ETHZ D-INFK Java and C# in Depth — Exam

Prof.

Dr. B. Meyer Spring 2013

Java and C# in depth

ETH Zurich

Date: 27 May 2013

Family name, firSt NAIIE:uueeiieiiiiiiie e e e

Student IUIMDET: ..o

I confirm with my signature, that I was able to take this exam under regular circum-
stances and that I have read and understood the directions below.

SIZNATUTE! eeiiiiiiiiiiei it

Directions:

Exam duration: 105 minutes.

All personal documents are allowed. Exchanging documents during the examination
would mean failing the examination.

Electronic equipment (laptops, cell phones, PDA, etc.) are not allowed. Using them
would mean failing the examination.

Use a pen (not a pencil)!
Please write your student number onto each sheet.

All solutions can be written directly onto the exam sheets. If you need more space for
your solution ask the supervisors for a sheet of official paper. You are not allowed to
use other paper.

Only one solution can be handed in per question. Invalid solutions need to be crossed
out clearly.

Please write legibly! We will only correct solutions that we can read.
Manage your time carefully (take into account the number of points for each question).

Please immediately tell the exam supervisors if you feel disturbed during the exam.

Good luck!

Question | Number of possible points | Points
1 16
2 12
3 12
4
5

15
10
TOTAL 68

ETHZ D-INFK Java and C# in Depth — Exam
Prof. Dr. B. Meyer Spring 2013

1 Java and C# Fundamentals (16 Points)

All questions below refer to the Java language version 7 and C# language version 5.0 as
taught in the course. Multiple correct answers are possible; there is at least one correct an-
swer per question. A correctly checked or unchecked box is worth 0.5 points. An incorrectly

checked or unchecked box is worth 0 points.

Example. Which of the following statements are true?

a. The sun is a mass of incandescent gas. X 0.5 points
b. 2x2=4 (J 0 points
c. Britney Spears is a honoured doctor of ETH. O 0.5 points
d. “Rosti” is a kind of sausage. X 0 points

1. Casting and Autoboxing

a. In C+#, all value types (built-in or user-defined) can be boxed. O
b. In C#, no explicite type cast is necessary to box and unbox [
value types.

c. In Java, all conversions between built-in primitive types are [
implicit.

d. In Java and C#, no cast is necessary to convert an int to a [
float, even though you loose precision.

2. Method redefinition and dispatching.
Consider the following C# classes:

public class A
{

public virtual string m() { return "A"; }

public string T { get; set; }

public AQ) { T =m(Q; }
}

public class B : A
{ public new string m() { returm "B"; 1} }

public class C : A
{ public override string m() { returm "C"; } }

and the following corresponding declarations:

A a = new AQ);
B b = new B(Q);
C c = new C();
A x = new B(Q);
A y = new C();

(a) What does the following statement print?

Console.WriteLine(a.m() + b.m() + c.m() + x.m() + y.m(Q));

(Spaces between letters are added for readability.)

a. AACAC
b. ABCAC
c. ABCBC
d ABCAA

ooon

ETHZ D-INFK

Prof. Dr. B. Meyer

Java and C# in Depth — Exam

Spring 2013

(b) What does the following statement print?

Console.WriteLine(a.T + b.T + ¢.T + x.T + y.T);

(Spaces between letters are added for readability.)
a. AACAC

b. ABCAC
c. AACAA
d. The statement does not compile

3. Genericity (in Java).

Consider the following declaration of a generic class GC in Java:

oooo

import java.util.x*;

public class GC <T extends List<Number>> {}

Which of the following definitions produce a compilation error (not just warning) in
Java?
(Remember that, in the Java typesystem, Integer is a subclass of Number, and ArrayList
is a subclass of List.)

