Mock Exam 2

ETH Zurich

December 2, 2015

Name: \qquad

Group: \qquad

Question 1	$/ 11$
Question 2	$/ 16$
Question 3	$/ 14$
Total	$/ 41$

1 Contracts (11 points)

We are interested in a software system simulating a cellular automaton. The universe is represented by a finite square grid composed of square cells (there is at least 1). Each cell can be in two states: alive or dead. Every cell, depending on its position in the grid, can have from a minimum of 3 neighbors (a cell in a corner) to a maximum of 8 neighbors (a cell in the middle).

The evolution of the automaton from one generation to the next is fully determined by the following set of rules:

- Any living cell with less than 2 living neighbors dies in the next generation.
- Any living cell with 2 or 3 living neighbors lives in the next generation.
- Any living cell with more than 3 living neighbors dies in the next generation.
- Any dead cell with exactly 3 living neighbors becomes alive in the next generation.
- Any dead cell with a number of living neighbors different from 3 stays dead in the next generation.

The evolution from one generation into the next happens by applying the above rules simultaneously to every cell in the grid (see Figures 1 and 2).

Figure 1: Sample first generation. A black square is a living cell.

Figure 2: Second generation, computed from the first according to the given set of rules.
Your task is to add appropriate contracts (preconditions, postconditions and class invariants) to the excerpt of class CELL_GRID below, so that the informal specification above and the feature comments are reflected in each class interface.
Please note that the number of dotted lines does not indicate the number of missing contracts. It might also be useful to have a look at the excerpt of class ARRAY_2 shown below.

1.1 Solution

class
CELL_GRID
create
make
feature $\{N O N E\}$-- Initialization

```
    make (a_dimension: INTEGER)
        -- Initialize grid's dimension to 'a_dimension' and its cells to dead.
    require
        dim_positive: a_dimension >= 1
    do
        -- Implementation omitted.
    ensure
        dim_set:dim = a_dimension
        current_grid_initialized_to_default : current_grid. all_default
    end
feature -- Access
    dim: INTEGER
        -- Grid dimension.
        cell_at ( }i,j: INTEGER): BOOLEA
        -- Value of cell at (i,j).
        require
            i_within_bounds: i >==1 and i<= dim
            j_within_bounds: j>=1 and j<= dim
        do
            -- Implementation omitted.
        ensure
            right_cell : Result = current_grid.item (i,j)
        end
```

feature -- Status Setting
set_cell_status ($b:$ BOOLEAN; i, j : INTEGER)
-- Set status of cell at (i, j).
require
i_within_bounds: $i>=1$ and $i<=\operatorname{dim}$
j_within_bounds: $j>=1$ and $j<=\operatorname{dim}$
do
-- Implementation omitted.
ensure
cell_status_set : cell_at $(i, j)=b$
end
feature -- Basic operations compute_next_generation
-- Compute next_grid, copy it to current_grid and re-initialize next_grid. do -- Implementation omitted end
feature $\{N O N E\}$-- Implementation current_grid: ARRAY2 [BOOLEAN]
-- Grid representation as a matrix of boolean cells ("True" means alive for a cell).
new_state_of_cell (i, j, \quad living_neighbors : INTEGER): BOOLEAN

- Apply Conway's Game of Life rules to compute new state for cell at (i,j) given a number of 'living_neighbors'.
require
i_within_bounds: $i>=1$ and $i<=\operatorname{dim}$
j_within_bounds: $j>=1$ and $j<=$ dim
living_neighbors_within_bounds : living_neighbors $>=0$ and living_neighbors $<=$ 8
do
-- Implementation omitted.
ensure
death_rule_1: current_grid.item (i, j) and (living_neighbors <2 or living_neighbors >3) implies not Result
life_rule : current_grid.item (i, j) and (living_neighbors $=2$ or
living_neighbors $=3$) implies Result
birth_rule : not current_grid.item (i, j) and (living_neighbors $=3$) implies Result
death_rule_2: not current_grid.item (i, j) and (living_neighbors /=3) implies not Result
end
invariant
current_grid_exists : current_grid /= Void
grid_dimension_positive: dim >0
current_grid_dimension_is_dim: current_grid.width $=$ dim and current_grid.height $=$ dim end

2 Data Structures (16 points)

In this task you are going to implement several operations for a generic class $S E T[G]$.
A set is a collection of distinct objects. Every element of a set must be unique; no two members may be identical. All set operations preserve this property. The order in which the elements of a set are listed is irrelevant (unlike for a sequence or tuple). Therefore the two sets $\{5,10,12\}$ and $\{10,12,5\}$ are identical.

