
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. J. Shin

Robotics Programming Laboratory – Assignments
Fall 2015

Assignment 4: Search and rescue

ETH Zurich

Individual Demonstration: Monday, 07.12.2015 at 16:15
Individual Software Due: Monday, 07.12.2015 at 23:00

Group Work Demonstration: Thursday, 17.12.2015 at 15:15
Group Work Software Due: Thursday, 17.12.2015 at 23:00

1 Localization

1.1 Background

Mobile robot localization, also known as position estimation, is the process of determining a
robot’s pose with respect to a given map of an environment. The ability to localize is critical
to all robots that need to interact with their environment. To address this problem, researchers
have developed various algorithms. One of the popular approaches is particle filter localization.

Particle filter localization [1, 2] is a localization method using a particle filter. Particle filter
is a nonparametric filter in which a distribution is represented by a set of random samples
drawn from the distribution. The samples are called particles, Xt = {x1t , x2t , ..., xMt }, and in
localization, they represent concrete instantiations of the robot state xmt = (x, y, θ) at time t.
The number of particles, M , influences the accuracy of the localization algorithm.

Algorithm 1: Particle filter localization algorithm

Data: Xt−1: a set of particles (robot states) at time t− 1
ut: the robot control at time t
zt: the sensor measurement at time t

Result: Xt: a set of particles at time t

begin
X̄t = Xt = ∅
for m = 1 to M do

x
[m]
t = motion update(ut, x

[m]
t−1)

w
[m]
t = sensor update(zt, x

[m]
t )

X̄t = X̄t + 〈x[m]
t , w

[m]
t 〉

for m = 1 to M do
x
[i]
t = resample(X̄t)

Xt = Xt + x
[i]
t

end

The basic algorithm is shown in Algorithm 1. The algorithm takes a set of particles from
the previous time t − 1, the control input, and current measurement as input and produces a

new set of particles. The motion update function updates a previous particle x
[m]
t−1 by moving

it according to the control ut and adding some Gaussian noise. The sensor update function
updates the weight of each particle by computing the probability of the current measurement
given the robot pose. Lastly, the resample function takes the updated particles and their

1



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. J. Shin

Robotics Programming Laboratory – Assignments
Fall 2015

weights and draws new particles such that the probability of a particle x
[i]
t being drawn is

proportional to its weight w
[i]
t .

The motion update function can be implemented as a sample odometry motion model,
shown in Algorithm 2. The model estimates the robot’s motion ut between the poses xt−1 and
xt from the difference in the odometry between x̄t−1 = (x̄, ȳ, z̄)T x̄t = (x̄′, ȳ′, z̄′)T . Using the
relative motion in the odometry, the model then updates the initial pose xt−1 and outputs a
random pose xt distributed according to p(xt | ut, xt−1). The model assumes that errors in
the robot motion, represented using error parameters α1 to α4, are independent and draws a
sample perturbed by the error. The sample(b2) function can encode an approximate normal

distribution 1
2

∑12
i=1 rand(−b, b) or a triangular distribution

√
6
2 (rand(−b, b) + rand(−b, b)).

Algorithm 2: Motion update

Data: ut = (x̄t−1, x̄t)
T : the robot control at time t

xt−1 = (x, y, θ)T : initial pose at time t− 1

Result: xt: robot pose at time t

begin
– Recover relative motion parameters (δrot1, δtrans, δrot2)T from ut.
δrot1 = atan2(ȳ′ − ȳ, x̄′ − x̄)− θ̄
δtrans =

√
(x̄− x̄′)2 + (ȳ − ȳ′)2

δrot2 = θ̄′ − θ̄ − δrot1
– Perturb the motion parameters by noise in robot motion.
δ̂rot1 = δrot1 − sample(α1δ

2
rot1 + α2δ

2
trans)

δ̂trans = δtrans − sample(α3δ
2
trans + α4δ

2
rot1 + α4δ

2
rot2)

δ̂rot2 = δrot2 − sample(α1δ
2
rot2 + α2δ

2
trans)