S@ e e op

GC ex_a = new GC(Q);

GC<Number> ex_b = new GC<Number>();

GC<List<Number>> ex_c = new GC<List<Number>>();
GC<List<Number>> ex_d = new GC<>();
GC<List<Integer>> ex_e = new GC<List<Integer>>();
GC<List<Number>> ex_f = new GC<List<Integer>>();

GC ex_g = new GC<List<Number>>();

GC<List<Number>> ex_h = new GC<ArrayList<Number>>();

1. GC<ArrayList<Number>> ex_i = new GC<ArrayList<Number>>();

4. Exception (in Java).

Consider the following Java code:

ooooooooao

class Test{
public static void main(String[] args) {

try {
try {
throw new Exception();
}

catch (RuntimeException e) {

System.out.println("Inner runtime exception");

}

finally {
System.out.println("Finally");

}

tryq{
}
catch(Exception e){
System.out.println("Exception caught");
throw new RuntimeException();
}
} catch (RuntimeException e) {

System.out.println("Outer runtime exception");

} catch (Exception e) {
System.out.println("Outer exception");
throw new RuntimeException();

ETHZ D-INFK Java and C# in Depth — Exam
Prof. Dr. B. Meyer Spring 2013

Which of the following statement(s) about the program behavior is/are true?

The program prints “Inner runtime exception”
The program prints “Finally”

The program prints “Exception caught”

The program prints “Outer runtime exception’
The program prints “Outer exception”

The program terminates with an exception

)

mo e o
DoooOoo

5. Value and Reference types (in C#). Consider the following C# snippet:

struct Sample {
private int x;
public int Increment () {
this.x = this.x + 1;
return this.x;

}
}
class Foo
{
public readonly Sample s = new Sample ();
}

class Program{
static void Main(string[] args) {
Foo f = new Foo();
System.Console.WriteLine(f.s.Increment ());
System.Console.WriteLine(f.s.Increment ());
System.Console.WriteLine (f.s.Increment ());

}

What is behaviour of this program?

The program prints “1 2 3”
The program prints “0 0 0”
Some exception will be thrown
The program prints “1 1 17
The program won’t compile

o pe o
ooooo

6. Java Serialization and versioning. Consider the following two versions of the Java class
Test:

class Test implements Serializablef{
//Version 1
private int data = 5;
String[] stringArray = {"a","b","c"};
transient double temp = 1.1;

}

class Test implements Serializablef{
//Version 2
private int data = 5;
String[] stringArray = {"a","b","c"};
double temp = 1.1;

ETHZ D-INFK
Prof. Dr. B. Meyer

Java and C# in Depth — Exam

Spring 2013

What can you do to make sure that you can deserialize objects of version 1 from within

objects of version 27

a. Doing nothing works: the default deserialization mechanism will accept
objects of version 1 from within objects of version 2.

b. Insert in version 1 a private static final long serialVersionUID
attribute and initialize it to the right value e.g. using the Eclipse IDE
support.

c. Insert in version 1 a private static final long serialVersionUID at-
tribute and providing a custom value, e.g. 1L.

d. Insert in version 2 a private static final long serialVersionUID
attribute and initialize it to the right value e.g. using the Eclipse IDE
support.

e. Insert in version 2 a private static final long serialVersionUID at-
tribute and providing a custom value, e.g. 1L.

invoke method
internal void AMethod (double, int)
passing default values?

O

a. BindingFlags bf = BindingFlags.InvokeMethod | BindingFlags.NonPublic;

b. BindingFlags bf = BindingFlags.InvokeMethod | BindingFlags.Internal;
C

7. Reflection (in C#). Which of the following combinations of binding flags will work to

O
U

. BindingFlags bf = BindingFlags.CreateInstance | BindingFlags.NonPublic; [

d. BindingFlags bf = BindingFlags.CreateInstance | BindingFlags.Internal
e

BindingFlags bf = BindingFlags.DefaultArgs | BindingFlags.NonPublic;

Old questions start

. Consider the following Java code:

0
0

String a = "Good luck!";
String b "Good";
String c = b;

b += " luck!";
System.out.print (a
System.out.print(’
System.out.print (b
System.out.print (’ ;
System.out.print(a.equals(b));
System.out.print(’ ’);
System.out.print(a.equals(c));

o’
N2

~ Il ~ |
(¢}
~

What is printed?
a. true false true false
b. false true true true
c. false false false false
d. false false true false

oooo

. Consider the following C# code (similar to the Java code from the previous question):

string a = "Good luck!";
string b = "Good";
string ¢ = b;

b += " luck!";
Console.Write (a
Console.Write(’
Console.Write (b
Console.Write(’ ;
Console.Write(a.Equals(b));
Console.Write(’ ’);
Console.Write(a.Equals(c));

b);

>

c);

~ Il ~ 1

ETHZ D-INFK Java and C# in Depth — Exam
Prof. Dr. B. Meyer Spring 2013

What is printed?

a. true false true false
b. false true true true
c. false false false false
d. false false true false

oooo

10. You would like a method of your public C# class to be visible to other classes inside
the same assembly, as well as to every subclass (including those outside the assembly).
Which visibility modifier provides exactly the desired access?

a. intermal
b. protected

d. Tt is not possible to express this level of visibility in C+£.
e. This is not needed, because it is not allowed to add subclasses
outside the assembly.

