
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2015

Assignment 8: Recursion

ETH Zurich

Handout: 9. November 2015
Due: 18. November 2015

Dependencies c© Randall Munroe (http://xkcd.com/754/)

Goals

• Test your understanding of recursion.

• Implement recursive algorithms.

1 An infectious task

You are the boss of a company concerned about the health of your employees. Winter is coming,
and with it the usual flu epidemics, not to mention the Ebola virus concern you have been reading
about lately. To take a better decision about the company’s health policy, you decide to simulate
the spreading of the flu in a program. For this you assume the following model: if a person has
a flu, he spreads the infection to only one coworker, who then spreads it to another coworker,
and so on.

The following class PERSON models coworkers. The class APPLICATION creates PERSON
objects and sets up the coworker structure.

Listing 1: Class PERSON

class
PERSON

create
make

feature −− Initialization
make (a name: STRING)

1

http://xkcd.com/754/


ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2015

−− Create a person named ‘a name’.
require

a name valid: a name /= Void and then not a name.is empty
do

name := a name
ensure

name set: name = a name
end

feature −− Access
name: STRING

coworker: PERSON

has flu: BOOLEAN

feature −− Element change
set coworker (p: PERSON)

−− Set ‘coworker’ to ‘p’.
require

p exists: p /= Void
p different: p /= Current

do
coworker := p

ensure
coworker set: coworker = p

end

set flu
−− Set ‘has flu’ to True.

do
has flu := True

ensure
has flu: has flu

end

invariant
name valid: name /= Void and then not name.is empty

end

Listing 2: Class APPLICATION

class
APPLICATION

create
make

feature −− Initialization
make

−− Simulate flu epidemic.
local

joe, mary, tim, sarah, bill, cara, adam: PERSON

2



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2015

do
create joe.make (”Joe”)
create mary.make (”Mary”)
create tim.make (”Tim”)
create sarah.make (”Sarah”)
create bill.make (”Bill”)
create cara.make (”Cara”)
create adam.make (”Adam”)
joe.set coworker (sarah)
adam.set coworker (joe)
tim.set coworker (sarah)
sarah.set coworker (cara)
bill.set coworker (tim)
cara.set coworker (mary)
mary.set coworker (bill)
infect (bill)

end
end

Table 1 shows four different implementations of feature infect, which is supposed to infect a
person p and all people reachable from p through the coworker relation.

To do

1. For each version of infect answer the following questions:

• Does it do what it is supposed to do?

• If yes, how? (One to two sentences.)

• If no, why? (One to two sentences.)

Note: this is a pen-and-paper task; you are not supposed to use EiffelStudio.

2. The class PERSON above assumes that each employee can only infect one coworker. This
is unfortunately too optimistic. Rewrite the class PERSON in such a way that an employee
can have (and infect) an arbitrary number of coworkers. Implement a correct recursive
feature infect for this new setting. Note: you may use a loop to iterate through the list of
coworkers.

3. Optional. The coworker structure with at most one coworker forms a (possibly circu-
lar) linked list. Which data structure is formed by a coworker structure with multiple
coworkers? What kind of traversal do you apply to traverse this structure in the feature
infect?

To hand in

Hand in your answers (written sentences) to tasks 1 and 3 and the code of class PERSON and
feature infect for task 2.

3



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2015

Table 1: Different versions of feature infect
Version 1 Version 2

infect (p: PERSON)
−− Infect ‘p’ and coworkers.

require
p exists: p /= Void

do
if p.coworker /= Void and then

not p.coworker.has flu then
p.coworker.set flu
infect (p.coworker)

end
p.set flu

end

infect (p: PERSON)
−− Infect ‘p’ and coworkers.

require
p exists: p /= Void

do
if p.coworker /= Void and then not

p.coworker.has flu then
infect (p.coworker)
p.coworker.set flu

end
p.set flu

end

Version 3 Version 4

infect (p: PERSON)
−− Infect ‘p’ and coworkers.

