
DISS. ETH NO. 17611

Hosting distributed software projects:
concepts, framework and

the Origo experience

A dissertation submitted to
ETH ZURICH

for the degree of
Doctor of Technical Sciences

presented by

TILL GASTON BALZ BAY

Dipl. Informatik-Ing.ETH, ETH Zurich

born June 13th, 1978

citizen of
Bern BG, Bern

accepted on the recommendation of
Prof. Dr. Bertrand Meyer, examiner
Prof. Brian Fitzgerald, co-examiner

Prof. Roger Wattenhofer, co-examiner

2008

ii

ii

iii

Acknowledgments

I would like to use this opportunity to thank the people that helped me
during my thesis.

First of all I want to thank Professor Dr. Bertrand Meyer for hosting
me in his group, the Chair of Software Engineering at ETH Zurich. Special
thanks also go to the co-examiners of this thesis: Prof. Brian Fitzgerald and
Prof. Roger Wattenhofer.

I thank my friend and office-mate Michela Pedroni for being the best com-
panion and reviewer there is. In the same way Claudia Günthard, Dr. Manuel
Oriol, Bernd Schoeller and everyone from the group receive my thanks.

I would like to thank all students who collaborated with me: Patrick
Ruckstuhl, Peter Wyss, Beat Strasser, Dominik Schneider, Marco Zietzling,
Dennis Rietmann, Julian Tschannen, Rafael Bischof, Martin Seiler, Urs
Doenni, Benno Baumgartner to mention the most important ones.

Finally my biggest thanks go to my friends and family – I would have
never been able to achieve this without your love, support and the great time
we are having together!

iii

iv

iv

v

Abstract

Developing software systems is a complex activity that involves numerous
tasks critical for a successful release. The increasing size of systems, software
maintenance, versioning and distributed global development complicate the
development; a software development platform that integrates into the devel-
opment process can automate and simplify considerable parts of that process.

Just as important as the technical activities of software development, are
management and communication tasks: recording project events, managing
project Wikis and web pages, sending out notifications, reconciling changes,
and many others. These tasks become ever more delicate with the increas-
ingly distributed nature of modern software projects, small as well as large. If
not handled properly they can not only consume considerable time but also,
just like bugs and other flaws in technical tasks, cause considerable damage.

Origo is a comprehensive platform for addressing project needs by pro-
viding such facilities as project web pages (both editable and generated),
forums, bug tracking etc. All the facilities are also available through a pro-
gram interface (API), allowing development tools and environments to invoke
Origo mechanisms automatically upon completion of such specified project
events. An event can be the publication of a software release, a commit
into the configuration management system, a modified Wiki page, a posted
blog or a comment left on the project site; environments for which a specific
Origo plug-in already exists include VisualStudio, Eclipse and EiffelStudio.
Internally, Origo relies on a peer-to-peer middleware architecture support-
ing the integration of such application components as web and Wiki servers,
database servers, business logic, configuration management, identification,
access control, load balancing.

Hosted by ETH Zurich, Origo is free to any project, open-source or
closed-source, and designed for scalability. Origo Core is the underlying P2P
based application construction framework that is used to building Origo.
The framework is general and can satisfy architectural requirements that
go beyond the construction of a platform for hosting distributed software
development projects.

v

vi

vi

vii

Zusammenfassung

Software Entwicklung ist eine komplexe Aktivität. Zahlreiche Tätigkeiten
tragen zu einer erfolgreichen Veröffentlichung einer Applikation bei. Die
wachsende Grösse von Systemen, deren Unterhalt, die Versionnierung sowie
die global Verteilte Entwicklung machen Software Entwicklung immer kom-
plexer. Eine in den Entwcklungs Prozess integrierte Plattform kann be-
trächtliche Teile davon automatisieren oder vereinfachen.

Ebenso wichtig wie die technischen Tätigkeiten, sind Management Auf-
gaben und Kommunikation in einem Projekt. Projekt Web Sites müssen
upgedated und unterhalten werden, Ankündigungen werden versandt, Verän-
derungen aufgenommen und vieles andere. Sowohl fuer kleine, wie auch für
grosse Projekte werden diese Aufgaben schwieriger, je verteilter das Projekt
Team arbeitet. Werden diese Tätigkeiten nicht sachgemäss ausgeführt kann
das zu Verspätungen, aber auch zu Fehlerhafter Funktion führen mit beein-
trächtigenden Folgen führen.

Origo ist eine umfassende Softwareentwicklungs Platform, die die
Bedürfnisse moderner Entwicklungs Teams abdeckt. Jedes Projekt hat
generierte und editierbare Webseiten, Diskussionsforen, Issue Tracking etc.
Die gesamte Funktionnalität der Platform kann durch eine Programmier-
schnittstelle (API) angesprochen werden. Neben der Schnittstelle existieren
plug-ins für die gängigen Entwicklungs Umgebungen.

Der Kern von Origo basiert auf einer P2P Bibliothek, die die Integra-
tion von Externen Applikationen auf einfache Art ermöglicht. Diese Infras-
truktur ist erweiterbar, erlaubt ein Update zur Laufzeit und unterstützt die
Verteilung aufkommender Last.

Die ETH Zürich hosted die Origo Plattform; jedermann kann sowohl
open-source wie auch closed-source Projekte damit veröffentlichen. Die ver-
wendete Bibliothek Origo Core kann zur Konstruktion beliebiger verteilter
Anwendungen und Plattformen verwendet werden.

vii

viii

viii

CONTENTS ix

Contents

Acknowledgments iii

Abstract v

Zusammenfassung vii

1 Origo: An overview 1
1.1 Using Origo . 2

1.1.1 Projects and people . 3
1.1.2 Basic features . 3

1.2 Architecture . 5
1.2.1 Back-end . 5
1.2.2 Scalability . 8
1.2.3 Extendibility . 8
1.2.4 Language independence 9
1.2.5 Novel user features . 10

1.3 Related Work . 13
1.3.1 Development platforms 14
1.3.2 Middleware architectures 14

2 The need for better support for distributed development 17
2.1 Ad-hoc composition versus platform 18

2.1.1 Arguments for ad-hoc composition of development tools 18
2.1.2 The case for an integrated platform approach 18

2.2 Challenges of frameworks for service and application composition 19
2.3 State-of-the-art software development platforms 20

