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Obstacle avoidance: our perspective
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Obstacle avoidance: robot’s perspective
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Bug algorithms

 Known:

 Goal position

 Current position

 Sensing ability to detect nearby obstacles

 Sense -> Act: does not store any past information

 Sensor:

 Bug 0, Bug 1, Bug 2: tactile sensor

 Tangent Bug: range sensor
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Bug 0

1. Move toward the goal:

1. If the goal is reached: Stop

2. If an obstacle is in the way: Go 

to step 2

2. Follow the obstacle boundary:

1. If no obstacle in the way, go 

back to step 1.

Goal
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When does Bug 0 fail?

Goal
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Bug 1

1. Move toward the goal:

1. If the goal is reached: Stop

2. If an obstacle is in the way: Go 

to step 2

2. Follow the obstacle boundary:

1. Mark the closest 

2. After a complete loop: Go to 

the closest point to the goal 

then go back to step 1.

Goal

Lumelsky , V. & Stepanov, A. “Path-planning strategies for a point mobile automaton moving amidst unknown 
obstacles of arbitrary shape,” . Algorithmica 2:403-430. 1987
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Will Bug 1 fail?

Goal
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How much would Bug 1 travel?

Given

 D: distance between start and goal

 Pi: Perimeter of i’th obstacle

Shortest travel distance?

 D

Longest travel distance?

 D + 1.5  i Pi

Goal
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Bug 2

1. Move toward the goal:

1. If the goal is reached: Stop

2. If an obstacle is in the way: Go 

to step 2

2. Follow the obstacle boundary:

1. If the goal line is crossed and 

is closer to the goal: Go to 

step 1.

Goal

Lumelsky , V. & Skewis, T. “Incorporating range sensing in the robot navigation function,” IEEE Transactions on 
Systems, Man, and Cybernatics 20(5): 1058-1068, 1990.
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Is crossing the goal line important?

Bug 0 Bug 2

Goal Goal
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How well does Bug 2 work?

Goal

Closer to the 
goal

Towards the 
goal
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How well does Bug 2 work?

Goal
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How well does Bug 2 work?

Goal
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How much would Bug 2 travel?

Given

 D: distance between start and goal

 Pi: Perimeter of i’th obstacle

 ni: number of times i’th obstacle 

crosses the goal line

Shortest travel distance?

 D

Longest travel distance?

 D + 1/2  i ni Pi

Goal
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Bug 1 vs Bug 2

Bug 1

 Exhaustive search: analyze all 

choices before committing

 More predictable performance

Bug 2

 Greedy search: take the first 

viable choice

 Generally outperforms Bug 1 but 

could be worse if the obstacles 

are complex
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Can we do better if we can see more?
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TangentBug

1. Move toward the goal:

1. If the goal is reached: Stop

2. If a local minimum is 

detected: Go to step 2

2. Move along the boundary 

marking dmin:

1. If the goal is reached: Stop

2. If  d(Vleave, goal) < dmin : Go to 

step 3

3. Perform the transition phase:

1. Move directly towards Vleave

until Z, where d(Z, goal) < 

dmin: Go to step 1

Goal

Kamon, I., Rimon, E. & Rivlin, E. “TangentBug: A Range-Sensor-Based Navigation Algorithm,” The International 
Journal of Robotics Research. 17(9): 934-953, 1998.

Vleave
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Visibility graph & tangent graph

Visibility graph Tangent graph

Goal

Start

Goal

Start
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Local tangent graph

Goal

Start

Gnode

R
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Local minimum detection

Goal

d(x, goal) ≤ d(V, goal) for all V
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Wall Following

vwall := p2 – p1

vdistance := (dcurrent – ddesired) * vperpendicular

vrobot := ddesired * vwall + vdistance

p2

p1
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Leave condition detection

Goal

d(Vleave, goal) < dmin

Vleave
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Sensor range

Zero Infinite

Goal
dmin

Vleave

dmin

Vleave

Goal
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Unreachable goal

Goal
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Loop closure

Challenging!

 Drift

 Limited sensor information
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Software engineering tips

class

TANGENT_BUG

feature

update_velocity ( … )

do

if state = go_to_goal_s then

go_to_goal ( … )

elseif state = wall_following_s then

follow_wall ( … )

elseif state = transition_s then

transition_to_goal ( … )

…

end

class

TANGENT_BUG

feature

update_velocity ( … )

do

current_state.update_velocity ( … )

…

end

current_state: STATE

deferred class

STATE

feature

update_velocity ( … )

class

GO_TO_GOAL_STATE

inherit

STATE


