
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2014

Solution 5: Assignments and control structures

ETH Zurich

1 Assignments

The solution lists the correct statements for each of the subtasks.

1. (c)

2. (a)

3. (b)

4. (d)

5. (c)

6. (d) (e)

7. (a)

8. (c) (e)

9. (b) (e)

2 Reading loops

Version A:

• The result of the comparison using = will always be False (STRING is a reference type).

• The result of the second if statement will always be False, because in the first if statement
no assignment was performed (station is Void).

• Regardless of the previous observation, the second if-statement is inside the loop, so it
would try to move “Central” in every loop iteration after it had been found. This behavior
is not incorrect, but it is inefficient, because the same operation is performed again and
again while it could be performed only once after the loop.

• The corrected code of version A is shown in Listing ??.

Version B:

• Infinite loop: there is no call to a command that advances the cursor position in the list.

• Possible precondition violation: i.item.name ∼”Central” will most likely be tested before
i.after, therefore trying to access an item when the cursor has already advanced past the
end of the list. To get a guaranteed correct order of evaluation, switch the two conditions
and use or else instead of or.

• The corrected code of version B is shown in Listing ??.

1

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2014

Listing 1: Version A

explore
−− Move ”Central”.

local
station: STATION

do
across

Zurich.stations as i
loop

if i.item.name ∼”Central” then
station := i.item

end
end
if station /= Void then

station.set position ([0.0, 0.0])
end

end

Listing 2: Version B

explore
−− Move ”Central”.

local
i: like Zurich.stations.new cursor

do
from

i := Zurich.stations.new cursor
until

i.after or else i.item.name ∼”Central”
loop

i.forth
end
if not i.after then

i.item.set position ([0.0, 0.0])
end

end

3 Next station: loops

note
description: ”Route information displays.”

class
DISPLAY

inherit
ZURICH OBJECTS

feature −− Explore Zurich

add public transport
−− Add a public transportation unit per line.

do
across

Zurich.lines as i
loop

i.item.add transport
end

end

update transport display (t: PUBLIC TRANSPORT)
−− Update route information display inside transportation unit ‘t’.

require
t exists: t /= Void

local
i: INTEGER
s: STATION

2

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2014

do
console.clear
console.append line (t.line.number.out + ” Willkommen/Welcome”)
from

i := 1
s := t.arriving

until
i > 3 or s = Void

loop
console.append line (stop info (t, s))
s := t.line.next station (s, t.destination)
i := i + 1

end
if s /= Void then

if s /= t.destination then
console.append line (”...”)

end
console.append line (stop info (t, t.destination))

end
end

stop info (t: PUBLIC TRANSPORT; s: STATION): STRING
−− Information about stop ‘s’ of transportation unit ‘t’.

require
t exists: t /= Void
s on line: t.line.has station (s)

local
time min: INTEGER
l: LINE

do
time min := t.time to station (s) // 60
if time min = 0 then

Result := ”<1”
else

Result := time min.out
end
Result := Result + ” Min.%T” + s.name

−− Optional task:
across

s.lines as i
loop

l := i.item
if l /= t.line and

((l.next station (s, l.first) /= Void and not
t.line.has station (l.next station (s, l.first))) or

(l.next station (s, l.last) /= Void and not
t.line.has station (l.next station (s, l.last)))) then

Result := Result + ” ” + i.item.number.out
end

end
end

3

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2014

end

4 Board game: Part 1

There are several possible solutions; we discuss the two most reasonable in our opinion.
The simpler solution only includes three classes:

• GAME: encapsulates the logic of the game (start state, the structure of a round, ending
conditions).

• DIE: provides random numbers in the required range.

• PLAYER: stores the state of each player in the game and performs a turn.

We discarded ROUND and TURN: we consider them parts of the GAME and PLAYER
behavior respectively, rather than separate abstractions. Additionally PLAYER and TOKEN
represent the same abstraction for now.

In the simple solution we don’t introduce classes for SQUARE and BOARD. The only
information associated with squares in the current version of the game is their index, thus a
square can be easily represented with an integer. Also the board in the current version doesn’t
have any specific structure (square arrangement); the only property of the board is the number
of squares, which probably does not deserve a separate class and instead can be stored in GAME.

A more flexible solution additionally includes classes SQUARE and BOARD. Though
SQUARE doesn’t contain enough behavior for now, we anticipate that in the future versions of
the game there might be squares with special properties and behavior (this anticipation is based
on our knowledge of the problem domain, namely that interesting boardgames have squares of
different types with different properties).

