
Efficient Data Race and Deadlock Prevention
in Concurrent Object-Oriented Programs
 Piotr Nienaltowski

ETH Zurich
8092 Zurich, Switzerland

+41 16 32 44 68

Piotr.Nienaltowski@inf.ethz.ch

ABSTRACT
The main goal of this PhD thesis is to propose and implement a
methodology for the construction of programs based on the
SCOOP model, and for modular reasoning about their correctness
and liveness properties. In particular, the set of correctness rules
that guarantee the absence of data races will be refined and
formalized; an augmented type system will be proposed to
enforce these rules at compile time. Furthermore, an efficient
methodology for deadlock prevention, avoidance, detection, and
resolution will be developed. A working implementation of
SCOOP will be provided. It will take into consideration the
proposed mechanisms and serve as a basis for further refinements
of the model.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming –
parallel programming. D.1.5 [Programming Techniques]:
Object-Oriented Programming. D.2.4 [Software Engineering]:
Software/Program Verification – correctness proofs,
programming by contract.

General Terms
Languages, Verification.

Keywords
Object-oriented concurrency, SCOOP model, deadlocks, data
races, ownership types, Eiffel.

1. STATEMENT OF THE PROBLEM
The main goal of this PhD thesis is to propose and implement a
methodology for the construction and verification of programs
based on the SCOOP model [1]. SCOOP (Simple Concurrent
Object-Oriented Programming) was introduced by Bertrand
Meyer as an extension of the Eiffel language. The lack of a
formal semantics for SCOOP makes it difficult to assess the
model with respect to other existing approaches. This thesis
should fill in the gap by carrying out an in-depth analysis of the
model and proposing adequate solutions to the problems
encountered. A methodology for modular proofs of safety and
liveness properties of concurrent programs will be proposed. In
particular, we will focus on data race and deadlock prevention.

2. SCOOP
SCOOP uses the basic scheme of object-oriented computation:
feature call, e.g. x.f (a). In a sequential setting, such calls are
synchronous. To introduce concurrency, SCOOP allows the use
of more than one processor to handle execution of features. A
processor is an autonomous thread of control capable of
supporting the sequential execution of instructions on one or more
objects. If different processors are used for handling the client and
the supplier objects, the feature call becomes asynchronous. A
declaration of an entity or function may be of the form
x: separate SOME_CLASS. The keyword separate indicates that
entity x is handled by a different processor, so that calls on x
should be asynchronous. To provide exclusive locking of objects,
SCOOP relies on argument passing. For instance, to obtain
exclusive access to a separate object buf, it suffices to pass it as an
argument of the corresponding call, as in store (buf, 10). To
provide conditional synchronization, SCOOP introduces a new
semantics for preconditions. Preconditions involving calls on
separate objects change their semantics: they become wait
conditions. Such preconditions cause the client to wait until they
are satisfied.

3. KEY QUESTIONS AND RESULTS
3.1 Data races
Concurrent programs should be free from data races. Four
separateness consistency rules and the separate call rule [1] of
SCOOP seem to ensure this property. Unfortunately, these rules
are not strong enough to ensure the absence of data races when
Eiffel’s agent1 mechanism, introduced after the original SCOOP
design, is used. Also, expanded types are not well integrated in
SCOOP. We claim, for example, that the separateness consistency
rule for expanded types is too restrictive – it rules out useful
programs. It is necessary to refine the SCOOP rules to integrate
both agents and expanded types. It is impossible to check the
rules statically using the standard Eiffel type system because
separateness is a property of objects, not classes; the conformance
of separate and non-separate entities cannot be expressed
statically in terms of subclassing. Therefore, we formalize the
refined rules by introducing an augmented type system for Eiffel.
A type checker can check the type conformance (thus data race
freedom) of SCOOP programs at compile time. The proposed
type system (inspired by the ownership type system for JavaCard
[2]) augments Eiffel’s types with context tags.

1 Agents are used in Eiffel to encapsulate routine calls. One can

think of them as a more sophisticated form of .NET delegates.

Copyright is held by the author/owner(s).
OOPSLA’04, Oct. 24–28, 2004, Vancouver, British Columbia, Canada.
ACM 1-58113-833-4/04/0010.