require
p exists: p /= Void

local
q: PERSON

do
from

q := p.coworker
p.set flu

until
q = Void

loop
if not q.has flu then

q.set flu
end
q := q.coworker

end
end

infect (p: PERSON)
−− Infect ‘p’ and coworkers.

require
p exists: p /= Void

do
p.set flu
if p.coworker /= Void and then not

p.coworker.has flu then
infect (p.coworker)

end
end

2 Short trips

In Zurich you can buy a cheaper public transportation ticket if you are doing a short trip
(Kurzstrecke). In this task you will develop an application that helps customers decide what
type of ticket they need, by visualizing the short-trip range of a given station. We consider a
trip “short” if it takes two minutes or less.

4



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2015

To do

1. Download http://se.inf.ethz.ch/courses/2015b_fall/eprog/assignments/08/traffic.zip

unzip it and open assignment 8.ecf. Open class SHORT TRIPS.

2. Implement a recursive feature highlight reachable that takes two arguments: a station s of
type STATION and a time interval t of type REAL 64. The feature should highlight all
stations that are reachable from s in t seconds or less. You may use a loop to traverse the
lines passing through a given station (accessible through the query lines); however you are
not allowed to use a loop that traverses all the stations in the city.

Hint. We assume that the segment of a public transportation line between any two
adjacent stations is always straight. For that reason you can compute the time it takes
to go from a station to the next one, by simply dividing the distance between the station
positions by the speed of the line.

3. To test highlight reachable, invoke it from the feature highlight short distance with the time
interval of two minutes. The application is programmed to call highlight short distance,
whenever you left-click a station on the map.

To hand in

Hand in the code of SHORT TRIPS.

3 N Queens

The N-queens problem is the problem of positioning N queens on an N ×N chess board such
that no queen attacks another (i.e., they do not share the same row, column, or diagonal).

The problem can be solved recursively. For example, Figure 1 shows how a partial solution
for the first 4 rows of the board is being extended to the 5th row. The main idea is that if the
partial solution is not yet complete, then for each safe location in the current row1, you can add
the location to the solution and use this new solution to solve the problem for the next row.

Current row

Partial
Solution

Unsolved

Figure 1: An example of a partial solution

To do

1. Download http://se.inf.ethz.ch/courses/2015b_fall/eprog/assignments/08/n_queens.zip

unzip it and open n queens.ecf. Open class PUZZLE.

1A location is safe if it is not attacked by any of the currently placed queens.

5

http://se.inf.ethz.ch/courses/2015b_fall/eprog/assignments/08/traffic.zip
http://se.inf.ethz.ch/courses/2015b_fall/eprog/assignments/08/n_queens.zip


ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Assignments
Fall 2015

2. Implement a recursive procedure complete, which completes a given partial solution. You
can make use of a given function under attack, which determines if a particular position
in the current row is safe; for this function to work correctly you need to implement the
helper function attack each other.

3. Add a call to complete from solve, in such a way that after calling solve (n) the list solutions
contains all solutions for the board of size n.

4. Run the program: this will test you implementation on board sizes from 1 to 10. If any
of the tests fail, revise your implementation until they pass.

To hand in

Hand in the code of PUZZLE.

4 MOOC: Design by Contract, recursion

To do

1. Access the main MOOC course web page at http://se.ethz.ch/mooc/programming.

2. Listen to lecture number 10 “Design by Contract” and take the corresponding quizzes.

3. Listen to lecture number 13 “Recursion”, take the corresponding quiz and solve the pro-
gramming exercise.

Your goal is to provide all correct answers to the quizzes. You can take the quizzes as many
times as you want. If you succeed, you will be awarded a badge for each correctly solved quiz.

6

http://se.ethz.ch/mooc/programming

	An infectious task
	Short trips
	N Queens
	MOOC: Design by Contract, recursion