There are several fundamental operations for constructing new sets from given sets.

- Union: The union of A and B, denoted by $A \cup B$, is the set of all elements that are members of either A or B.
- Intersection: The intersection of A and B, denoted by $A \cap B$, is the set of all elements that are members of both A and B.
- Relative complement of B in A (also called the set-theoretic difference of A and B), denoted by $A \backslash B$ (or $A-B$), is the set of all elements that are members of A but not members of B.

The Jaccard index (or coefficient) measures similarity between sample sets, and is defined as the size of the intersection divided by the size of the union of the sample sets (see Figure 3). If both sets are empty the Jaccard coefficient is defined as 1.0.

$$
J(A, B)=\frac{|A \cap B|}{|A \cup B|}
$$

Figure 3: Jaccard index definition for non-empty sets A and B.
Your task is to fill in the gaps of class $S E T[G]$ below. Please note:

- Your code should satisfy the contracts and provide new contracts where necessary.
- The set should never contain Void elements.
- The number of dotted lines does not indicate the number of missing contract clauses or code instructions.
- The implementation of class $S E T[G]$ is based on an arrayed list. The arrayed list is set up to use object comparison, so features like has and prune use object equality instead of reference equality when comparing elements from the set. The following features of class ARRAYED_LIST may be useful:
class ARRAYED_LIST [G]

feature

has (v: G): BOOLEAN
-- Does current include ' v '?
start
-- Move cursor to first position if any.
extend (v:G)

- - Add ' v ' to the end.
prune ($v: G$)
-- Remove first occurrence of ' v ', if any, after cursor position.
-- Move cursor to right neighbor.
-- Other features are omitted.
end

2.1 Solution

```
class
    SET [G]
create
    make_empty
feature {NONE} -- Initialization
    make_empty
            -- Create empty Current.
        do
            create content.make (0)
            content.compare_objects
        ensure
            empty_content: content.is_empty
        end
feature -- Access
    count: INTEGER
        -- Cardinality of the current set.
        do
            Result := content.count
        end
    is_empty: BOOLEAN
        -- Is current set empty?
        do
            Result := count = 0
        end
    has (v:G): BOOLEAN
        -- Does current set contain 'v'?
        require
            v/= Void
        do
            Result := content.has (v)
        end
    add (v:G)
        -- Add 'v' to the current set.
        require
```

```
        v/= Void
        do
            if not has (v) then
            content.extend (v)
        end
    ensure
        in_set_already: old has (v) implies (count=old count)
        added_to_set: not old has (v) implies (count = old count + 1)
    end
remove (v:G)
        -- Remove 'v' from the current set.
    require
        v/= Void
    do
        if has (v) then
            content. start
            content.prune (v)
        end
    ensure
        removed_count_change: old has (v) implies (count = old count - 1)
        not_removed_no_count_change: not old has (v) implies (count = old count)
        item_deleted: not has (v)
    end
duplicate: like Current
        -- Deep copy of Current.
    do
        create Result.make_empty
        across content as c
        loop
            Result.add (c.item)
        end
    ensure
        same_size: Result.count = count
        same_content: across content as c all Result.has (c.item) end
    end
feature -- Set operations.
union (another: like Current): like Current
    -- Union product of the current set and 'another' set.
    require
        another / = Void
    do
        Result := another.duplicate
        across content as c
        loop
            Result.add (c.item)
        end
    ensure
        not_smaller: Result.count >= count and Result.count >= another.count
```

```
    end
    intersection (another: like Current): like Current
        -- Intersection product of the current set and 'another' set.
    require
        another /= Void
    do
        create Result.make_empty
        across content as c
        loop
            if another.has (c.item) then
                    Result.add (c.item)
            end
        end
    ensure
        not_bigger: Result.count <= count and Result.count <= another.count
    end
    difference (another: like Current): like Current
        -- Set-theoretic difference of the current set and 'another' set.
    require
        another /= Void
    do
        create Result.make_empty
        across content as c
        loop
            if not another.has (c.item) then
            Result.add (c.item)
            end
        end
    ensure
        not_bigger_than: Result.count <= count
        not_smaller_than: Result.count >= count - another.count
    end
feature -- Set metrics.
jaccard_index (another: like Current): REAL_64
        -- Jaccard similarity coefficient between current set and 'another' set.
    require
        another /= Void
    do
        if not (is_empty and another.is_empty) then
            Result := intersection (another).count / union (another).count
        else
            Result := 1.0
        end
    ensure
        bounds: Result >= 0.0 and Result <= 1.0
        empty_case: (is_empty and another.is_empty) implies Result = 1.0
    end
```

```
feature {NONE} -- Implementation
        content: ARRAYED_LIST[G]
        -- Items of the set.
invariant
        content_exists: content /= Void
        content_object_comparison: content.object_comparison
        non_negative_cardinality: count >=0
end
```