– Update the output pose xt using the sample motion parameters.
x′ = x+ δ̂trans cos(θ + δ̂rot1)

y′ = y + δ̂trans sin(θ + δ̂rot1)

θ′ = θ + δ̂rot1 + δ̂rot2
xt = (x′, y′, θ′)T

end

After predicting a new pose for every particle, the localization algorithm updates their
weights in the sensor update step. One way to implement the sensor update function is
map matching. The core idea behind map matching is to compute the correlation between a
global map – given as input – and a local map – computed by transforming the scans into an
occupancy map. Given a robot at xt, let mx,y,local(xt) be its location in the local map and
(x, y) be the corresponding location in the global map. Assuming that both maps have the
same reference frame, the map correlation can be computed as

ρm,mlocal,xt
=

∑
x,y(mx,y − m̄)(mx,y,local(xt)− m̄)√∑

x,y(mx,y − m̄)2
∑

x,y(mx,y,local(xt)− m̄)2
(1)

Here m̄ is the average map value over the elements (N) that overlap between the maps, i.e.,

m̄ =
1

2N

∑
x,y

(mx,y +mx,y,local) (2)

From the correlation ρm,mlocal,xt
, we can compute the probability of the local map conditioned

on the global map m and the robot pose xt as

p(mlocal|xt,m) = max{ρm,mlocal,xt , 0} (3)

2



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. J. Shin

Robotics Programming Laboratory – Assignments
Fall 2015

Taking the probability from the sensor update step as the particle’s weight wt, we can
resample the particles based on their importance. A popular resample function is stochastic
universal sampling. Stochastic universal sampling draws samples evenly such that the new

sample set is not biased. Given the mean weight w̄t = 1
M

∑
M w

[m]
t and an initial random

selection winitial
t ∈ [0, w̄t), a new i’th particle x

[i]
t , where i ranges from 1 to M , is set to the

previous m’th particle x
[m]
t such that

∑m
m′=1 w

[m′]
t ≤ ((i − 1)w̄t + winitial

t ) and
∑m+1

m′=1 w
[m′]
t >

((i− 1)w̄t + winitial
t ) 1.

Particle filter localization is able to represent a wide range of distributions and thus solve
the global localization problem. In addition, if some particles are replaced by random samples,
it is able to handle the kidnapped robot problem in which a robot can find its way out of a
wrong pose prediction.

Some useful tutorials on particle filter localization include:

• http://robots.stanford.edu/papers/fox.mcmc-book.ps.gz

• http://www.cim.mcgill.ca/~yiannis/particletutorial.pdf

1.2 Task

Implement a particle filter localization algorithm. Your robot will start with an unknown pose
and will go to a goal location. You are free to implement any sensible motion and sensor update
methods. Play with the number of particles and sample distributions.

1.3 Practical Note

1.3.1 depthimage to laserscan

You can get “laser scans” from the Carmine 1.09 sensor using depthimage to laserscan. The
package takes a depth image and generates a 2D laser scan. More information on the package
is found here: http://wiki.ros.org/depthimage_to_laserscan.

1.3.2 static transform publisher

Static transform publisher publishes a static coordinate transform to tf between a frame and its
child frame. This tool is useful when the relationship two frames is static, e.g. between a robot
and its camera.

1.3.3 rosbag

Take advantage of repeatable executions! Record robot’s odometry information in a real setup
and use it each time you want to recreate the testing environment for the localization process.
Explore useful rosbag commands here: http://wiki.ros.org/rosbag/Commandline.

1.3.4 Design patterns

Always think about reusability and extendability of your code. This assignment is a good place
to apply the object-oriented approach and design patterns you have learned in the course.

1Note that the algorithm assumes that particles are indexed from 1 to M , not 0 to M − 1.

3

http://robots.stanford.edu/papers/fox.mcmc-book.ps.gz
http://www.cim.mcgill.ca/~yiannis/particletutorial.pdf
http://wiki.ros.org/depthimage_to_laserscan
http://wiki.ros.org/rosbag/Commandline


ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. J. Shin

Robotics Programming Laboratory – Assignments
Fall 2015

2 Grading

2.1 In-class demonstration

The goal of this assignment is to demonstrate how your robot can, given a map, search the
environment and rescue “people”.