2.3.1 Features of existing software development platforms . . 20
2.4 Software development at ETH Zurich 22
2.5 Positioning Origo . 22

ix

x CONTENTS

3 Architecture of Origo 23
3.1 Requirements on the architecture 23
3.2 Framework . 24

3.2.1 Nodes . 24
3.2.2 Communication . 24
3.2.3 Using the Origo Core framework 27
3.2.4 Design principles . 27
3.2.5 Origo instances . 29
3.2.6 Dependencies . 30

3.3 Front-end . 31
3.4 Back-end . 32

3.4.1 API node . 32
3.4.2 Build node . 33
3.4.3 Storage node . 33
3.4.4 Configuration node . 34
3.4.5 Use cases . 34
3.4.6 Authentication and autorization 34
3.4.7 Deployment init scripts 37

3.5 Performance . 38
3.5.1 Profiling with Valgrind 39
3.5.2 Performance estimation 39

4 Communication Infrastructure 41
4.1 P2P systems . 41
4.2 Criteria for choosing a P2P framework 42
4.3 JXTA Concepts . 42

4.3.1 Peer groups . 43
4.3.2 World Peer Group . 43
4.3.3 Net Peer Group . 43
4.3.4 IDs . 44
4.3.5 UUID format . 44
4.3.6 Advertisements . 45
4.3.7 Peer Advertisement . 46
4.3.8 Peer Group Advertisement 47

4.4 JXTA services . 47
4.4.1 Discovery service . 52

4.5 JXTA’s P2P infrastructure and peer roles 54
4.6 VamPeer Design . 55

4.6.1 Module structure . 56
4.6.2 Peer group modules . 57
4.6.3 Defining a peer group 58

x

CONTENTS xi

4.6.4 Services . 59
4.6.5 Module choice . 59
4.6.6 Service layers . 60
4.6.7 Address rewriting . 63
4.6.8 Rendezvous propagation 64

4.7 Implementation . 64
4.7.1 Dependencies . 65
4.7.2 Socket extensions . 65
4.7.3 XML documents . 66
4.7.4 Using UUID for JXTA IDs 67
4.7.5 Threads . 68

4.8 Advertisement store . 70
4.8.1 Persistent store . 71
4.8.2 LRU cache . 72

4.9 Shared creators . 72
4.10 Using VamPeer . 73
4.11 Platform starting . 73

4.11.1 Private peer groups . 75
4.12 Using Services . 80

4.12.1 Endpoint service . 80
4.12.2 TCP this is the last candidate. next esc will revert to

uncompleted text. ransport module 84
4.12.3 Rendezvous service . 85
4.12.4 Resolver service . 87
4.12.5 Discovery service . 88

4.13 Writing a P2P application . 91
4.14 Examples . 93

4.14.1 Rendezvous propagation 94
4.14.2 Discovery . 94
4.14.3 JXTA JSE rendezvous server 95

5 Search mechanisms 97
5.1 Lookup model . 97
5.2 Examples . 98
5.3 A note on values and types . 101
5.4 Matching model . 102

5.4.1 Matching modules . 103
5.4.2 Specifications . 103
5.4.3 Qualified specifications 103
5.4.4 Templates . 104
5.4.5 Matching . 104

xi

xii CONTENTS

5.4.6 Component selection 105
5.5 Illustration . 105

5.5.1 Unique identifiers . 106
5.5.2 Regular expressions . 106
5.5.3 Load balancing . 107
5.5.4 Compliance to an interface 108
5.5.5 Secure linking . 108

5.6 Implementation . 110
5.6.1 Using the library . 111

5.7 Conclusions . 112

6 Using Origo 115
6.1 Design . 115

6.1.1 Work items . 116
6.1.2 Drupal sites . 116
6.1.3 Scalability . 117

6.2 Drupal modules . 117
6.2.1 Origo Auth: authentication and auhorization 117

6.3 Origo-Home . 121
6.4 Issue tracker . 124
6.5 Developer pages . 125
6.6 Existing modules . 125
6.7 Work item implementation . 127

6.7.1 Issue work item . 127
6.7.2 Release work item . 127
6.7.3 Commit work item . 129
6.7.4 Wiki work item . 130
6.7.5 Blog work item . 130
6.7.6 Access Control . 131
6.7.7 Notification . 131
6.7.8 Work item retrieval . 131

6.8 Teaching . 132
6.8.1 Open-source projects in programming courses 132
6.8.2 Evaluation of motivation 135
6.8.3 Complementary items 139
6.8.4 Conclusions and future work 141

7 The development and use of Origo: Lessons learned 143
7.1 Private Alpha - Fall 2006 . 143
7.2 Private Beta - Spring 2007 . 143
7.3 Public Beta - Summer 2007 144

xii

CONTENTS xiii

7.4 Metrics . 145
7.5 Monitoring and backup . 146
7.6 Missing functionalities . 147
7.7 Not desirable functionalities 147

8 Origo: The vision 149
8.1 The Impact . 149
8.2 Future work . 150
8.3 Conclusion . 151

xiii

xiv CONTENTS

xiv

LIST OF FIGURES xv

List of Figures

1.1 Typical Origo project page - http://csi.origo.ethz.ch . . 4
1.2 Origo architecture . 5
1.3 Nodes and node types in Origo 6
1.4 Release creation dialog in the Origo Eclipse plug-in 11
1.5 Work item overview page for multiple projects 13

3.1 Receiving a message . 25
3.2 API web server connection . 33
3.3 Log in sequence diagram . 35
3.4 Password reset sequence diagram 36
3.5 Benchmark results . 38
3.6 Valgrind profile example . 40

4.1 Module life cycle . 56
4.2 Module class hierarchy . 57
4.3 Information flow for an outgoing discovery query 61
4.4 Information flow for an incoming discovery response 62
4.5 A mangled service handler name 63
4.6 XML document class hierarchy 66
4.7 ID class hierarchy . 67

