
Visualize and Open Up

Michela Pedroni and Till G. Bay

Chair of Software Engineering, ETH Zurich
8092 Zurich, Switzerland

{pedronim | bay}@inf.ethz.ch

Abstract. Motivating students of the Nintendo generation for Com-
puter Science can only be achieved by providing them with an exiting
and fresh CS1 course. The article describes the experience of redesigning
the introductory programming course at ETH Zurich and shows how
the combination of state-of-the-art visualizations with open project
assignments enlivens students’ enthusiasm for programming. It shows
the setup and the involved libraries, provides example applications
that were built in the course, and presents the data gathered in the
evaluation of the open assignment.

Keywords CS1, introductory programming, open assignments,
visualization, multi-media

1 Introduction

Today’s students are used to graphical programs; the levels are set by the
computer games they play in their spare time. Graphical and multimedia
applications are what they want to produce. Together with others (Guz-
dial and Soloway, 2002; Feldman and Zelenski, 1996; Becker, 2001), we
believe that to ”make CS courses fun” (Mahmoud, 2005) and motivate
students by using state-of-the-art graphics/multimedia libraries together
with freedom for creativity is critical to their success in learning.

Over the past three years, we have significantly changed the way we
teach programming to first semester CS students by taking a new ap-
proach, called the Inverted Curriculum (Pedroni and Meyer, 2006). The
Inverted Curriculum is an objects-first, component-based approach rely-
ing on a large software framework with a strong visual aspect. Using this
approach, students start out as consumers of library components by using
their abstract interfaces, before they progressively discover the implemen-
tations. At the end of the course, they are capable of producing similar
software elements themselves. This results in a topic introduction that
is outside-in, starting with the notion of object, method call, and class
interface, while the internals, such as control structures, local variables,



and assignments, are covered later in the course. The Inverted Curriculum
allows students to produce interactive graphical applications right from
the start, taking advantage of the power of provided libraries.

A project assignment on which students work in small groups over
a period of 4-5 weeks complements the course redesign. While in the
first iteration of the course (2003/2004) the project assignment specified
in detail what kind of application the students should produce, in the
subsequent two iterations the project was completely opened up. The
main intentions of using an open project instead of small, controlled tasks
were:

– Teamwork. Since teamwork is encouraged, students learn to collab-
orate with their peers.

– Quality of code. Style, good design, and clean work are emphasized
as students need to use the code previously produced by advanced
students to finish the project.

– Project development. Students experience all the phases of the
project development starting with the formulation of a project idea,
defining the design of the system, implementation, testing, and the
delivery of the final product.

– Adaptation to skills. With the extreme diversity of student back-
grounds in introductory programming, an immediate goal is to keep
the course work feasible for the students with little experience, while
not boring the experienced programmers of the class. The open project
assignment helps to reach this goal since the tasks to be done can be
adapted to the capabilities of each of the teams.

– Creativity. Keeping the topic of the project open stimulates the
imagination of the students and allows for great creativity.

– Motivation. Learning to program is difficult and needs a lot of prac-
tice. Only if students are motivated to invest the time, this can be
achieved.

– Visibility. The outcome of the project is entirely the students’ own
merit; it is an achievement they can be proud of and show to relatives
and friends.

The idea of open project assignments is not novel, but only a few
instructors have reported on their experience with it. Sindre, Line, and
Valvag (Sindre et al., 2003) let students freely choose what kind of game
they produce. Parberry et al. follow their example also using games and
state ”[. . . ] that the element of creativity, student morale, the quality
of the resulting games, and the outcomes all suffer when any kind of



constraint is placed on the game being developed” (Parberry et al., 2005).
We agree with Parberry and believe that we can and should go even one
step further. We refrain from narrowing down the domain of projects
and therefore put no limitations to students’ creativity, thus motivating
exceptional results.

This paper presents the implementation of the open assignment and
accompanies it with the results and feedback gained. Section 2 describes
the general setting and the libraries used during the course, while Sec-
tion 3 explains the implementation of the open project assignment. Sec-
tion 4 expands on the results and feedback provided by the students, and
Section 5 presents the conclusions.

2 Setting

2.1 Course setup

Since winter 2003 the Introduction to Programming course for first
semester Computer Science majors implements the ideas of the Inverted
Curriculum. The number of students that participated in the courses so
far is approximately 600 (250 in 2003/20041, 180 in 2004/2005, and 170
in 2005/2006).

