
ETH Zurich - 31 March 2004

1

Chair of Software Engineering

From Patterns to Components

Karine Arnout

Ph.D. defense, ETH Zurich

ETH Zurich - 31 March 2004

2

Chair of Software Engineering

Assumption and conjecture

Assumption:
It is better to reuse than to redo

(even to redo with the help of a model)

Conjecture:
Many design patterns can be turned into reusable
components

ETH Zurich - 31 March 2004

3

Chair of Software Engineering

Main contributions

Pattern componentizability classification

Pattern Library

Pattern Wizard

ETH Zurich - 31 March 2004

4

Chair of Software Engineering

Main contributions

Pattern componentizability classification

Pattern Library

Pattern Wizard

ETH Zurich - 31 March 2004

5

Chair of Software Engineering

Componentization: a definition

Process of devising a reusable component that
provides a ready-made implementation of a design
pattern directly usable by any client application.

A design pattern is given by one or more of
A description of the pattern’s intent
Use cases
A software architecture for typical
implementations

ETH Zurich - 31 March 2004

6

Chair of Software Engineering

Componentization mechanisms

Client-supplier relationship
Simple inheritance
Multiple inheritance
Unconstrained genericity
Constrained genericity
Design by Contract
Automatic type conversion
Agents
Aspects

2 categories of patterns:
Componentizable
Non-componentizable

ETH Zurich - 31 March 2004

7

Chair of Software Engineering

Criteria for success

Completeness
Usefulness
Faithfulness
Type-safety
Performance
Extended applicability

ETH Zurich - 31 March 2004

8

Chair of Software Engineering

Componentizability classification

2.1
Skeleton

2.1.2
No method

2.1.1
Method

2.3
Some library

support

1.
Componentizable

2.2
Possible
skeleton

2.
Non-componentizable

1.3
Newly

componentized

1.1
Built-in

1.2
Library-

supported

1.3.2
Componentizable

but not comprehensive

1.3.1
Fully

componentizable

1.3.3
Componentizable

but unfaithful

1.3.4
Componentizable

but useless

Design pattern

2.4
Design

idea

1.4
Possible

component
Prototype

Flyweight
Observer
Mediator

Abstract Factory
Factory Method

Visitor
Command
Composite

Chain of Responsibility

Builder
Proxy
State

Strategy Memento
Decorator
Adapter

Template Method
Bridge

Singleton Iterator Facade
Interpreter

ETH Zurich - 31 March 2004

9

Chair of Software Engineering

Main contributions

Pattern componentizability classification

Pattern Library

Pattern Wizard

ETH Zurich - 31 March 2004

10

Chair of Software Engineering

The original Visitor pattern

+
BOOK

+
VIDEO_RECORDER

*
VISITOR

+
MAINTENANCE

_VISITOR

+
DISPLAY_
VISITOR

accept*

accept+ accept+

visit_book*

visit_book+visit_book+
visit_video_recorder+visit_video_recorder+

visit_video_recorder*

*
BORROWABLE

Can we make it easier for the application developer?

ETH Zurich - 31 March 2004

11

Chair of Software Engineering

The Visitor Library

One generic class VISITOR [G]
e.g. maintenance_visitor: VISITOR [BORROWABLE]

Actions represented as agents
actions: LIST [PROCEDURE [ANY, TUPLE [G]]]

No need for accept features
visit determines the action applicable to the
given element

For efficiency
Topological sort of actions (by conformance)
Cache (to avoid useless linear traversals)

ETH Zurich - 31 March 2004

12

Chair of Software Engineering

Visitor Library interface (1/2)

class interface

VISITOR [G]

create

make

feature {NONE} -- Initialization

make
-- Initialize actions.

feature -- Visitor

visit (an_element: G)
-- Select action applicable to an_element.

require
an_element_not_void: an_element /= Void

feature -- Access

actions: LIST [PROCEDURE [ANY, TUPLE [G]]]
-- Actions to be performed depending on the element

ETH Zurich - 31 March 2004

13

Chair of Software Engineering

Visitor Library interface (2/2)

feature -- Element change

extend (an_action: PROCEDURE [ANY, TUPLE [G]])
-- Extend actions with an_action.