Let TypeId denote the set of declared type identifiers of a given
Eiffel program. We define the set of tagged types as

TypeIdseplocTaggedType ×= },{

where loc and sep are context tags denoting local (non-separate)
and separate types, respectively. The subtype relation p on
tagged types is the smallest reflexive, transitive relation satisfying
the following axioms, where α is a tag, ,, TypeIdTS ∈ and Eiffelp

denotes the subtype relation on TypeId :

() () TSTS Eiffelpp ⇔,, αα () ()TsepT ,, pα

This results in a very simple but sufficiently expressive type
system for SCOOP. We illustrate it with the feature call rule that
ensures the mutual exclusion policy:

 Γ |- e1:: (α, T), Γ |- e2:: (β, S), (α, T) * (β, S) p (αp,Tp)
 α = sep ⇒ e1 ∈ FormArg

 Γ |- e1.f (e2) :: (α, T) * (αr, Tr)

where Γ is the declaration environment, FormArg is the set of
formal arguments of the routine where the expression is
evaluated, (αp,Tp) is the type of the formal argument of feature f
and (αr, Tr) is the type of its result (for simplicity, we assume here
that f has only one argument). We define the type combinator

TaggedTypeTaggedTypeTaggedType →×:* as:

() () ()
()⎩

⎨
⎧ =

=∗
otherwiseSsep

locifS
ST

,
,

,,
αβ

βα

In comparison to the state-of-the-art approaches to data race
prevention (e.g. [3]), this solution is much simpler and less
restrictive — it allows the programmer to use the full potential of
the underlying programming language (Eiffel). It does not impose
complicated code annotations — one keyword separate is
sufficient. Also, data race freedom is proved compositionally, i.e.
if feature f has been proved to be data-race-free, the proofs of
other features that use f can rely of f’s interface without using its
implementation details. The approach fully supports inheritance
and other object-oriented techniques.

3.2 Deadlocks
SCOOP is deadlock-prone. To eliminate deadlocks, we take the
following approach. In a first step, we assume that there is a
perfect run-time mechanism for deadlock detection and
resolution. Secondly, we classify deadlocks according to their
nature and devise a strategy for preventing each kind of deadlock.
The strategy should be based on statically checkable rules for
features; proofs should be modular and automated. By stepwise
refinement of these strategies, we weaken the initial assumption
on the perfect runtime mechanism for deadlock detection and
resolution: since certain classes of deadlocks are excluded, the
runtime mechanism can be simplified. We implement the
mechanism. Finally, we devise an extended axiomatic system à la
Owicki and Gries [4] that will allow for manual proofs of
deadlock freedom in case fully automated proofs are impossible.

We can think of at least two interesting properties of features:
global deadlock freedom and local deadlock freedom. Feature f is
globally deadlock free iff it never introduces any deadlock,

independently of any other features that might be executed in
parallel with f. Feature f is locally deadlock free iff it does not
introduce any deadlock, assuming that no other feature is
executed in parallel with f.

The proofs should be modular. Therefore, in order to prove a
property of feature f, we can only rely on the interface and the
body of f, the interfaces of all the features used in f, and the
invariant of the class where f is declared. In Eiffel, the interface of
a feature is represented by its signature and its contract (pre- and
postconditions). For reasoning about deadlocks, we need to
extend the interface with some additional information: the set of
processors that the feature uses. We introduce the concept of
resource that abstracts a processor (due to space restriction of the
present document, we only give informal definitions). The set of
all resources on which feature f depends is denoted as Depf. It
includes all the resources associated with the entities that the
feature accesses or modifies. We can express some interesting
properties (a denotes the resource associated with the entity a):

⇒≠∧∈∈∀ CurrentaDepaFormArga ff .(f locks a)

{ }⇒∪⊆ CurrentFormArgDep ff f is globally deadlock-free

The first rule refines and formalizes the policy for locking
separate formal arguments. The second result shows how to prove
deadlock freedom; it could be used in our proof system.

Global deadlock freedom is certainly more interesting than local
deadlock freedom – ideally, we would like to prove that our
programs are globally deadlock free. Unfortunately, in many
cases it is impossible to prove this property compositionally
without restricting the amount of potential concurrency. Local
deadlock freedom is a weaker property but it is strong enough to
rule out a large number of potential deadlocks. Also,
compositional proofs of local deadlock freedom are much
simpler.

An important contribution of our approach is to integrate static
techniques for deadlock prevention with a run-time mechanism
for deadlock detection and resolution. Programmers are given the
liberty to choose to what extent they want to rely on static
checking. It allows them to find the right balance between the
guarantee of complete deadlock-freedom and the potential amount
of concurrency. This is an important step forward in comparison
to the current techniques (see [3]).

4. REFERENCES
[1] Meyer, B. Object-Oriented Software Construction, 2nd

edition, Prentice Hall, 1997.
[2] Müller, P. and Poetzsch-Heffter, A. A Type System for

Checking Applet Isolation in Java Card, Formal Techniques
for Java Programs, 2001.

[3] Boyapati, C. et al.. Ownership Types for Safe Programming:
Preventing Data Races and Deadlocks, OOPSLA’02, Seattle,
November 2002.

[4] Owicki, S. and Gries, D. Verifying Properties of Parallel
Programs: An Axiomatic Approach, Communications of the
ACM, 19(5), 1972, 279-285.