Introduction to Programming is a mandatory 8 ECTS credits course
for CS masters and the only Computer Science course in their first
semester. In the second semester, a course called Data Structures and
Algorithms is held as a follow-up to Introduction to Programming. The
other courses of the first semester are mostly math courses, laying the
basic knowledge for advanced studies in CS.

The course consists of seven weekly lessons, where four are plenary
lectures held by the professor and three are held in groups of up to 25
students by graduate and doctoral student tutors.

The semester stretches over 14 weeks with Christmas break after week
9. We divide the semester into two parts: the first part from week 1 to
week 8 where students are handed out weekly assignments that they are
supposed to solve alone. In week 9 (before Christmas break), students
get the description for the project assignment which they solve in small
groups until the end of the semester. Furthermore, students solve up to
three sit-in assignments spread over the semester to help them assess their
1 The number of students in 2003/2004 is exceptionally high. This is probably due to

the fact that in 2001, 2002, and 2003 some of the Swiss high schools shortened the
duration of high school by one year and thus had two age-groups graduating at the
same time.



current status and get a feeling on how they are performing compared to
their classmates. All the handed in weekly assignments, mock exams, and
the project are corrected (but not graded) by the tutors.

Instead of grading assignments in first-year courses, ETH has the pol-
icy that students need to get a certificate to be admitted to the exam.
The exam determines whether students are allowed to move into their
second year of study. It takes place after the second semester toward the
end of the semester break. To get the admittance certificate, students
need to do about 70-80% of the weekly assignments and mock exams
(not necessarily correctly, but showing a clear effort), and to submit the
project assignment. While having no grading during the semester is quite
unusual, it allows even newcomers to programming to take a long-term
approach to learning and prevents them from getting obsessed about their
grades during the semester.

2.2 Technical foundation

The technical building grounds of the course are the libraries used to
develop the multimedia applications. The approach focuses on the use of
libraries early in the Computer Science education. By using libraries that
were written by others, students learn to read code. This clearly is one
of the most important skills an engineer of our field needs to provide. A
consequence of this activity is that programming patterns are studied in
practice rather than in the abstract. By exploring the libraries, students
see how others have solved a problem.

The libraries provide a vast API which makes them suitable for the
open assignment. Students can choose to use only the simple mini frame-
works provided by the libraries, or they can go for their full power. By
using the mini frameworks, complexity remains hidden and the students
can concentrate on their own application design (e.g. they can use a ready
made keyboard handling framework). But if they want to do more, they
can use the finer grained and more complicated API that is also provided
(e.g. they can devise their own keyboard handling facility).

The two libraries used heavily in the courses are described in the fol-
lowing two subsections. They are both mostly developed and maintained
by the students. Many of the students that worked with the libraries in
their CS1 course, choose to contribute later either as part of a thesis or
voluntary work. These students thus help to improve the quality as well
as the capabilities of our foundation. Of course many of the students are



motivated to contribute to the libraries because of the bugs they have
encountered when using them.

EiffelMedia Recently Carter (Carter, 2006) has shown that the number
one reason for boys to study Computer Science is their interest in com-
puter games whereas for girls it was the possibility to use computers in
other fields - in both cases one can argue that the visualization capabilities
are of great importance. EiffelMedia (Bay, 2006b) provides visualization
capabilities that are state-of-the-art and impress and motivate the stu-
dents. As mentioned above, the library is maintained together with the
students and is open source. EiffelMedia has a rich set of frameworks that
allow building multimedia applications such as games like Antworld shown
in Figure 1. The features of the library include 2D graphics, sound sup-
port, video decoding, 3D graphics, networking support, a widget toolkit
and many more.

Fig. 1. Day and a night in Antworld.

Traffic The second library the course relies on is Traffic (Pedroni, 2006).
Traffic models the public transportation system of a city consisting of



transport lines (e.g. metro lines, bus lines, light rail) and places (metro
stations, landmarks). It contains city modeling classes, visualization
facilities for the display of city maps and additional supporting classes
for building applications. Traffic comes with several applications: One
of them - Flathunt - is a strategy round-based game, others are either
example applications to show certain features of the library, or they
accompany the textbook Touch of Class (Meyer, 2006), currently under
development. Both - Traffic and its applications - have been specially
developed for the use in classroom with the Inverted Curriculum. Traffic
uses EiffelMedia to visualize the city model.