Introducing class BOARD makes the solution more flexible with respect to the arrangement
of squares on the board. In the simple version the knowledge about “on which square does a
token land if it moves n steps starting from square x” is located in class PLAYER. Once it
becomes more complicated than just x + n, it is better to encapsulate such knowledge in class
BOARD.

5 MOOC: Assignment, control structures

The order in which the questions and the answers appear here in the solution may vary because
they are randomly shuffled at each attempt.

References, Assignment, and Object Structure

• Choose the appropriate initialization values for the variables below: nat val: NATURAL
(0); int val: INTEGER (0); real val: REAL (0.0); bool val: BOOLEAN (False); char val:
CHARACTER (null char); string val: STRING (Void)

• Suppose to have the following class PERSON:

class
PERSON

create
set friend,
default create

4

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2014

feature −− Initialization

set friend (f: PERSON)
−− Initialize current object.

do
friend := f

end

feature −− Access

friend: PERSON
end

In some other class, some objects of type PERSON are created and initialized:

create kima
create jimmy.set friend (kima)
create buck.set friend (jimmy)
create rhonda.set friend (buck)
create kima.set friend (rhonda)

We claim that there is a cycle in the four objects above. True or False? False

• Determine to whom the following calls apply: set color (”red”): to Current;
my pic.set color (”blue”): to the object attached to my pic; till.friend.friend: to the object
attached to till.friend.

• Determine if the following calls are qualified or unqualified: set color (”red”): unqualified;
my pic.set color (”blue”): qualified; arno.friend.friend: both qualified; draw: unqualified.

• Assuming you have the following definitions:

s1: STRING = ”Game”
s2: STRING = ” of Thrones”

What can you say about the following Eiffel routine?

join strings (s1, s2: STRING)
−− Append s2 to s1.

do
s1.append (s2)

end

It works as expected: s1 has value ”Game of Thrones”; This routine produces a side effect
on s1.

• What can you say about the following Eiffel routine?

increment (num: INTEGER)
−− Add 1 to num.

do
num := num + 1

end

It does not work as expected: num is not incremented; It does not compile. In Eiffel you
cannot assign directly to a routine argument.

5

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2014

• Suppose to have the following class ITEM:

class
ITEM

create {ORDER LINE}
set description

feature {NONE} −− Initialition

set description (d: STRING)
−− Set description for current object.

do
description := d

end

feature −− Basic operations

set price (p: INTEGER)
−− Set price for current object.

do
price := p

end

feature −− Access

description: STRING
−− Item description.

price: INTEGER
−− Item price.

end

Which of the following is true? Objects of class ITEM can be created from within objects
of class ORDER LINE; Feature set description can be used as a creation procedure, but
cannot be invoked normally (that is, not as a creation procedure) on an object of type
ITEM from another class.

• Suppose to have the following class ITEM:

class
ITEM

feature −− Basic operations

set price (p: INTEGER)
−− Set price for current object.

do
price := p

end

feature −− Access

price: INTEGER

6

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2014

end

In some other class TEST, the following routine is declared:

swap prices (item 1, item 2: ITEM)
−− Swap prices of items.

local
temp: INTEGER

do
temp := item 1.price
item 1.set price (item 2.price)
item 2.set price (temp)

end

Assume that in the same class TEST two references of type ITEM are declared:

item one, item two: ITEM

Then the following happens:

create item one
item one.set price (7)
create item two
item two.set price (4)
swap prices (item two, item one)
print (item one.price.out)
print (item two.price.out)

What will be printed on the console? 47

Control Structures

• Complete the code of the following function maximum by choosing the correct instructions:

maximum (a, b: INTEGER): INTEGER
−− The maximum between a and b.

do
if a > b then

Result := a
else

Result := b
end

end

Complete the code of the following function print relation by choosing the correct
instructions:

print relation (a, b: INTEGER)
−− Prints if a > b, a < b or a = b.

do
if a > b then

print (a.out + ”>” + b.out)
else

if a < b then
print (a.out + ”<” + b.out)

7

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2014

else
print (”The 2 numbers are equal.”)

end
end

end

•• Complete the code of the following function remainder by choosing the correct istructions.
Assume d1 and d2 are positive.

remainder (d1, d2: INTEGER): INTEGER
−− Compute the remainder of integer division between d1 and d2.

do
from

Result := d1
until

Result <= d2
loop

Result := Result − d2
end
−− nothing here

end

• Complete the code of the following function absolute value by choosing the correct in-
structions:

absolute value (a: INTEGER): INTEGER
−− Absolute value of a.

do
if a >= 0 then

Result := a
else

Result := −a
end

end

• Assuming that c is a CHARACTER, what will the following instruction print, if executed
with c = ’0’?

inspect c
when ’1’..’9’ then

print (”number”)
when ’a’..’z’ then

print (”lower case letter”)
when ’A’..’Z’ then

print (”upper case letter”)
when ’#’,’@’,’%’ then

print (”special character”)
else

print (”unexpected character”)
end

It will print “unexpected character”.