5.1 Component and lookup model 97
5.2 Specification declaration . 113
5.3 Using the lookup infrastructure 113

6.1 Work item icons . 116
6.2 Session handling and user log in 120
6.3 Origo-Home showing the work items 122
6.4 Project request table . 124
6.5 Checkbox to flag a page private 125
6.6 Cron job command for Google Analytics 126
6.7 Work item tables . 128

xv

http://csi.origo.ethz.ch

xvi LIST OF FIGURES

6.8 Basic model of classical motivational psychology [6] 137
6.9 Mean and standard deviation of the four factors with a range

of possible values from 1.0 to 7.0. (*) denotes significant dif-
ferences (p < 0.05). 139

6.10 Means of activity, learning effect and commitment 140

7.1 Registered Users . 145

xvi

LIST OF TABLES xvii

List of Tables

2.1 Comparison of existing software development platforms 21

4.1 UUID ID types in JXTA IDs 45
4.2 Required services . 56

5.1 Coarse classification of lookup services 101

6.1 Open-source projects . 134

xvii

xviii LIST OF TABLES

xviii

LISTINGS xix

Listings

3.1 Synchronous messages . 26
4.1 A sample peer advertisement for a peer in the public NPG . . 47
4.2 A sample resolver query XML document 52
4.3 Clusters overview . 59
4.4 Persistent store directory layout 71
4.5 Configuring the platform instance 74
4.6 Loadingthe platform with the public NPG 75
4.7 Creation of IDs for a new peer group 76
4.8 Creating a platform configuration for a private peer group . . 77
4.9 Creating a peer group module implementation advertisement . 78
4.10 Loading a private NPG . 79
4.11 Example endpoint message handler 81
4.12 Creating and sending an endpoint message 82
4.13 Example endpoint message filter 83
4.14 Full TCP transport configuration 84
4.15 Example rendezvous event handler 86
4.16 Public NPG rendezvous seeds 86
4.17 Example rendezvous configuration 87
4.18 Sending a resolver query . 87
4.19 Sending a remote discovery query 89
4.20 Publishing an advertisement remotely 91
4.21 Redefining peer group modules 92

xix

CHAPTER 1. ORIGO: AN OVERVIEW 1

Chapter 1

Origo: An overview

The open-source development community has built significant software over
the last years. The best example is the ongoing evolution and success of
Linux and its variants. The community manages complex, shared and glob-
ally distributed development efforts using a volunteer development staff with
limited institutional memory (developers come and go as the projects con-
tinue to evolve). Most software developed in universities follows a similar
pattern.

Key to the success of many open-source projects have been the adoption
of code stewardship principles and the use of distributed software development
platforms such as SourceForge [1]. For large-scale, shared development to be
successful, especially in an environment where the development staff have
other pressing duties, the development, testing, packaging, distribution func-
tions, and user-community management must be supported in a integrated
and coordinated way.

In this work, we describe Origo, a software development platform for in-
tegrating code stewardship technologies which takes distributed development
platforms to the next level and enables them to be extended in the future.
The platform can serve the needs of scientific application development, main-
tenance, distribution, and user collaboration as well as the needs of the open-
and closed-source development communities.

Stewardship of software and applications is complex. Use of extant tools
and services for software stewardship and integrating them into a workflow
takes time away from developers and does not constitute the core business.
This complexity is due in part to the sheer number of services available, the
rapid emergence of new tools, the expertise required for integration of multi-
ple tools into a single development environment, as well as the heterogeneity
and independence across services.

1

2 CHAPTER 1. ORIGO: AN OVERVIEW

Origo (Latin for “The Source”) combines several applications and tools to
allow developers to collaborate over a network. The combination of these
applications forms the information systems used in software projects. "Re-
leasing software early and often", one of the mottoes of modern software
development, requires that such an information system fits well into the
development process. Often, development teams are the first adopters of
emerging tools and technologies that support and accelerate collaborative
work. As a consequence a software development information system has to
be able to integrate new applications when they become important for a
process.

The Origo platform provides a generic replacement for any ad-hoc com-
bination of applications and improves the state of the art of existing de-
velopment platforms. Released in August 2007, the platform already hosts
by December 17th, 2007 more than 628 projects with over 1566 developers
worldwide.

The novel services Origo offers are an application programming interface
(API), an innovative display of events of project life and the possibility to
host open- and closed-source project development.

Offering an API allows integration of Origo into any development process
(see Section 1.1).

Origo relies on a network layer programmed using the JXTA [2] peer-to-
peer protocol. This makes it possible to add new applications by extending
them with JXTA libraries to handle the transport layer.

1.1 Using Origo

Origo (http://origo.ethz.ch) is an open-source information management
platform for software projects. The platform enables a team of developers
to track their own projects and those of other teams. For a developer, Origo
encourages collaboration with several development teams and allows working
both on open and closed-source projects. Every Origo project has a web page
that can be reached over a sub-domain
(http://yourproject.origo.ethz.ch).

The platform does not impose any particular development model, tech-
nology or tool; the development proper happens outside Origo. The following
paragraphs describe what Origo offers both for development teams and for
users of the software projects that are hosted on Origo. For a complete
discussion how to use Origo, refer to Chapter 6.

2

http://origo.ethz.ch
http://yourproject.origo.ethz.ch

CHAPTER 1. ORIGO: AN OVERVIEW 3

1.1.1 Projects and people

The software development platform manages projects, their development
teams and their user communities. Once registered as an Origo user, one
can hold any of three roles for a given project: project user, project member,
project owner. These correspond to different interests:

– members and owners are part of a project’s development team. They
both can modify the wiki pages of the project web site, create releases
on the download area and commit code into the Subversion repository.
They can also post blogs, report issues and generally modify all content
on the project pages. Only owners may add new developers to a project
team.

– users can only report issues, write forum posts and comment content
on project pages.

The low number of different roles people can hold keeps the rights man-
agement for all actions concerning the project pages simple. This simplicity
also contributes to the usability of Origo: users and developers do not need
to read documentation to start using the platform.

