
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2015

Mock Exam 2

ETH Zurich

December 2, 2015

Name:

Group:

Question 1 / 11
Question 2 / 16
Question 3 / 14
Total / 41

1

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2015

1 Contracts (11 points)

We are interested in a software system simulating a cellular automaton. The universe is repre-
sented by a finite square grid composed of square cells (there is at least 1). Each cell can be
in two states: alive or dead. Every cell, depending on its position in the grid, can have from a
minimum of 3 neighbors (a cell in a corner) to a maximum of 8 neighbors (a cell in the middle).

The evolution of the automaton from one generation to the next is fully determined by the
following set of rules:

• Any living cell with less than 2 living neighbors dies in the next generation.

• Any living cell with 2 or 3 living neighbors lives in the next generation.

• Any living cell with more than 3 living neighbors dies in the next generation.

• Any dead cell with exactly 3 living neighbors becomes alive in the next generation.

• Any dead cell with a number of living neighbors different from 3 stays dead in the next
generation.

The evolution from one generation into the next happens by applying the above rules simul-
taneously to every cell in the grid (see Figures 1 and 2).

Figure 1: Sample first generation. A black square is a living cell.

Figure 2: Second generation, computed from the first according to the given set of rules.

Your task is to add appropriate contracts (preconditions, postconditions and class invariants)
to the excerpt of class CELL GRID below, so that the informal specification above and the
feature comments are reflected in each class interface.
Please note that the number of dotted lines does not indicate the number of missing contracts.
It might also be useful to have a look at the excerpt of class ARRAY 2 shown below.

1.1 Solution

class
CELL GRID

create
make

feature {NONE} −− Initialization

2

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2015

make (a dimension: INTEGER)
−− Initialize grid ’ s dimension to ‘a dimension’ and its cells to dead.

require
dim positive : a dimension >= 1

do
−− Implementation omitted.

ensure
dim set: dim = a dimension

current grid initialized to default : current grid . all default
end

feature −− Access

dim: INTEGER
−− Grid dimension.

cell at (i , j : INTEGER): BOOLEAN
−− Value of cell at (i , j) .

require
i within bounds : i >= 1 and i <= dim
j within bounds : j >= 1 and j <= dim

do
−− Implementation omitted.

ensure
right cell : Result = current grid.item (i, j)

end

feature −− Status Setting

set cell status (b: BOOLEAN; i, j: INTEGER)
−− Set status of cell at (i , j) .

require
i within bounds : i >= 1 and i <= dim
j within bounds : j >= 1 and j <= dim

do
−− Implementation omitted.

ensure
cell status set : cell at (i , j) = b

end

feature −− Basic operations

compute next generation
−− Compute next grid, copy it to current grid and re−initialize next grid .

do
−− Implementation omitted

end

feature {NONE} −− Implementation

current grid : ARRAY2 [BOOLEAN]

3

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2015

−− Grid representation as a matrix of boolean cells (”True” means alive for a
cell) .

new state of cell (i , j , living neighbors : INTEGER): BOOLEAN
−− Apply Conway’s Game of Life rules to compute new state for cell at (i,j)

given a number of ‘living neighbors ’.
require

i within bounds : i >= 1 and i <= dim
j within bounds : j >= 1 and j <= dim
living neighbors within bounds : living neighbors >= 0 and living neighbors <=

8
do
−− Implementation omitted.

ensure
death rule 1 : current grid .item (i , j) and (living neighbors < 2 or

living neighbors > 3) implies not Result
life rule : current grid .item (i , j) and (living neighbors = 2 or

living neighbors = 3) implies Result
birth rule : not current grid .item (i , j) and (living neighbors = 3) implies

Result
death rule 2 : not current grid .item (i , j) and (living neighbors /= 3) implies

not Result
end

invariant
current grid exists : current grid /= Void
grid dimension positive : dim > 0
current grid dimension is dim: current grid .width = dim and current grid.height = dim

end

4

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2015

2 Data Structures (16 points)

In this task you are going to implement several operations for a generic class SET [G].
A set is a collection of distinct objects. Every element of a set must be unique; no two

members may be identical. All set operations preserve this property. The order in which the
elements of a set are listed is irrelevant (unlike for a sequence or tuple). Therefore the two sets
{5, 10, 12} and {10, 12, 5} are identical.