8

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2014

• Complete the code of the following function euclid by choosing the correct expressions for
the loop invariant and the loop variant:

euclid (a, b: INTEGER): INTEGER
−− Greatest common divisor of a and b.

require
a positive: a > 0
b positive: b > 0

local
m, n: INTEGER

do
from

m := a
n:= b

invariant
euclid (a, b) = euclid (m, n)

variant
m + n

until
m = n

loop
if m > n then

m := m − n
else

n := n − m
end

end
Result := m

end

Listing 3: Class WORD GAMES

note
description: ”Objects of this class store and manage a list of books.”

class
LIBRARY

inherit

ANY
redefine

default create
end

feature {NONE} −− Initialization

default create
−− Create an empty library.

do
create all books.make

end

9

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2014

feature −− Access

is copy available (title, author: STRING): BOOLEAN
−− Is a copy with given title and author available?

do
from

all books.start
until

all books.after or Result
loop

if all books.item.title ∼ title and all books.item.author ∼ author and all books.item.
number of available copies > 0 then

Result := True
end
all books.forth

end
end

feature −− Element change

extend (a book: BOOK)
−− Extend library with a book.

require
not book in library (a book)

do
all books.extend (a book)

ensure
one more: all books.count = old all books.count + 1
book added: all books.last = a book

end

remove (a book: BOOK)
−− Remove a book from library.

require
book in library (a book)

do
all books.start
all books.search (a book)
all books.remove

ensure
one less: all books.count = old all books.count − 1
book not in library: not all books.has (a book)

end

feature −− Output

get all titles: STRING
−− Return titles of all books in the library.

do
if all books.is empty then

Result := ”No book available at the moment”

10

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2014

else
Result := ””
from

all books.start
until

all books.after
loop

Result.append (all books.item.title + ”, ”)
all books.forth

end
−− Remove the last ”, ”

Result.remove tail (2)
end

end

feature {NONE} −− Implementation

all books: LINKED LIST [BOOK]
−− List of books in the library.

feature −− Contracts

book in library (some book: BOOK): BOOLEAN
do

Result := all books.has (some book)
end

end

Listing 4: Class WORD GAMES

note
description: ”The class {PALINDROME} implements algorithms that are related

to strings.”
author: ”hce”
date: ”11.07.2013”

class
WORD GAMES

feature −− Basic algorithms

is palindrome (s: STRING): BOOLEAN
−− Returns true if ‘s’ is a palindrome.

require
input valid: s /= Void and not s.is empty

local
l reversed s: STRING
i: INTEGER

do
−− We start with an empty reversed string.
l reversed s := ””
Result := false

11

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2014

from
i := s.count

until
i = 0

loop
−− We append to the reversed string the characters from
−− the s, read from the end to the beginning (in reverse order)

l reversed s.append character (s.at (i))
i := i − 1

end
−− If a string is the same as its reversed, then it is palindrome.
if l reversed s.is equal (s) then

Result := true
end

end

end

Listing 5: Class DECIMAL TO BINARY CONVERTER

note
description: ”Summary description for {DECIMAL TO BINARY CONVERTER

}.”
author: ””
date: ”$Date$”
revision: ”$Revision$”

class
DECIMAL TO BINARY CONVERTER

feature −− Conversion

valid input (n: INTEGER): BOOLEAN
−− Is ‘n’ a valid input for a conversion?

do
Result := 0 <= n and n <= 100000000

end

to binary (n: INTEGER): STRING
−− Binary representation of a number ‘n’ expressed in base 10.

require
valid input: valid input (n)

local
my local: INTEGER

do
if n = 0 then

Result := ”0”
else

from
−− We will build the result string digit by digit
Result := ””
−− We start from n and save it in our temp variable

12

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2014

my local := n
invariant
−− Our invariant states that at every iteration the value
−− in our temp variable corresponds to n divided by 2
−− to the power of the number of elements in the result string.
−− The truncation to an integer is necessary because ˆ gives a real.

my local = n // (2 ˆ Result.count).truncated to integer
until
−− We exit the loop when my local reaches 0
my local = 0

loop
−− We build the result string one digit at the time
−− Note that we are using the modulus operator
−− for computing the remainder of integer division
Result.prepend integer (my local \\ 2)
−− Now we update my local using the integer division
my local := my local // 2

variant
−− This is always decreasing and positive

my local + 1
end

end
ensure

result exists: result /= Void and then not Result.is empty
end

end

13

