
Chair of Software Engineering

Einführung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer 	

Exercise Session 9

2

Today

Ø  Feedback on the mock exam

Ø  Recursion
Ø  Recursion

•  Recursion
§  Recursion

§  Recursion

Ø  Basic data structures
Ø  Arrays
Ø  Linked Lists
Ø  Hashtables

3

Recursion: an example

Ø  Fibonacci sequence:
 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

Ø How can we calculate the n-th Fibonacci number?

Ø  Recursive formula:

F(n) = F(n-1) + F(n-2) for n > 1

with F(0) = 0, F(1) = 1

4

Recursion: a second example

Ø Another example of recursion

Source: en.wikipedia.org/wiki/Recursion https://www.flickr.com/photos/tin-g

5

A recursive feature

fibonacci(n: INTEGER): INTEGER
 do
 if n = 0 then
 Result := 0
 elseif n = 1 then
 Result := 1
 else
 Result := fibonacci(n-1) +
 fibonacci(n-2)
 end
 end

fib(4)

fib(3) fib(2)

fib(1) fib(0) fib(2) fib(1)

fib(1) fib(0)

Ø  Calculate fibonacci(4)

1 0

1 1

2

1 0

1

3

6

The general notion of recursion

A definition for a concept is recursive
if it involves an instance of the concept itself

Ø The definition may use “instances of concept itself “
Ø Recursion is the use of a recursive definition

7

Thoughts

„To iterate is human, to recurse - divine!“

but … computers are built by humans

Better use iterative approach if reasonable ?

8

Iteration vs. recursion

Ø  Every recursion could be rewritten as an iteration and
vice versa.

Ø  Recursion is slower because all functions calls must be
stored in memory to allow the return back to the caller
functions.

Ø  It’s more intuitive in cases where it mimics our
approach to the problem, e.g. generating Fibonacci
numbers.

Ø  Data structures such as trees are easier to explor with
recursion.

9

Be careful when using recursion!

Ø  Stack: a region of memory that store temporary data
created by your program.

10

Exercise: Printing numbers

Ø  If we pass n = 4, what will be printed?

print_int (n: INTEGER)
 do
 print (n)
 if n > 1 then
 print_int (n - 1)
 end
 end

print_int (n: INTEGER)
 do
 if n > 1 then
 print_int (n - 1)
 end
 print (n)
 end

Hands-On

4321 1234

11

Exercise: Reverse string

Ø  Print a given string in reverse order using a
recursive function.

Hands-On

12

Exercise: Solution

class APPLICATION

create

 make

feature

 make
 local
 s: STRING
 do
 create s.make_from_string ("poldomangia")
 invert(s)
 end

 invert (s: STRING)
 require
 s /= Void
 do
 if not s.is_empty then
 invert (s.substring (2, s.count))
 print (s[1])
 end
 end

end

13

Exercise: Sequences

Ø  Write a recursive and an iterative program to
print the following:

 111,112,113,121,122,123,131,132,133,
 211,212,213,221,222,223,231,232,233,
 311,312,313,321,322,323,331,332,333,

Ø  Note that the recursive solution can use loops

too.

Hands-On

14

Exercise: Recursive solution

cells: ARRAY [INTEGER]

handle_cell (n: INTEGER)

 local
 i: INTEGER
 do
 from
 i := 1
 until
 i > 3
 loop
 cells [n] := i
 if (n < 3) then
 handle_cell (n+1)
 else
 print (cells [1].out+cells [2].out+cells [3].out+",")
 end
 i := i + 1
 end
 end

15

Exercise: Iterative solution

from
 i := 1

until
 i > 3

loop
 from
 j := 1
 until
 j > 3
 loop
 from
 k := 1
 until
 k > 3
 loop
 print (i.out+j.out+k.out+“,")
 k := k + 1
 end
 j := j + 1
 end
 i := i + 1

end

16

Arrays

An array is a very fundamental data-structure, which is
very close to how your computer organizes its memory. An
array is characterized by:

Ø Constant time for random reads/writes
Ø Costly to resize (including inserting elements in the
middle of the array)
Ø Must be indexed by an integer
Ø Generally very space efficient.

In Eiffel the basic array class is generic, V_ARRAY [G].

17

Using Arrays

Which of the following lines are valid?
Which can fail, and why?

Ø  my_array : V_ARRAY [STRING]
Ø  my_array [“Fred”] := “Sam”
Ø  my_array [10] + “’s Hat”
Ø  my_array [5] := “Ed”
Ø  my_array.force (“Constantine”, 9)

Which is not a constant-time array operation?

Hands-On

Valid, can’t fail
Invalid

Valid, can fail
Valid, can fail
Valid, can’t fail

18

Linked Lists

Ø  Linked lists are one of the simplest data-structures
Ø  They consist of linkable cells

class LINKABLE [G]

create
 set_value

feature
 set_value (v : G)

 do
 value := v
 end

 value : G

 set_next (n : LINKABLE[G])
 do
 next := n
 end

 next : LINKABLE [G]
end

19

Using Linked Lists

Suppose you keep a reference to only the head of the
linked list, what is the running time (using big O notation)
to:

Ø Insert at the beginning
Ø Insert in the middle
Ø Insert at the end
Ø Find the length of the list

What simple optimization could be made to make end-
access faster?

Hands-On

O (1)
O (n)
O (n)
O (n)

20

Binary search tree

10

8 13

4 9 20

Ø  A binary search tree is a binary tree where each node
has a COMPARABLE value.

Ø  Left sub-tree of a node contains only values less than
the node’s value.

Ø  Right sub-tree of a node contains only values greater
than or equal to the node’s value.

21

Exercise: Adding nodes

Ø  Implement command put (n: INTEGER) in class
NODE which creates a new NODE object at the
correct place in the binary search tree rooted by
Current.

Ø  Test your code with a class APPLICATION which
builds a binary search tree using put and prints out
the values using the traversal feature.

Ø  Hint: You might need to adapt the traversal
feature such that the values are printed out in
order.

Hands-On

22

Exercise: Solution

Ø  See code in IDE.

23

Exercise: Searching

Ø  Implement feature has (n: INTEGER): BOOLEAN
in class NODE which returns true if and only if n is in
the tree rooted by Current.

Ø  Test your code with a class APPLICATION which builds
a binary search tree and calls has.

Hands-On

24

Exercise: Solution

Ø  See code in IDE.