2.1.1 Individual In-class demonstration (10 points): Monday, 07.12.2015 at 16:15

In the individual portion, you will demonstrate how your system can localize without knowing
its initial pose. In data/localization, you will find a bag file and an image that shows the
robot’s path.

• Motion update (2 points)

• Sensor update (2 points)

• Resample (1 point)

• Localize (5 points)

– Localized within 80 seconds (2 points)

– Stayed localized/re-localized in 120 seconds (1 point)

– Stayed localized/re-localized in 160 seconds (1 point)

– Stayed localized/re-localized in 200 seconds (1 point)

The grading scheme allows you to get partial credit even if your localization system as a
whole does not work. In other words, you can demonstrate motion update, sensor update,
and/or resample individually and get the corresponding points.

2.1.2 Group In-class demonstration (10 points): Thursday, 17.12.2015 at 15:15

In the group portion, your robot will travel to a goal from an unknown pose while looking for
“people” on the way. You will only be given the goal location; you are free to plan a path to
the goal once your robot localizes. The robot will begin in a place without any object in the
proximity, but on its way to the goal, it will encounter different objects. The environment will
have non-humans and obstacles as well, and your robot must be able to tell which of the objects
are “humans”.

The grading scheme is as follows:

• Object recognition (4 points)

– Correct recognition of “human” (2 objects, 2 points each)

∗ Label indicated by the robot (sound, LEDs, etc.) (1 point)

∗ Correctly-located bounding box in the map coordinate frame (1 point)

– Recognition of non-human as “human” (-1 point per object)

– Note: Recognized objects should be displayed in RViz in the map coordinate frame.
After a run, the RViz should only display the map and one bounding box per recog-
nized “human”. If there are multiple bounding boxes over an object, the grade will
be reduced by the number of bounding boxes.

• Speed of search (3 points)

– Within 5 seconds of the fastest robot (3 points)

4



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. J. Shin

Robotics Programming Laboratory – Assignments
Fall 2015

– Every 5 seconds thereafter (-0.1 point)

• Accuracy (3 points)

– Within 1cm of the closest robot (3 points)

– Every 1cm thereafter (-0.1 point)

• Bumping (-1 point)

Each group will get two attempts. Every extra attempt will cost 1 point.

2.2 Software quality (20 points)

On the due date at 23:00, we will collect your code through your SVN repository. Every file that
should be considered for grading must be in the repository at that time. Note that EIFGENs
folder in your project contains auxiliary files and binaries after compilation. Please, DO NOT
include EIFGENs folder into your svn repository.

2.2.1 Individual evaluation (10 points): Monday, 07.12.2015 at 23:00

• Choice of abstraction and relations (3 points)

• Correctness of implementation (4 points)

• Extendibility and reusability (2 points)

• Comments and documentation, including ”README” (1 points)

2.2.2 Group evaluation (10 points): Thursday, 17.12.2015 at 23:00

• Choice of abstraction and relations (3 points)

• Correctness of implementation (4 points)

• Extendibility and reusability (2 points)

• Comments and documentation, including ”README” (1 points)

References

[1] Thrun, S., Burgard, W., Fox, D. 2005. Probabilistic Robotics MIT Press. Chapters 5, 6, and
8.

[2] Dellaert, F., Fox, D., Burgard, W., Thrun, S., 1999. Monte Carlo Localization for Mobile
Robots, ICRA99.

5


	Localization
	Background
	Task
	Practical Note
	depthimage_to_laserscan
	static_transform_publisher
	rosbag
	Design patterns


	Grading
	In-class demonstration
	Individual In-class demonstration (10 points): Monday, 07.12.2015 at 16:15
	Group In-class demonstration (10 points): Thursday, 17.12.2015 at 15:15

	Software quality (20 points)
	Individual evaluation (10 points): Monday, 07.12.2015 at 23:00
	Group evaluation (10 points): Thursday, 17.12.2015 at 23:00