Fig. 2. 3D model of a city in Traffic.

Both of the libraries are particularly well suited for using in an open
project because they offer a wealth of functionality and highlight visual-
ization and multimedia. With this foundation, we feel comfortable to give
students the freedom of an open project assignment.



3 Procedure

For the open project assignment students were required to choose a part-
ner of equal strength, so that they could design their project idea to be
challenging for both of them and fitting their programming skills. In pre-
vious years, the number of students per group was three, but this was
changed to two students in 2005 to prevent organizational problems such
as code synchronization and task distribution among students.

Students used a wiki to organize their project. As a first task, each
group generated a new page for their project and a description of what
their application should do. Using this platform, they were able to discuss
issues online, upload any of the intermediary results (such as the docu-
mentation and source code), and - if interested - they could browse other
groups’ projects at any point.

We guided students by officially giving them two options in decid-
ing on the project idea: Option A was to implement an extension to
Flathunt/Traffic or EiffelMedia with examples of possible projects of rea-
sonable size. Since the students had already been using these libraries
during the course, most of them chose this path. Option B was totally
open, telling them to do whatever they wanted with the one restriction
that their idea had to get approved by the tutor. As a result of the open-
ness, almost every group was asking approval from their tutor to also get
feedback on the feasibility of their project.

As a consequence of timing problems that some of the students had in
previous years and feedback stating that the project description should
emphasize the importance of the software design phase, students had to
meet four milestones. The first milestone was due after a very short period
of four days. For this milestone, they had to hand in a first project idea
and a description on the wiki. The next milestone was planned for right
after Christmas break where they had to give a more precise description of
the requirements and the task distribution among the partners. The third
milestone followed one week later, where they should provide a document
describing the OO design of their system. The last milestone was two
weeks later (in the last week of the semester) and they had to hand in
the code and a short developer guide.

The project was complemented by having each group give a short
presentation to their tutors and fellow students during the exercise session
of the last week of the semester. In each of the exercise groups one of the
projects was elected to be shown in a subsequent event called the Object-
oriental bazaar. The bazaar was the closing lecture of the semester and



was open to the public. Students were asked to invite their friends and
the department was encouraged to come and see what the first-semester
students had achieved. In a first round, the elected projects were presented
to the curious public, but the second half was devoted to all the projects
where each group was present with a laptop showing and explaining their
projects to interested students, tutors, professors or other guests. This
happening was greatly appreciated by the students since they felt that
we valued their efforts.

During the project time, the plenary lectures held by the professor
covered advanced topics such as event-driven programming, an in depth
discussion of data structures, and an introduction to software engineering.
The work for the professor stayed the same as during the first weeks of
the semester. For the tutors the project phase resulted in more individual
mentoring tasks which they generally tried to schedule during part of the
three exercise lessons per week. Since there were no weekly assignments
during the implementation phase, the time that was needed initially for
corrections of weekly assignments could be used for answering the occa-
sional e-mails with questions and for preparing feedback on the projects.
Most of the tutors appreciated the project phase because the time spent
with students was more interactive while the amount of work for them
stayed approximately the same.

4 Results and student feedback

The open project assignment of the course in 2005/2006 resulted in over
70 applications (Bay, 2006a). About 50% of these applications were games
written with EiffelMedia such as two Sudoku solvers, some Battleship im-
plementations, the traditional Pong game, spaceshooters or jump’n’run
games. Another 25% were either extensions to Flathunt or extensions to
the Traffic library such as a multiplayer Flathunt, a timetable Traffic ex-
tension, or modifications of the existing game Flathunt. The remaining
25% were applications or libraries of any kind, such as an InstantMessen-
ger, a math parser, a browser, collection classes, or an RSS feed reader.
The games usually came with 2D graphical user interfaces, but also in-
cluded five console applications, and a few games with amazing 3D visuals,
such as Antworld shown in Figure 1.

The number of source code lines (not counting comments) produced
by the students in 2005/2006 ranged from 418 to 9744 while the num-
ber of classes ranged from 2 to 114 (see Figure 3). The average amount
of lines of code was 1885 while the average number of classes was 17.



Clearly, projects like Antworld (5891 loc, 65 classes) or Hoovercraft (9744
loc, 114 classes) were beyond our expectations. The project with only two
classes was a ”Connect four” console application and was chosen by the
students to train conditionals and loops. As such, this project served its
purpose, and students learned much by doing it, but it lacked a good
object-oriented design. To ensure that students were aware of where they
needed to improve, each project group received feedback and we encour-
aged them to continue their work by improving or redesigning their ap-
plications.