1.1.2 Basic features

The basic features of an Origo-hosted project are the usual services on which
development teams rely today: a configuration management server for host-
ing the code; documentation and communication possibilities; ways to report
and manage issues; a place to publish project releases. More advanced fea-
tures are detailed in Section 1.2.5. Every Origo project has the following
features:

– Public and private wiki pages with WikiMedia syntax.

– Subversion repository with web user interface.

– Issue tracking with public and private issues.

– Blog, forums, comments, tags and screenshots.

– Release download area with mirroring.

The project web page, of which an actual example appears in Figure 1.1,
has navigation links that lead to the home page, download section, screen-
shots, documentation, the forum page, the blog, the issue tracker and the

3

4 CHAPTER 1. ORIGO: AN OVERVIEW

Figure 1.1: Typical Origo project page - http://csi.origo.ethz.ch

development page. A project includes two kinds of pages: editable and
generated. Editable pages which project members can freely create and up-
date, use the wiki format; they include the home page, the screenshots, the
documentation and the development pages. Generated pages are the down-
load area (which lists all project releases), the forum, the blog and the issue
tracker.

Fundamental functionalities, repeated on every page (currently in the left-
side menu, see Figure 1.1) include: the user and project settings, creation
of new content, the request form for project creation and pages that allow
tracking changes.

Also on every page are the search functions of several kinds. First, all
projects hosted on Origo can be searched with Google Custom Search [3].
Every project page can also be searched separately. One can search for
Origo users. The fourth search retrieves tagged issues. The searches are
implemented using Generic Component Lookup (GCL) [4]. GCL is a search
system that identifies different dimensions in the data to search separately,
and weighs the results for each dimension. Sorting results according to an
arithmetic combination of the weights fine-tunes and improves them. This
way users can both search all the tags and the text of a reported issue sepa-
rately but then receive the results combined.

4

http://csi.origo.ethz.ch

CHAPTER 1. ORIGO: AN OVERVIEW 5

Se
rv

er
s

P2
P

Ba
ck

en
d

A
PI

A
pp

lic
at

io
ns

VamPeer

XML-RPC

Drupal

Minestrone

http://yourproject.origo.ethz.ch

other applications
build scriptsEi�elStudio

Visual Studio

Eclipse

Figure 1.2: Origo architecture

1.2 Architecture
The key design goals for Origo were scalability, extendibility and language
independence. To achieve these aims, Origo uses a peer-to-peer (P2P) back-
end relying on widely supported communication protocols. Figure 1.2 shows
the architecture of the platform.

Origo is running on multiple servers and is built following the model view
controller (MVC) pattern. In Figure 1.2, the P2P back-end represents the
controller and the applications represent the different views that are available.
One of those views is the project page of a given Origo project; another would
be the work items that are displayed in the Eclipse plug-in for Origo1. The
views and the controller communicate using XML-RPC. For communication
inside the controller, Origo uses the P2P framework VamPeer [5], itself based
on JXTA [2]. Some nodes of the back-end provide access to databases that
are themselves representing the model in the MVC pattern. For a complete
discussion of the architecture, the communication infrastructure as well as
the search mechanisms, refer to Chapters 3, 4 and 5.

1.2.1 Back-end

The back-end forming the controller of Origo is built using different peer-to-
peer nodes. Besides acting as controller for the platform, the nodes of the
back-end also provide access to several collaborating services that are used in

1http://origo.ethz.ch/download

5

http://origo.ethz.ch/download

6 CHAPTER 1. ORIGO: AN OVERVIEW

Node Type

Node
Messages

API Nodes

Core Nodes

Storage Nodes

FTP

SVN

Mail

Figure 1.3: Nodes and node types in Origo

Origo. Services include the database server, the Subversion servers, the FTP
and the mail server; all of them exist as nodes of the back-end. The JXTA
protocol is the infrastructure that they use to communicate. The back-end
relies on the following notions that we will detail below: nodes and node
types, messages and use cases, core nodes and API nodes. After describing
these, a short discussion of the choice of P2P framework follows.

Nodes and node Types

Each node represents a service used in the back-end (see Figure 1.3). A node
type regroups a set of nodes that all provide the same service. Each node
type has its own policies for message processing. Each node of a given node
type is equal and any incoming message for a node can be treated by any
other node of the same type.

Messages and use cases

The core nodes contain the code representing the use cases. A use case is
the description of how the Origo back-end reacts to an incoming XML-RPC
API call. After the API nodes receive a call, messages are sent to the core
nodes that then send messages to all nodes taking part and performing some
action in that particular use case.

6

CHAPTER 1. ORIGO: AN OVERVIEW 7

Core nodes

The core nodes are the controller of Origo and contain the code of the use
cases. They manage all interactions between other nodes. Load balancing
for all node types is implemented in the core nodes. The core nodes are aware
of all node types existing and know how to use them to perform each of the
use cases.

API nodes

The API nodes are the interface to access the Origo back-end. API nodes
listen to incoming XML-RPC calls as a daemon on a port on the server
machines of the platform. The API nodes expose parts of the use cases
that are encoded in the core nodes. They are not load balanced by the core
nodes. For load balancing incoming XML-RPC calls, traditional web server
load balancing techniques like round robin IP address resolution, or LVS
systems should be used.

A list of the API calls currently offered can be found online2. The calls
offered allow access to all information stored in an Origo project. There are
calls to enumerate the work items for a project, calls to upload and publish
project releases, calls for issue management as well as general calls handling
access and rights management, login processing and management of user
information.

Internal API nodes

To avoid possible denial of service attacks to API nodes, parts of the exposed
API have to be hidden to outside applications. The API call for creating a
new Origo user is an example for a call that has to be hidden, because
bots would be able to create uncontrollable numbers of Origo users if it
were available. Hidden calls are only available to certain views - in the
case of the user-creation call, the view that has access to it is the Origo
project web page (in Figure 1.2 the web page of an Origo project is the
stack Drupal / Minestrone / http://yourproject.origo.ethz.ch in the
applications layer).