There are several fundamental operations for constructing new sets from given sets.

• Union: The union of A and B, denoted by A ∪ B, is the set of all elements that are
members of either A or B.

• Intersection: The intersection of A and B, denoted by A ∩ B, is the set of all elements
that are members of both A and B.

• Relative complement of B in A (also called the set-theoretic difference of A and B),
denoted by A\B (or A − B), is the set of all elements that are members of A but not
members of B.

The Jaccard index (or coefficient) measures similarity between sample sets, and is defined
as the size of the intersection divided by the size of the union of the sample sets (see Figure 3).
If both sets are empty the Jaccard coefficient is defined as 1.0.

J(A,B) =
|A ∩B|
|A ∪B|

Figure 3: Jaccard index definition for non-empty sets A and B.

Your task is to fill in the gaps of class SET [G] below. Please note:

• Your code should satisfy the contracts and provide new contracts where necessary.

• The set should never contain Void elements.

• The number of dotted lines does not indicate the number of missing contract clauses or
code instructions.

• The implementation of class SET [G] is based on an arrayed list. The arrayed list is set
up to use object comparison, so features like has and prune use object equality instead of
reference equality when comparing elements from the set. The following features of class
ARRAYED LIST may be useful:

class ARRAYED LIST [G]

feature
has (v: G): BOOLEAN
−− Does current include ‘v’?

start
−− Move cursor to first position if any.

extend (v: G)
−− Add ‘v’ to the end.

5

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2015

prune (v: G)
−− Remove first occurrence of ‘v’, if any, after cursor position.
−− Move cursor to right neighbor.

−− Other features are omitted.
end

2.1 Solution

class
SET [G]

create
make empty

feature {NONE} −− Initialization

make empty
−− Create empty Current.

do
create content.make (0)
content.compare objects

ensure
empty content: content.is empty

end

feature −− Access

count: INTEGER
−− Cardinality of the current set .

do
Result := content.count

end

is empty: BOOLEAN
−− Is current set empty?

do
Result := count = 0

end

has (v: G): BOOLEAN
−− Does current set contain ‘v’?

require
v /= Void

do
Result := content.has (v)

end

add (v: G)
−− Add ‘v’ to the current set.

require

6

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2015

v /= Void
do

if not has (v) then
content.extend (v)

end
ensure

in set already : old has (v) implies (count = old count)
added to set : not old has (v) implies (count = old count + 1)

end

remove (v: G)
−− Remove ‘v’ from the current set.

require
v /= Void

do
if has (v) then

content. start
content.prune (v)

end
ensure

removed count change: old has (v) implies (count = old count − 1)
not removed no count change: not old has (v) implies (count = old count)
item deleted : not has (v)

end

duplicate : like Current
−− Deep copy of Current.

do
create Result.make empty
across content as c
loop
Result.add (c.item)

end
ensure

same size: Result.count = count
same content: across content as c all Result.has (c.item) end

end

feature −− Set operations.

union (another: like Current): like Current
−− Union product of the current set and ‘another’ set.

require
another /= Void

do
Result := another.duplicate
across content as c
loop
Result.add (c.item)

end
ensure

not smaller : Result.count >= count and Result.count >= another.count

7

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2015

end

intersection (another: like Current): like Current
−− Intersection product of the current set and ‘another’ set .

require
another /= Void

do
create Result.make empty
across content as c
loop

if another.has (c.item) then
Result.add (c.item)

end
end

ensure
not bigger : Result.count <= count and Result.count <= another.count

end

difference (another: like Current): like Current
−− Set−theoretic difference of the current set and ‘another’ set .

