only for direct

comparison with the RMI example. In practice, you’d probably

keep one implementation only.

63
Java and C# in depth

Service implementation: example

A concrete implementation of the operations of IRCell as

well as the data of AbstractCell

[Serializable()]

public class RCell : AbstractCell, IRCell {

 public RCell() { Val = 0; }

 public override int Val { get; set; }

 public int getVal() { return Val; }

 public void setVal(int val) { Val = val; }

 public void setOther(AbstractCell rc) {

 rc.Val = this.getVal();

 }

}

64
Java and C# in depth

WCF API for addresses & bindings

Bindings are defined in class

System.ServiceModels.Binding and descendants

 For example, BasicHttpBinding() uses the HTTP

protocol for communication

Addresses are defined using class System.Uri

 public Uri(string s) specifies a URI as a string

such as http://localhost:8000

http://localhost:8000/

65
Java and C# in depth

WCF API for service hosting

Services are instantiated using concrete descendants of
class System.ServiceModels.ServiceHostBase

 public ServiceHost(Type t, Uri a) initializes

host for service type t at address a

 ServiceEndpoint AddServiceEndpoint(Type t,

Binding b, string n) creates and returns

endpoint for service with contract specified as type t,

using binding b and identifier n

66
Java and C# in depth

WCF server: example

A server that hosts a service of class RCell under symbolic

name RCinst:

try {

 BasicHttpBinding binding = new BasicHttpBinding();

 Uri url = new Uri("http://localhost:8000");

 // Create service for RCell objects at “url”

 service = new ServiceHost(typeof(RCell), url);

 // Create and register an instance of RCell

 // under name “RCinst” using contract of IRCell

 service.AddServiceEndpoint(typeof(IRCell),

 binding, "RCinst");

 // Put service online

 service.Open();

}

...

67
Java and C# in depth

WCF API for service clients

Channels to access service endpoints are created using
class System.ServiceModels.ChannelFactory<>

and descendants

 public ChannelFactory<T>(Binding b,

EndpointAddress a) created factory for channels

connecting to endpoint with address a using binding b

 IChannel createChannel() returns channel, which

is then used as a local reference of class T

 void Close() tears down a factory (or closes a

channel)

68
Java and C# in depth

WCF service client: example

A client that gets a remote object under symbolic name
RCinst and calls setOther() on it.

BasicHttpBinding binding = new BasicHttpBinding();

// Channels for service IRCell under name RCinst

var factory = new ChannelFactory<IRCell>(binding,

 new EndpointAddress(

 "http://localhost:8080/RCinst"));

// Get reference to remote service

IRCell rc = factory.CreateChannel();

var lrc = new LCell(); lrc.Val = 4;

// Remote call (data is passed by copy!)

rc.setOther(lrc);

// lrc stored 4 before the call, and it now stores...

Java and C# in depth

Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Wrap up

70
Java and C# in depth

How to choose a networking model?

 What kind of data does the application work on?

 What’s the abstraction level of the application using

networking?

 position in the communication stack

 What’s the scale of the application using networking?

 typical umber of nodes

 Is the application multi-platform?

 How reliable is the network?

 How important is performance?

 beware of premature optimization