O
O
Cc. protected internal O
O
O

11. Consider the following C# code:

1 |class Test {

2 public static int x = 3;
3 public static int y;

4

5 public int a = x;

6 public int b;

7

8 static Test () {

9 X = 5;

10 }

11

12 public Test () {

13 xX++;

14 }

15

16 static void Main () {

17 Test t1 = new Test ();
18 Test t2 = new Test ();
19 Console.Write(Test.x);
20 Console.Write(’ ?);
21 Console.Write(Test.y);
22 Console.Write(’ ?);
23 Console.Write(t2.a);
24 Console.Write(’ ?);
25 Console.Write(t2.b);
26 }

27 |}

What is printed as a result of running Main? (A question mark denotes an undefined
value, i.e., any integer value can be printed.)

6050
7060
6757
. 3037
4040
The code does not compile

o po op
ODo0o000o

ETHZ D-INFK Java and C# in Depth — Exam
Prof. Dr. B. Meyer Spring 2013

12. Consider the following Java code:

try {
try {
throw new RuntimeException();
} catch (RuntimeException e) {
System.out.println("Inner runtime exception");
throw e;
} catch (Exception e) {
System.out.println("Inner exception");
} finally A{
System.out.println("Finally!");
throw new Exception();
}
} catch (RuntimeException e) {
System.out.println("Outer runtime exception");
} catch (Exception e) {
System.out.println("Outer exception");

}

Which of the following lines are printed?

a. “Inner runtime exception”
b. “Inner exception”

c. “Finally!”

d. “Outer runtime exception”
e. “Outer exception”

f. The code does not compile

oooooo

13. Which of the following declarations produce a compilation error in Java? (Remember
that Integer is a subclass of Number and ArrayList is a subclass of List.)

a. Number[] a = new Integer[10]; [
b. ArrayList<int> listl = new ArrayList<int>(10); (]
c. List<Integer> list2 = mnew ArrayList<Integer>(10); O
d. ArrayList<Number> list3 = new ArrayList<Integer>(10); O
€. ArrayList<?> list4 = new ArrayList<Integer>(10); (]
f. ArrayList<? extends Number> list5 = new ArrayList<Integer>(f0);
g. ArrayList list6 = new ArrayList<Integer>(10);]

ETHZ D-INFK Java and C# in Depth — Exam
Prof. Dr. B. Meyer Spring 2013

2 Java Fundamentals (12 Points)

The class Address is used to store street addresses consisting of a street and postal code.
The subclass ExtendedAddress has an additional field for a country code, and can be used
for international addresses. Finish the implementation of these two classes, so that we can
use them to index hashtables.

2.1 Class Address

public class Address {

// Street part of address.
public final String street;

// Postal code of address.
public final int postalCode;

// Initilize street to s, and postal code to p.
public Address(String s, int p) {
street = s; postalCode = p;

ETHZ D-INFK Java and C# in Depth — Exam
Prof. Dr. B. Meyer Spring 2013

2.2 Class ExtendedAddress

public class ExtendedAddress extends Address {

// Country code of address.
public final String country;

// Initilize street to s, postal code to p, and country code to c.
public ExtendedAddress(String s, int p, String c) {
super (s, p); country = c;

ETHZ D-INFK Java and C# in Depth — Exam
Prof. Dr. B. Meyer Spring 2013

10

ETHZ D-INFK Java and C# in Depth — Exam
Prof. Dr. B. Meyer Spring 2013

3 Bounded queue(12 points)

Bounded queues are widely spread in the multithreading. In this question you need to
implement a bounded thread-safe queue with 2 essential operations: enqueue and dequeue.
Enqueue blocks the calling thread if queue stores more than K elements. Dequeue blocks
the calling thread, if queue is empty. There can be many threads blocked on one operation.
When a blocking condition is gone (an element is added or removed), waiting threads should
be waked up. In this question we ask you to implement the singnaling constructs with
Monitors & single lock object. The implementation should be thread-safe.
Quick reference for Monitor’s methods

e Monitor.Enter(object lock) Enters the critical sections, assosiated with lock.
e Monitor.Exit(object lock) Leaves the previously entered critical section.