Storage nodes

The storage nodes maintain connections to database servers. All data used by
Origo is stored in the databases managed by them. The storage nodes han-
dle all communication and authentication with the databases. The databases

2http://origo.ethz.ch/wiki/origo_api

7

http://yourproject.origo.ethz.ch
http://origo.ethz.ch/wiki/origo_api

8 CHAPTER 1. ORIGO: AN OVERVIEW

store both data on users (user ID, name, password hash, email address and
an application key) and on projects (name, description and a logo) as well
as the association of users and projects, associations between users (develop-
ment teams), access policies for all resources managed by the platform, role
management information, and session management.

Custom nodes

An important part of Origo are the services used for software development.
The back-end contains three custom nodes that wrap these services: One
node for configuration management (at the moment this is done with Subver-
sion), one node for file upload when creating software releases (implemented
with an FTP server) and finally a node that can send mail. Figure 1.3 shows
the three nodes together with the other node of the back-end.

These custom nodes wrap an external server application as a node for
the back-end. These server applications all have their own user manage-
ment mechanisms and access protocols. The custom nodes of the back-end
configure these server applications to integrate them fully into Origo. The
login credentials for these services are created by the custom nodes that can
write configuration files and execute processes. This allows to integrate any
application into Origo. The way developers are working evolves and the
configuration management servers that are used today might be replaced
by new servers that have different functionality in the future; using custom
nodes allows such evolution and adaption of the back-end.

1.2.2 Scalability

Nodes of the same type perform the same service within Origo. Nodes receive
messages and then return the results to the node that sent the message.
They are not aware of the other nodes of the same type within their group
of nodes. Nodes have unique identifiers inside the peer-to-peer back-end and
can be addressed using this identifier. How to balance load among nodes of
a same type can vary and it is left to the implementer of the node type. As a
simple solution, round robin load balancing is used for the core and storage
nodes.

1.2.3 Extendibility

Two attributes of Origo allow its adaption. The first capability lies in the
nature of the nodes. Nodes do not need to be on one single computer; they
can be distributed across a number of machines. Nodes of the same type

8

CHAPTER 1. ORIGO: AN OVERVIEW 9

can be on different machines. By measuring load and performance on the
running platform, a favorable distribution across machines can be found.

The second attribute making it possible for Origo to react to change is
that nodes can join the back-end at any time. If at one point in time the
number of nodes of a certain type is not sufficient anymore (this can be
caused by increased load for example) - more nodes of that type can be
started. These nodes will then register themselves within the back-end and
start processing messages. The inverse case of nodes leaving a system can
also happen and can be used to react to changing needs. This mechanism
is also used to update the running platform dynamically whenever new or
updated nodes are becoming available.

1.2.4 Language independence

The Origo back-end uses the JXTA [2] peer-to-peer protocol and benefits
from the multiple implementations of JXTA that make it language indepen-
dent. Both the communication inside the back-end as well as the interface to
the outside are language independent. The messages exchanged are simple
key value pairs of strings that are sent from one node to another. The calls
Origo can receive from the outside world are similar and reach the system
using the XML-RPC [6] transport protocol.

Chioce of P2P Framework

The available peer-to-peer frameworks today include Chimera (was
Tapestry),3 Pastry [7], Chord4 (distributed hash functions and the Self-
certifying File System 5), GNUNet6, XNap7, and the Peer-to-Peer Trusted
Library8. Some of these systems address the necessary P2P networking re-
quirements sufficiently, others provide routing algorithms that are adapted
to a specific peer-to-peer application (like for example file sharing). None of
these frameworks, however provide an application construction framework.
A peer-to-peer application construction framework is general and abstract
enough to support building P2P applications that go beyond file sharing
and instant messaging. The existing application construction frameworks
are Juxtapose (JXTA) [2], Jini [8], and OogP2P9. Jini is implemented only

3http://current.cs.ucsb.edu/projects/chimera
4http://pdos.csail.mit.edu/chord
5http://www.fs.net/sfswww
6http://www.ovmj.org/GNUnet
7http://xnap.sourceforge.net
8http://sourceforge.net/projects/ptptl
9http://www.duke.edu/~cmz/p2p

9

http://current.cs.ucsb.edu/projects/chimera
http://pdos.csail.mit.edu/chord
http://www.fs.net/sfswww
http://www.ovmj.org/GNUnet
http://xnap.sourceforge.net
http://sourceforge.net/projects/ptptl
http://www.duke.edu/~cmz/p2p

10 CHAPTER 1. ORIGO: AN OVERVIEW

for the Java language and OogP2P does not provide sufficient functionality
to be used in Origo. This justifies the use of JXTA for implementing the
back-end.

JXTA has extensive functionality. The JXTA specification contains pro-
tocols for routing, message passing, discovery of peers and support for secure
communication using HTTPS. In addition, multiple language bindings (for
Eiffel, Java and C) exist. JXTA is open-source, widely used, well supported,
easy to extend and is general and abstract enough to support the function-
ality required by Origo. With JXTA, Origo propagates the messages. JXTA
implements all routing and other communication protocols for such exchanges
in Origo in a technology-independent fashion.

1.2.5 Novel user features

Together with the scalable, extendible and language independent design of
the platform (see Section 1.2), Origo innovates through the following features:

– Besides the user interface already sketched, Origo provides a program-
ming interface (API) enabling application developers to hook their pro-
cesses and tools programmatically to the platform.

– Origo gives developers and users of a project a concise overview of the
state of the projects.

– Origo allows hosting both open and closed-source projects.

We are now describing each of these three innovations in more detail:

Integration into the development process

The Origo API enables integration of the platform into any development
process. It is implemented using XML-RPC [6]. XML-RPC is a simple, open-
source specification and implementation for remote procedure calls between
disparate and heterogeneous software systems. It uses HTTP/S as transport
protocol and XML for message encoding. Messages are method calls with
their argument data. Currently a wide range of languages provide XML-RPC
libraries, including Eiffel, Java, C, Python, Perl, Objective-C, PHP. Since
XML-RPC uses HTTP/S as transport protocol, it is easy to implement if no
existing language binding can be used.