require
an_action_not_void: an_action /= Void

ensure
one_more: actions.count = old actions.count + 1
inserted: actions.last = an_action

append (some_actions: ARRAY [PROCEDURE [ANY, TUPLE [G]]])
-- Append actions in some_actions
-- to the end of the actions list.

require
some_actions_not_void: some_actions /= Void
no_void_action: not some_actions.has (Void)

invariant

actions_not_void: actions /= Void
no_void_action: not actions.has (Void)

end

ETH Zurich - 31 March 2004

14

Chair of Software Engineering

How to use the Visitor Library

maintenance_visitor: VISITOR [BORROWABLE]
a_book: BOOK
a_video_recorder: VIDEO_RECORDER
…
create maintenance_visitor.make
maintenance_visitor.append ([

agent maintain_book,
agent maintain_video_recorder

])
maintenance_visitor.visit (a_book)
maintenance_visitor.visit (a_video_recorder)
…
maintain_book (a_book: BOOK) is ...
maintain_video_recorder (a_recorder: VIDEO_RECORDER) is ...

ETH Zurich - 31 March 2004

15

Chair of Software Engineering

Visitor Library: practical assessment

The case study
The target: Gobo Eiffel Lint (gelint)
Consistency analyzer for Eiffel programs
Realistic, full-scale example

The benchmarks
gelint applied to gelint itself (≈ 700 classes)
gelint applied to a system from AXA Rosenberg
(large-scale financial application, ≈ 9800 classes)

ETH Zurich - 31 March 2004

16

Chair of Software Engineering

Effect on program size

Metric Original
gelint

Modified
gelint

Difference
(in value)

Difference
(%)

Lines of code 198 263 195 512 -2751 -1.4%

Classes 717 718 +1 +0.1%

Features 67 382 63 421 -3961 -5.9%

Clusters 109 110 +1 +0.9%

Executable size 4104 KB 3660 KB -444 KB -10.8%

ETH Zurich - 31 March 2004

17

Chair of Software Engineering

Effect on performance

Measurements for the AXA Rosenberg system:

Degrees Original
gelint

Modified
gelint

Difference
(in value)

Difference
(%)

0 0%

0%

+30%

+44%

0

+7

+11

Degree 6 6 6

Degree 5 51 51

Degree 4 23 30

Degree 3 25 36

(All times in seconds)

The Visitor Library is usable on a real-world
large-scale system.

ETH Zurich - 31 March 2004

18

Chair of Software Engineering

Visitor: Componentization outcome

Completeness
All cases of the pattern

Usefulness
Reusable
Easy-to-use (no accept feature)

Faithfulness
No double-dispatch mechanism; agents instead

Type-safety
Type-safe (there may be no action associated with a type)

Performance
Less than twice as slow as the Visitor pattern

Extended applicability
No more cases

Successful componentization

ETH Zurich - 31 March 2004

19

Chair of Software Engineering

Decorator pattern

*
COMPONENT

+
MY_COMPONENT

*
DECORATED_
COMPONENT

+
DECORATED_

COMPONENT_B

+
DECORATED_

COMPONENT_ASOME_TYPE

component

additional_
attribute

ETH Zurich - 31 March 2004

20

Chair of Software Engineering

Decorator: Componentization outcome (1/2)

Genericity
Idea: have a class DECORATED_COMPONENT [G]
Constraint: a DECORATED_COMPONENT must be
a COMPONENT

class
DECORATED_COMPONENT [G −> COMPONENT]

inherit
G

...
end

Invalid code

ETH Zurich - 31 March 2004

21

Chair of Software Engineering

Decorator: Componentization outcome (2/2)

Automatic type conversion
Decoration added to a clone of the original
object, not the object itself

Agents
Cannot add an attribute to a given component

Design by Contract
Improves a reusable component; does not
make a component reusable

Aspects
Cannot decorate only certain components

Non-componentizable pattern

ETH Zurich - 31 March 2004

22

Chair of Software Engineering

Main contributions

Pattern componentizability classification

Pattern Library

Pattern Wizard

ETH Zurich - 31 March 2004

23

Chair of Software Engineering

Pattern Wizard

Applicable to non-componentizable patterns
Automatically generates skeleton classes