o In C# locks are recursive (or reentrant), i.e. one thead can enter the several critical
section without any problems.

e Monitor.Wait(object lock) suspends the executioning thread, ceases all previosly ob-
tained locks. Maybe waked upon notification.

e Monitor.Pulse(object lock) and Monitor.PulseAll(object lock) notifies (awakens) one
(all) waiting on the lock.
Your tasks:
e Add necessary private fields to your implementation

e Implement constructor, which accepts a maximum queue capacity. Note, that capacity
should be positive - the implementation should fail on incorrect input by throwing an
appropriate exception.

e Implement Enqueue and Dequeue methods. Note, that there can be more than one
thread enqueing and dequeing at the same time. You should use a single lock for your
signaling constructs.

e Implement Properties Max and Count.

Listing 1: Selector class

using System;
using System.Collections.Generic;
using System.Threading;

namespace Concurrency

{

public sealed class BoundedQueue<T>

{
private readonly Queue<T> _queue;
//define here the neccessary fields

//define here the constructor,
//which accepts the mazimum amount of elements.

11

ETHZ D-INFK Java and C# in Depth — Exam
Prof. Dr. B. Meyer Spring 2013

//Enqueues a mew item to the queue.
//Blocks, 4f the queue already contains Maz elements.
public void Enqueue(T item)

//Dequeuves the last item from the queue.
//Blocks, 4if the queue is empty
public T Dequeue ()

// Gets the mazimum amount of items.
public int Max

12

ETHZ D-INFK Java and C# in Depth — Exam
Prof. Dr. B. Meyer Spring 2013

// Gets the current amount of items, stored in the queue
public int Count

13

ETHZ D-INFK Java and C# in Depth — Exam
Prof. Dr. B. Meyer Spring 2013

4 Delegate (13 points)

In C+#, one way to represent a criterion regarding certain type of objects is to use delegates.
For example, a delegate of type delegate bool IntCriterion(int t); can encode a criterion
regarding integers, and be used to select the integers satisfying the criterion from a list.

In this question you need to program a library to support composite criteria construction
using existing delegates and logical connectives like negation and conjunction. The library
should also facilitate the application of such composite criteria in selecting objects from
enumerable containers.

Note:

e To keep the question text short, the design of the class hierarchy is not the optimum;
e Using of namespaces System, System.Collections.Generic, and System.Linq are omit-

ted from all the listings.

4.1 Composite criterion construction

Listing [2| shows a use case of composite criterion construction, and Listing |3| gives the sketch
of the abstractions for different criteria and their visitors. Add code to the dotted lines to
complete the abstractions in a way that supports the use case.

Your tasks:

e Provide a lambda expression at location). The expression takes a single argument
of type int and returns true if and only if the argument can be divided by 3;

e Provide an anonymous method at location . The method takes a single argument
of type int and returns true if and only if the argument can be divided by 4;

e Add code at locations ©, ©, ®, and @ so that objects of type CriterionVisitor
could be used to visit Criterion objects (the Visitor Pattern).

Listing 2: Use case for composite criterion construction

namespace CompositeCriterion{
class Program{

static void Main(string[] args){

PrimitiveCriterion<int> pl = new PrimitiveCriterion<int>(
... ®
)

PrimitiveCriterion<int> p2 = new PrimitiveCriterion<int>(
... ®
);

NegCriterion<int> nl = new NegCriterion<int>(p2);

// ’al’ 4s satisfied by integers that can be divided by 3
// but not by 4.
AndCriterion<int> al = new AndCriterion<int>(pl, nl);