Every software project creates deliveries of its code. In some cases the
delivery is an application that users can download, in other cases the delivery
consists of a library that can be reused. All languages, operating systems and

10

CHAPTER 1. ORIGO: AN OVERVIEW 11

Figure 1.4: Release creation dialog in the Origo Eclipse plug-in

tools rely on the regularly recurring activity of building a delivery, driven by
scripts. In spite of the wide diversity of tools and processes, the delivery step
follows a common pattern. It involves a number of actions scheduled not
manually but through a script like a Makefile, an ANT-Script or a Visual
Studio Solution File. Once the script has been run, the next step is to
publish the delivery online. Publishing a delivery can with the Origo API be
integrated into the scripts. One of those scripts simply has to use the API
call to publish a release for a project on its Origo page; that last step is also
automated. There are many other API calls available for a project (see the
complete list online10). This example illustrates how the Origo API enables
hooking into a development process.

IDE Integration: Similarly to build script integration, the platform can
be used directly from integrated development environments. Currently, plug-
ins for EiffelStudio, Eclipse and VisualStudio exist.

Figure 1.4 shows the Origo Eclipse plug-in. Using the plug-in for an IDE,
users can choose files to upload to the project page, specifying release and
platform information. All three IDE plug-ins offer the same functionality and
the release creation dialog looks the same for all three IDE plug-ins. They
all use the XML-RPC API to send calls from the IDE to Origo.

Besides integrating release creation, the IDE plug-ins also offer access to
the work item overview that is discussed in the next section.

10http://origo.ethz.ch/wiki/origo_api

11

http://origo.ethz.ch/wiki/origo_api

12 CHAPTER 1. ORIGO: AN OVERVIEW

Work item overview

A member of a collaborative project needs to know what other team members
are doing. The most important resources are the source code files; projects
will typically rely on configuration management such as Subversion to enable
concurrent access by multiple developers. Apart from managing the code
with such a tool, developers typically also like to be informed of changes to
the source code in other ways. An important functionality of such systems is
the ability to send mail to project members on occurrence of specific events
such as commits.

Origo generalizes this concept by enabling projects to hook up various
actions to many possible events of project life. In Origo, all resources that
can experience modifications are tracked and the changes summarized in the
work item overview of a project page (see Figure 1.5).

The five resources tracked by Origo for each project are changes to source
files, issues that are reported or modified, wiki pages that are edited, blogs
that are posted and releases that are published. Figure 1.5 shows the work
item overview page. In the Figure, the tab for the Origo project itself is
active and it shows the work items of the project at that point in time.
Each listed work item links to a corresponding page that shows the changed
resource. When a new resource is created (for example a new blog posted)
- the link points to that resource. If an existing resource is modified, the
link points to a page showing the differences between the old and the new
version of the resource (for example when a typo on an existing wiki page is
corrected). The Figure shows also other tabs for other projects. The tabs on
the left are all the projects of which the user (here: bayt) is a member. After
the projects that a user belongs to, the tabs for bookmarked projects are
enumerated. Every project on Origo can be bookmarked by a user and then
the work items for that project are shown on the overview page accordingly.
Whenever new work items for a project are published, its corresponding tab
is highlighted.

For each project showing on the work item overview page one can con-
figure both the mode of notification (receiving a mail for an update on a
resource or Listing the updated work item on the overview page) and it can
be set which of the five work item types should be tracked. This allows set-
ting the level of information a user or developer desires individually for every
project. For all work items and projects an RSS feed is generated and can
be used to get information on work item updates as well.

As mentioned above, also the IDE plug-ins show the work item overview
as part of their user interface. Just like the work item overview page, the IDE
plug-ins link the displayed work items back to Origo, or show the updated

12

CHAPTER 1. ORIGO: AN OVERVIEW 13

Figure 1.5: Work item overview page for multiple projects

differences directly inside the IDE. For screenshots of the IDE plug-ins see
the screenshot page online11.

Open- and closed-source projects

The third contribution of Origo is the hosting of closed-source projects. Origo
helps its users produce and maintain better software, faster, more effectively.
It is not its role to push a political agenda for either open- or closed-source
development. There are all kinds of reasons for a project to prefer a closed-
source model. This is not only true in the software industry, but even in
a purely academic environment where some work on projects needs to be
kept closed until time for publication is suitable. The open or closed-source
nature of an Origo project determines the visibility of its work items for
its non-members; source code commits for example can only be seen and
accessed by developers that are members of a closed-source project.

1.3 Related Work

This section presents other existing software development platforms as well
as other service integrating middleware architectures.

11http://www.origo.ethz.ch/wiki/screenshots

13

http://www.origo.ethz.ch/wiki/screenshots

14 CHAPTER 1. ORIGO: AN OVERVIEW

1.3.1 Development platforms

Software development platforms are not new; the most popular platform
known today is Sourceforge [1] with 155’000 projects and 1.5 million regis-
tered users. Others are discussed in Chapter 2.

The following points are where we feel that Origo innovates in comparison
to other platforms:

– Origo is open-source.

– Origo has an API.

– Origo hosts open- and closed-source projects.

1.3.2 Middleware architectures

An important part of Origo is its architecture that separates the external
services needed in Origo from the back-end of the platform. This has two
effects: (1) it allows to scale up the platform if needed, (2) it allows the
integration of different implementations of a given service.

Middleware for dynamic adaptation flourished in the past years. As an
example, Linda-like [9] coordination media such as AOS [10] use a shared
tuple space to decouple applications. Origo is by nature more flexible as it
takes into account replicated nodes.

Contrary to systems like HydroJ [11], LuckyJ [12], Fractal [13] or Service
Groups [14] where the final recipients of messages are chosen by the infras-
tructure, Origo defines the entry points but lets the node types define their
own policies to treat messages. Origo is similar to Matrix [15] in that it
specializes in providing an infrastructure to build distributed applications of
a particular type. In the case of Matrix however, the applications that are
built have precise requirements in terms of distribution (load balancing of
the servers during peaks) while in the case of Origo the main requirement is
extendibility. In the end, Origo is much more expressive than Matrix (that
could be coded using Origo nodes).