→ Generated code

ETH Zurich - 31 March 2004

24

Chair of Software Engineering

Limitations of the approach

One pattern, several possible implementations

Language dependency
Genericity
Agents

Componentizability vs. usefulness
Usage complexity
Performance overhead

ETH Zurich - 31 March 2004

25

Chair of Software Engineering

Future work

More patterns, more components

More steps towards quality components
Contract-based testing
Contracts for non-Eiffel components

ETH Zurich - 31 March 2004

26

Chair of Software Engineering

Conclusion

Originally, an academic work with three goals:
New pattern classification
Pattern Library
Pattern Wizard

Outcomes directly applicable in the industry:
High-quality reusable components
Automatic generation tool simplifies the
programmer’s task
Classification tells where to look for help

ETH Zurich - 31 March 2004

27

Chair of Software Engineering

Design patterns are good, components are better

“A successful pattern cannot just be a book
description: it must be a software component,
or a set of components”.

Bertrand Meyer, Object-Oriented Software
Construction, 2nd edition, 1997, p 72.

ETH Zurich - 31 March 2004

28

Chair of Software Engineering

Thank you very much

ETH Zurich - 31 March 2004

29

Chair of Software Engineering

ETH Zurich - 31 March 2004

30

Chair of Software Engineering

Correctness and validity (1/2)

Design patterns are not formally specified:

“Patterns are not, by definition, fully formalized descriptions.
They can’t appear as a deliverable.”

J-M. Jézéquel, Design Patterns and Contracts,
1999, p 22.

Componentization:
I made my understanding of each pattern explicit through
assertions in the

componentized version of componentizable patterns
Skeleton classes of non-componentizable patterns

The Pattern Wizard has been tested according to these
contracts

ETH Zurich - 31 March 2004

31

Chair of Software Engineering

Validation strategy (2/2)

Validation strategy for the Pattern Library and the skeleton classes
generated by the Pattern Wizard

1st step: Test-cases (implementation meets the contracts)
http://se.inf.ethz.ch/people/arnout/patterns/
2nd step: Use a real-world application or library and replace its
usage of a given pattern by calls to the component or skeleton
classes

Validation of the Pattern Library:
Visitor Library in Gobo Eiffel Lint
Event Library in ESDL and EiffelVision2

Validation of the Pattern Wizard:
Good candidate for the Bridge pattern: EiffelVision2
Limitation of the Wizard: Build classes from scratch, cannot use
existing classes
⇒ Cannot apply 2nd step of the validation strategy
Future work:

Accept existing classes in the Pattern Wizard
Validate the wizard with the Bridge pattern in Vision2

http://se.inf.ethz.ch/people/arnout/patterns/

ETH Zurich - 31 March 2004

32

Chair of Software Engineering

Mechanisms used for componentization

Mechanism Number of
patterns

Percentage

Unconstrained genericity
(non-exclusive)

13 72.2%

Constrained genericity
(non-exclusive)

7 38.9%

Agents
(non-exclusive)

11 61.1%

ETH Zurich - 31 March 2004

33

Chair of Software Engineering

Performance of agents

One million calls to a routine that does nothing:
Directly: 2s (2µs per call)
With agents: 14s (14µs per call)

One million calls to a routine that executes
do_nothing twenty times:

Directly: 33s (33µs per call)
With agents: 46s (46µs per call)

In real applications, no more than 5% of the time
spent in feature calls will be calls to agents
⇒ Application with agents ≈ 0,07 times as slow
⇒ Acceptable performance overhead in most cases

	From Patterns to Components
	Assumption and conjecture
	Main contributions
	Main contributions
	Componentization: a definition
	Componentization mechanisms
	Criteria for success
	Componentizability classification
	Main contributions
	The original Visitor pattern
	The Visitor Library
	Visitor Library interface (1/2)
	Visitor Library interface (2/2)
	How to use the Visitor Library
	Visitor Library: practical assessment
	Effect on program size
	Effect on performance
	Visitor: Componentization outcome
	Decorator pattern
	Decorator: Componentization outcome (1/2)
	Decorator: Componentization outcome (2/2)
	Main contributions
	Pattern Wizard
	Limitations of the approach
	Future work
	Conclusion
	Design patterns are good, components are better
	Thank you very much
	
	Correctness and validity (1/2)
	Validation strategy (2/2)
	Mechanisms used for componentization
	Performance of agents