Listing 3: Composite criterion classes

namespace CompositeCriterion{

14

ETHZ D-INFK Java and C# in Depth — Exam
Prof. Dr. B. Meyer Spring 2013

public delegate bool criFunc<T>(T t);

interface Criterion<T>{

class PrimitiveCriterion<T>: Criterion<T>{
private criFunc<T> criterionFunc;
public criFunc<T> CriterionFunc{

get { return criterionFunc; }
protected set { criterionFunc = value; 1}

public PrimitiveCriterion(criFunc<T> cf){
CriterionFunc = cf;

class NegCriterion<T> : Criterion<T>{
private Criterion<T> subCriterion;

public Criterion<T> SubCriterion{
get { return subCriterion; 1}
protected set { subCriterion = value; }

public NegCriterion(Criterion<T> sc){
SubCriterion = sc;

}
// Other details omitted

class AndCriterion<T> : Criterion<T>{
private Criterion<T> leftCriterion;
private Criterion<T> rightCriterion;
public Criterion<T> LeftCriterionf{

get { return leftCriterion; }
private set { leftCriterion = value; }

15

ETHZ D-INFK Java and C# in Depth — Exam
Prof. Dr. B. Meyer Spring 2013

public Criterion<T> RightCriterion{
get { return rightCriterion; }
private set { rightCriterion = value; }

public AndCriterion(Criterion<T> lc, Criterion<T> rc){
LeftCriterion = 1lc;
RightCriterion = rc;

4.2 Checking fulfillment of criterion

Class CriterionChecker in Listing [4] implements the visitor pattern to check if an object
fulfills an criterion, and method check is the interface for the check.

Please provide necessary code at locations @), @), and (D) to realize the intended semantics
of CriterionChecker.check.

Note: No need to provide the visit method for NegCriterion at location (D).

Listing 4: Criterion fulfillment checker class

namespace CompositeCriterionf{
class CriterionChecker<T> : CriterionVisitor<T>{

// Declare mnecessary attributes here.

.. ©

// Check if ’subject’ satisfies ’criterion’.

// Return true <f yes, otherwise false.

public bool check(T subject, Criterion<T> criterion){
this.subject = subject;
... @

}

// Define necessary methods here.

// Note: No need to provide the visit method for NegCriterion.

.. @

16

ETHZ D-INFK Java and C# in Depth — Exam
Prof. Dr. B. Meyer Spring 2013

4.3 Using criterion objects in element selection

When using Criterion objects to select elements from a container, there are different choices
as for how to select and return the result selection. For example, eager selection checks all
the elements from the container and stores the ones satisfying the criterion into a separate
object, which is then returned to the client, while lazy selection searches for and returns the
next element satisfying the criterion in the container, only when the element is accessed by
the client through the return selection.

Class Selector in Listing [5| intends to support both lazy and eager selection. Code in
Listing [6] uses the criterion object from Listing [2]in element selection, where the two foreach
loops should output the same sequence of integers.

Your tasks:

e Please briefly compare the performance of eager selection and lazy selection (Describe
at least one advantage for each.)

Lazy selection:

e Please add necessary code at locations () and (), so that the return objects from
both methods LazySelected and EagerSelected could be enumerated to access all the
objects satisfying cri from source, in the lazy and the eager way respectively.

Listing 5: Selector class

namespace CompositeCriterion{
class Selector<T>{
public static CriterionChecker<T> checker =
new CriterionChecker<T>();

public static IEnumerable<T> LazySelected(
IEnumerable<T> source, Criterion<T> cri){

ETHZ D-INFK Java and C# in Depth — Exam
Prof. Dr. B. Meyer Spring 2013

public static IEnumerable<T> EagerSelected(
IEnumerable<T> source, Criterion<T> cri){
List<T> result = new List<T>(10);

Listing 6: Use case for using criterion objects in element selection

namespace CompositeCriterion{
class Program{

static void Main(string[] args){
// Continuing from Listing E

// Generate an array of integers [1, 2, 3, ..., 20]
int[] values = Enumerable.Range(1l, 20).ToArray();

// Should print: 3,6,9,15,18,

foreach(int i in Selector<int>.LazySelected(values, al)){
Console .Write(i);
Console.Write(",");

}

Console.WriteLine ();

// Should print: 3,6,9,15,18,

foreach(int i in Selector<int>.EagerSelected(values, al)){
Console.Write(i);
Console.Write(",");

18

	Java and C# Fundamentals (16 Points)
	Java Fundamentals (12 Points)
	Class Address
	Class ExtendedAddress

	Bounded queue(12 points)
	Delegate (13 points)
	Composite criterion construction
	Checking fulfillment of criterion
	Using criterion objects in element selection