Origo nodes integrate already existing applications and make them com-
municate independent of the language in which they were programmed;
this is a very common characteristics for a middleware infrastructure like
CORBA [16] or web services [17, 18]. . .). Comparing to other infrastruc-
tures, Origo nodes include the necessary tools to integrate business applica-
tions such as identity management and information controller components.
They also rely on a language independent communication layer (XML-RPC

14

CHAPTER 1. ORIGO: AN OVERVIEW 15

provides the external API, JXTA enables internal communication). This en-
ables us to focus only on the parts of the system that really matter: the
application logic and applications to compose using Origo nodes.

15

16 CHAPTER 1. ORIGO: AN OVERVIEW

16

CHAPTER 2. THE NEED FOR BETTER SUPPORT FOR
DISTRIBUTED DEVELOPMENT 17

Chapter 2

The need for better support for
distributed development

A platform for distributed development consists of several specialized ser-
vices. These services are used to manage the distribution of source code
(configuration management systems), to support software and project doc-
umentation, to enable user feedback and communication (web sites, forums
and issue reporting), to publish software releases and also to facilitate project
management for the development team.

Each service can be implemented with multiple tools. The choice of a tool
to implement such a service, depends on the development process of each
particular team and on the availability of tools. Choosing a configuration
management server, for example, depends on the development process of a
team: centralized configuration management like CVS or SVN vs. distributed
configuration management like GIT or Bazaar. And the selection of tools
for that purpose depends on their features as well – after years of using
CVS, a team might want to switch to SVN because it is an improvement in
functionality.

Platforms for distributed software development are always a heteroge-
neous conglomerate of specialized services targeted at one of the activities
in the development process. The challenge when building a platform is to
unify the services in a consistent and developer-friendly way while not com-
promising the specialized service as such. This unification of services has to
remain easy to extend with other, new services that might become desirable
in a development platform.

The following sections describe the argument for development platforms
as such, look at frameworks for service and application composition and
identify their challenges. Then we examine how existing distributed software
development platforms address those challenges; we discuss the needs of de-

17

18
CHAPTER 2. THE NEED FOR BETTER SUPPORT FOR

DISTRIBUTED DEVELOPMENT

velopment teams at universities and finally show how Origo improves the
state of the art both in its architecture as well as with its functionality.

2.1 Ad-hoc composition versus platform

Each of the tools in a platform is used to fulfill one of the common purposes
within a development process: code management, documentation, commu-
nication, etc. The tools evolve, become better or are also replaced with new
ones. Development teams are early adopters of emerging technologies and
will not want to continue working with outdated tools for which better al-
ternatives exist. There are two ways of setting up a work environment for a
development team. Ad-hoc setup of tools versus integrating tools to become
a platform.

2.1.1 Arguments for ad-hoc composition of develop-
ment tools

Often the ad-hoc composition of a popular selection of tools builds the soft-
ware development platform that teams choose to satisfy their needs.

Many existing tools are now aware of others that are used for develop-
ment; an example for this would be a bug-tracking system that is able to
extract references to entries in its bug database from comments from source
code commit messages - another example is a configuration management sys-
tem that already delivers with and example scripts showing how to hook it
up with a mailing-list server. As developers are early adopters of new and
useful tools, they can simply select a new tool to use in their workflow as it
becomes available. Popularity of a tool often has an effect on its integration
possibilities with other popular development tools.

2.1.2 The case for an integrated platform approach

There are a number of arguments as to why a software development platform
integrating different tools is preferable over this ad-hoc composition of tools.

Even on that small scale, if integration and interaction of used tools
becomes more available and popular, the ad-hoc scenario fails to address two
important needs in distributed software development: self documentation
and indexing.

The development process should document itself. The small scale interac-
tion and integration that exist for some tools used for software development
are a step in the right direction, but the activity of developing software is

18

CHAPTER 2. THE NEED FOR BETTER SUPPORT FOR
DISTRIBUTED DEVELOPMENT 19

sufficiently complex and time consuming that the tools should really estab-
lish a concise track of all activities happening in project life. Such automatic
self documentation can only be achieved when the different tools are used
within an information system that orchestrates their interactions and keeps
track of all generated data within the process.

As development progresses and data is accumulated the need for good
search capabilities grows; again it is the integrating development platform
that can provide a unified interface to search across all different data that
is part a projects life. These two arguments for integrating tools used in
development establish the need for building information systems to support
development.

2.2 Challenges of frameworks for service and
application composition

Frameworks for application composition have to solve a number of problems.
A framework must enable the exchange of data among the different appli-
cations that are part of it; it has to provide a way to describe use-cases
that define how the applications that are glued together with the frame-
work should interact. Application communication involves protocols and
technologies which must both have to be sufficiently abstract to give room
for heterogeneity. In large scale application composition, a degree of distri-
bution has to be made possible by the application composition framework;
and management-related requirements like dynamic update and extension,
logging, reporting and monitoring capabilities have to be addressed as well.

Middleware frameworks that address these requirements have existed for
some time now. Frameworks like CORBA [16] or web services [17, 18] allow
composition of applications to bigger information systems in a technology-
independent way. Dynamic updating of middleware can be achieved with
Linda-like [9] coordination media such as AOS [10].

For Origo, we wanted to address requirements using a peer-to-peer based
middleware. Origo takes advantage of the dynamic updating functionality as
well as the distribution in a P2P network of nodes. The architecture of the
back-end is described in Chapter 3.

19

20
CHAPTER 2. THE NEED FOR BETTER SUPPORT FOR

DISTRIBUTED DEVELOPMENT

2.3 State-of-the-art software development plat-
forms

Platforms for distributed software development and for publication of the
releases have existed for some time. In this section we discuss the most
important ones and compare them to Origo.

SourceForge.net-like

The most popular platform is SourceForge, whose success is attested by
155’000 projects for 1.5 million users in September 2007. The SourceForge
story illustrates the limitations of first-generation integrated platform solu-
tions. Around 2003, it became clear that developers were migrating en masse,
for configuration management, from the venerable CVS to the newer Subver-
sion (SVN) system. It took SourceForge 18 months from the announcement
of SVN support to its actual availability. This can be ascribed to an ar-
chitecture that fails to reconcile the need for continuous adaptation with
the requirement of round-the-clock availability of hosted projects, causing
SourceForge in this case to become a victim of its own success.