3 Recursion (14 points)

The N -queens problem is the problem of positioning N queens on an $N \times N$ board such that no queen can attack another (i.e., share the same row, column, or diagonal). The N-queens problem can be solved recursively: having a solution for the first 4 rows of the board can be used to build a solution for the $5^{t h}$ row, as is being done in Figure 4.

Figure 4: An example of a partial solution

A safe location is one which cannot be attacked by any of the currently placed queens.
A routine to solve the N -queens problem, complete (partial: SOLUTION), does as follows: if the partial solution is not yet complete, then for each safe location in the current row, add the safe location to the solution and use this new solution to solve the problem for the next row. The current row is partial.row_count +1 ; for example in Figure 4 the partial solution has row_count equal to 4 , thus the current row is 5 . If the solution is already complete then it is added to the list of solutions.

You must complete the implementation of PUZZLE (which has an attribute solutions to store all solutions) below by filling in the body of complete and attack_each_other. Note that a solution can be added to the list of solutions using the extend feature from LIST.

3.1 Solution

```
note
    description: "N-queens puzzle."
class
    PUZZLE
feature -- Access
    size: INTEGER
    -- Size of the board.
    solutions: LIST [SOLUTION]
    -- All solutions found by the last call to 'solve'.
feature -- Basic operations
    solve (n: INTEGER)
    -- Solve the puzzle for 'n' queens.
```

```
    require
        solvable: n> 3-- All puzzles with size > 3 are solvable
    do
        size := n
        create {LINKED_LIST[SOLUTION]} solutions.make
        complete (create {SOLUTION}.make_empty)
    ensure
        solutions_exists : not solutions.is_empty
        complete_solutions: across solutions as s all s.item.row_count = n end
    end
feature {NONE} -- Implementation
complete ( partial: SOLUTION)
    -- Find all complete solutions that extend the partial solution 'partial'
    -- and add them to 'solutions'.
    require
        partial_exists : partial /= Void
    local
        c: INTEGER
    do
        if partial.row_count = size then
            solutions.extend (partial)
        else
            from
                c:= 1
            until
            c> size
        loop
            if not under_attack ( partial, c) then
                    complete (partial.extended_with (c))
            end
            c:=c+1
        end
        end
    end
under_attack ( partial:SOLUTION; c: INTEGER): BOOLEAN
        -- Is column ' c' of the current row under attack
        -- by any queen already placed in partial solution 'partial'?
    require
        partial_exists : partial /= Void
    local
        current_row, row: INTEGER
    do
        current_row := partial.row_count + 1
        from
            row := 1
        until
            Result or row > partial.row_count
        loop
            Result := attack_each_other (row, partial.column_at (row), current_row, c)
```

```
            row := row + 1
            end
        end
        attack_each_other (row1, col1, row2, col2: INTEGER): BOOLEAN
            -- Do queens in positions ('row1', 'col1') and ('row2', 'col2') attack each other?
    do
            Result := row1 = row2 or
            col1 = col2 or
            (row1 - row2).abs = (col1 - col2).abs
    end
end
```