require
another /= Void

do
create Result.make empty
across content as c
loop

if not another.has (c.item) then
Result.add (c.item)

end
end

ensure
not bigger than : Result.count <= count
not smaller than: Result.count >= count − another.count

end

feature −− Set metrics.

jaccard index (another: like Current): REAL 64
−− Jaccard similarity coefficient between current set and ‘another’ set .

require
another /= Void

do
if not (is empty and another.is empty) then
Result := intersection (another).count / union (another).count

else
Result := 1.0

end
ensure

bounds: Result >= 0.0 and Result <= 1.0
empty case: (is empty and another.is empty) implies Result = 1.0

end

8

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2015

feature {NONE} −− Implementation

content: ARRAYED LIST[G]
−− Items of the set.

invariant

content exists : content /= Void
content object comparison: content.object comparison
non negative cardinality : count >= 0

end

9

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2015

3 Recursion (14 points)

The N-queens problem is the problem of positioning N queens on an N × N board such that
no queen can attack another (i.e., share the same row, column, or diagonal). The N-queens
problem can be solved recursively: having a solution for the first 4 rows of the board can be
used to build a solution for the 5th row, as is being done in Figure 4.

Current row

Partial
Solution

Unsolved

Figure 4: An example of a partial solution

A safe location is one which cannot be attacked by any of the currently placed queens.
A routine to solve the N-queens problem, complete (partial : SOLUTION), does as follows:

if the partial solution is not yet complete, then for each safe location in the current row, add
the safe location to the solution and use this new solution to solve the problem for the next
row. The current row is partial .row count + 1; for example in Figure 4 the partial solution has
row count equal to 4, thus the current row is 5. If the solution is already complete then it is
added to the list of solutions.

You must complete the implementation of PUZZLE (which has an attribute solutions to
store all solutions) below by filling in the body of complete and attack each other . Note that a
solution can be added to the list of solutions using the extend feature from LIST.

3.1 Solution

note
description : ”N−queens puzzle.”

class
PUZZLE

feature −− Access

size : INTEGER
−− Size of the board.

solutions : LIST [SOLUTION]
−− All solutions found by the last call to ‘ solve ’.

feature −− Basic operations

solve (n: INTEGER)
−− Solve the puzzle for ‘n’ queens.

10

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2015

require
solvable : n > 3 −− All puzzles with size > 3 are solvable

do
size := n
create {LINKED LIST [SOLUTION]} solutions.make
complete (create {SOLUTION}.make empty)

ensure
solutions exists : not solutions .is empty
complete solutions : across solutions as s all s .item.row count = n end

end

feature {NONE} −− Implementation

complete (partial : SOLUTION)
−− Find all complete solutions that extend the partial solution ‘ partial ’
−− and add them to ‘solutions’.

require
partial exists : partial /= Void

local
c: INTEGER

do
if partial .row count = size then

solutions .extend (partial)
else
from

c := 1
until

c > size
loop

if not under attack (partial , c) then
complete (partial .extended with (c))

end
c := c + 1

end
end

end

under attack (partial : SOLUTION; c: INTEGER): BOOLEAN
−− Is column ‘c’ of the current row under attack
−− by any queen already placed in partial solution ‘ partial ’?

require
partial exists : partial /= Void

local
current row, row: INTEGER

do
current row := partial .row count + 1
from

row := 1
until
Result or row > partial.row count

loop
Result := attack each other (row, partial .column at (row), current row, c)

11

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2015

row := row + 1
end

end

attack each other (row1, col1 , row2, col2 : INTEGER): BOOLEAN
−− Do queens in positions (‘row1’, ‘ col1 ’) and (‘row2’, ‘ col2 ’) attack each other?

do
Result := row1 = row2 or

col1 = col2 or
(row1 − row2).abs = (col1 − col2).abs

end

end

12

	Contracts (11 points)
	Solution

	Data Structures (16 points)
	Solution

	Recursion (14 points)
	Solution

