
Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer
Jiwon Shin

Lecture 5: Obstacle Avoidance

2

Obstacle avoidance: our perspective

3

Obstacle avoidance: robot’s perspective

4

Bug algorithms

 Known:

 Goal position

 Current position

 Sensing ability to detect nearby obstacles

 Sense -> Act: does not store any past information

 Sensor:

 Bug 0, Bug 1, Bug 2: tactile sensor

 Tangent Bug: range sensor

5

Bug 0

1. Move toward the goal:

1. If the goal is reached: Stop

2. If an obstacle is in the way: Go

to step 2

2. Follow the obstacle boundary:

1. If no obstacle in the way, go

back to step 1.

Goal

6

When does Bug 0 fail?

Goal

7

Bug 1

1. Move toward the goal:

1. If the goal is reached: Stop

2. If an obstacle is in the way: Go

to step 2

2. Follow the obstacle boundary:

1. Mark the closest

2. After a complete loop: Go to

the closest point to the goal

then go back to step 1.

Goal

Lumelsky , V. & Stepanov, A. “Path-planning strategies for a point mobile automaton moving amidst unknown
obstacles of arbitrary shape,” . Algorithmica 2:403-430. 1987

8

Will Bug 1 fail?

Goal

9

How much would Bug 1 travel?

Given

 D: distance between start and goal

 Pi: Perimeter of i’th obstacle

Shortest travel distance?

 D

Longest travel distance?

 D + 1.5 i Pi

Goal

10

Bug 2

1. Move toward the goal:

1. If the goal is reached: Stop

2. If an obstacle is in the way: Go

to step 2

2. Follow the obstacle boundary:

1. If the goal line is crossed and

is closer to the goal: Go to

step 1.

Goal

Lumelsky , V. & Skewis, T. “Incorporating range sensing in the robot navigation function,” IEEE Transactions on
Systems, Man, and Cybernatics 20(5): 1058-1068, 1990.

11

Is crossing the goal line important?

Bug 0 Bug 2

Goal Goal

12

How well does Bug 2 work?

Goal

Closer to the
goal

Towards the
goal

13

How well does Bug 2 work?

Goal

14

How well does Bug 2 work?

Goal

15

How much would Bug 2 travel?

Given

 D: distance between start and goal

 Pi: Perimeter of i’th obstacle

 ni: number of times i’th obstacle

crosses the goal line

Shortest travel distance?

 D

Longest travel distance?

 D + 1/2 i ni Pi

Goal

16

Bug 1 vs Bug 2

Bug 1

 Exhaustive search: analyze all

choices before committing

 More predictable performance

Bug 2

 Greedy search: take the first

viable choice

 Generally outperforms Bug 1 but

could be worse if the obstacles

are complex

17

Can we do better if we can see more?

18

TangentBug

1. Move toward the goal:

1. If the goal is reached: Stop

2. If a local minimum is

detected: Go to step 2

2. Move along the boundary

marking dmin:

1. If the goal is reached: Stop

2. If d(Vleave, goal) < dmin : Go to

step 3

3. Perform the transition phase:

1. Move directly towards Vleave

until Z, where d(Z, goal) <

dmin: Go to step 1

Goal

Kamon, I., Rimon, E. & Rivlin, E. “TangentBug: A Range-Sensor-Based Navigation Algorithm,” The International
Journal of Robotics Research. 17(9): 934-953, 1998.

Vleave

19

Visibility graph & tangent graph

Visibility graph Tangent graph

Goal

Start

Goal

Start

20

Local tangent graph

Goal

Start

Gnode

R

21

Local minimum detection

Goal

d(x, goal) ≤ d(V, goal) for all V

22

Wall Following

vwall := p2 – p1

vdistance := (dcurrent – ddesired) * vperpendicular

vrobot := ddesired * vwall + vdistance

p2

p1

23

Leave condition detection

Goal

d(Vleave, goal) < dmin

Vleave

24

Sensor range

Zero Infinite

Goal
dmin

Vleave

dmin

Vleave

Goal

25

Unreachable goal

Goal

26

Loop closure

Challenging!

 Drift

 Limited sensor information

27

Software engineering tips

class

TANGENT_BUG

feature

update_velocity (…)

do

if state = go_to_goal_s then

go_to_goal (…)

elseif state = wall_following_s then

follow_wall (…)

elseif state = transition_s then

transition_to_goal (…)

…

end

class

TANGENT_BUG

feature

update_velocity (…)

do

current_state.update_velocity (…)

…

end

current_state: STATE

deferred class

STATE

feature

update_velocity (…)

class

GO_TO_GOAL_STATE

inherit

STATE