Fig. 3. Lines of code and number of classes for the projects in 2005/2006.

As part of the course evaluation, students stated whether they liked
doing the project stretching over several weeks. The overall answers were
positive, the average grade always ranged from 3.9 - 4.0 points out of 5
for all three iterations of the course. In the evaluations for 2004/2005
and 2005/2006, they also rated whether they appreciated being able
to freely choose the project task. The mean grades for this question
increased significantly from 3.6 (in 2004/2005) to 4.5 (in 2005/2006) out
of 5. The increase is mostly due to the fact, that much work had been
done on EiffelMedia in between iterations and that we guided students



more, thus improving their timing.

5 Conclusion

Motivating today’s students to learn programming is a challenge and can
only be achieved if the courses live up the expectations of the Nintendo
generation. The combination of state-of-the-art multimedia libraries with
the freedom of open project assignments lets students strive for excellent,
innovative results, and reaches the ultimate goal: increased motivation of
students. Moreover, the approach allows adapting the level of difficulty
to the students’ prior knowledge and emphasizes the importance of code
quality and teamwork. We encourage open project assignments provided
they are embedded in a well structured course, a supportive environ-
ment, and a project framework that allows the students to validate their
progress.



Bibliography

Bay, T. G. (2006a). Collection of games and applications built in cs1.
Available online at: http://games.ethz.ch/.

Bay, T. G. (2006b). Eiffelmedia - the multimedia library for eiffel. Avail-
able online at: http://eiffelmedia.origo.ethz.ch/.

Becker, K. (2001). Teaching with games: the minesweeper and asteroids
experience. J. Comput. Small Coll. 17 (2), 23–33.

Carter, L. (2006). Why students with an apparent aptitude for computer
science don’t choose to major in computer science. In SIGCSE ’06: Pro-
ceedings of the 37th SIGCSE technical symposium on Computer science
education, New York, NY, USA, pp. 27–31. ACM Press.

Feldman, T. J. and J. D. Zelenski (1996). The quest for excellence in de-
signing cs1/cs2 assignments. In SIGCSE ’96: Proceedings of the twenty-
seventh SIGCSE technical symposium on Computer science education,
New York, NY, USA, pp. 319–323. ACM Press.

Guzdial, M. and E. Soloway (2002). Teaching the nintendo generation to
program. Commun. ACM 45 (4), 17–21.

Mahmoud, Q. H. (2005). Revitalizing computing science education. Com-
puter 38 (5), 100–99.

Meyer, B. (2006). Touch of class. Available online at:
http://se.ethz.ch/ meyer/down/touch/.

Parberry, I., T. Roden, and M. B. Kazemzadeh (2005). Experience with
an industry-driven capstone course on game programming: extended
abstract. In SIGCSE ’05: Proceedings of the 36th SIGCSE technical
symposium on Computer science education, New York, NY, USA, pp.
91–95. ACM Press.

Pedroni, M. (2006). Traffic. Available online at:
http://se.inf.ethz.ch/traffic.

Pedroni, M. and B. Meyer (2006). The inverted curriculum in practice.
In SIGCSE ’06: Proceedings of the 37th SIGCSE technical symposium
on Computer science education, New York, NY, USA. ACM Press.

Sindre, G., S. Line, and O. V. Valvag (2003). Positive experiences with
an open project assignment in an introductory programming course. In
ICSE ’03: Proceedings of the 25th International Conference on Software
Engineering, Washington, DC, USA, pp. 608–613. IEEE Computer So-
ciety.



Michela Pedroni is a PhD student and teaching assistant at the
Chair of Software Engineering, ETH Zurich. Her main research interest
and focus of her PhD topic is on issues related to teaching object-oriented
programming and defining curricula and courses. She is the maintainer
of Traffic, a library used to teach object-oriented programming to first
semester CS students. She joined ETH in 2003 after a Master’s degree at
ETH Zurich.

Till G. Bay is a PhD student at the Chair of Software Engineering.
He is working on a distributed software development platform. He is the
maintainer of a comprehensive multimedia library - EiffelMedia. He joined
ETH in 2003 after a Master’s degree at ETH Zurich and EPF Lausanne.