The other issue with SourceForge is that it is very hard to integrate it
into a development process. The platform offers no API and it is not really
offering a very convenient web interface either. When releasing new software
a developer has to upload the files belonging to a release to an anonymous
ftp server account. Then he has to log on to SourceForge using the web
interface, go to a designated page that shows the contents of the anonymous
ftp repository and allows selecting files for a release.

SourceForge used to be an open-source project. With increasing pop-
ularity, the project was bought and became closed-source. From the last
open-source branch of the platform have emerged a number of other software
development platforms - namely: SourceForge Enterprise [19], GForge [20],
BerliOS [21], Savannah [22], Savane [23] and LCG Savannah [24]. Apart
from their license they are similar to SourceForge and are therefore not listed
seperately in Table 2.1.

2.3.1 Features of existing software development plat-
forms

Table 2.1 compares existing software development platforms. Besides the
platforms that are compared here, we also looked at GoogleCode [25], Source-
Fubar [26], Codehaus [27], OpenSymphony [28], Java.net [29], Tigris [30],

20

CHAPTER 2. THE NEED FOR BETTER SUPPORT FOR
DISTRIBUTED DEVELOPMENT 21

SF Trac Collabnet Launchpad Origo
API × (

√
) (

√
)

√ √

IDE plug-in × × × ×
√

Hosting closed-source ×
√

(
√
) ×

√

Open-source ×
√

× ×
√

Extendible architecture ×
√

× ×
√

Table 2.1: Comparison of existing software development platforms

Picolibre [31] and Seul [32]. We chose to compare the SourceForge-like plat-
forms, Trac, Collabnet and Launchpad to Origo, because they are the most
active and popular platforms. The others are either not maintained any-
more or cannot be compared to Origo directly because they are not software
development platforms as such.

Table 2.1 only lists the attributes where the different platforms are not
offering similar functionality. Each platform shown offers some sort of config-
uration management (most of the time Subversion or CVS), they all encour-
age collaborative development by offering various ways of communication,
like web pages, forums, issue management and project overviews. Each plat-
form has team management features with rights and role management of
varying granularity; all of them offer searching the managed information and
for each of them a version that offers hosting projects for free is available.

We also looked at large open-source projects to find out what solutions
they were using for hosting their development. In that we looked at Open
Office [33], the Apache Foundation [34], the Linux Kernel [35], the Mozilla
Foundation [36], KDE [37], Drupal [38], Gnome [39], Mono [40] and Sun Mi-
crosystem’s [29] open-source projects; most of them use a custom solution
that integrates a standard configuration management server, Open Office
and Sun’s other open-source projects use Collabnet and Mono uses Medi-
aWiki [41].

Some general observations follow from the comparison in Table 2.1. Trac
comes closest to Origo, except that it is not designed to host multiple projects
on one instance. For that reason there is no support for exchanging infor-
mation among different Trac projects. It also has an API, but only when
enabled using an extension; hosting closed-source projects using Trac is pos-
sible, but a team has to setup and maintain its own Trac instance itself -
there is no site offering Trac based project hosting off the shelf.

Collabnet has a limited API that is mainly offering ways to query and
manipulate issues and it can be used to host closed-source projects as well,
if one is willing to pay for a owned Collabnet installation - a site offering off

21

22
CHAPTER 2. THE NEED FOR BETTER SUPPORT FOR

DISTRIBUTED DEVELOPMENT

the shelf Collabnet hosting is Tigris [30].
Launchpad [42] has the best inter-project communication capabilities of

all the compared platforms, but it is not extendible (closed-source) and has no
API. The efforts taken by the Launchpad team are - like Origo - encouraging
all tools used in development to offer an API.

None of the platforms offers plug-ins for existing IDE’s and except for
Trac the architectures of the platforms cannot be extended as they are not
open-source or are not built in a way that allows extension.

2.4 Software development at ETH Zurich
In spring 2007, Benno Luthiger from the specialist department for open-
source software at ETH Zurich carried out a survey on software development
at ETH Zurich. The survey [43] had the goal to gain an overview on how
software is developed at ETH Zurich. The survey was taken by 80 people.

The study shows that the infrastructure offered by ETH to support soft-
ware development is insufficient. The interrogated developers say that the
efficacy of their work would increase with better availability of supporting
tools. The choice of tools that they are using in an ad-hoc way today are Sub-
version and CVS for configuration management (66%), web sites and Wikis
for collaboration (59%). To track issues of the developed software Bugzilla
or no tool at all is used in 80% of the cases. To distribute the binaries and
to present information related to development web sites, Wikis and program
documentation account for 59% of the cases. When asked on software devel-
opment platforms that they are using 90% of them declare using no platform
or Sourceforge.

2.5 Positioning Origo
In Section 2.3.1 the overview of todays software development platform shows
in table 2.1 how Origo improves the state of the art. Origo has three major
contributions: the platform offers an API; it hosts both open- and closed-
source software development projects; and its architecture is ready for ex-
tending the platform with new applications. The offered features and the de-
gree of integration corresponds to the needs of developers as analyzed above.
Building an application composition middle ware using a peer-to-peer infras-
tructure is novel and proves to be practical, scalable and fault tolerant and
solves application composition problems just like other existing frameworks.

22

CHAPTER 3. ARCHITECTURE OF ORIGO 23

Chapter 3

Architecture of Origo

Origo provides services like configuration management, issue tracking, release
hosting and also an API that can be used to integrate Origo into other
applications. The architecture that combines these services is the Origo Core.
The Origo Core is the middleware and control layer of the Origo platform and
constitutes the framework that can be used to also model other distributed
service integrating platforms. Origo Core allows implementing use cases and
controls the various Origo components accordingly. An example for a use
case would be to following: The platform we build with OrigoCore allows
publishing documentation online. This chapter presents the requirements
for OrigoCore, shows how the framework addresses them and then details
the usage of OrigoCore’s API.

3.1 Requirements on the architecture

The goals of the architecture for Origo are to be open, modular and exten-
sible. We want to build platforms that integrate several services. Adding a
new service should not be difficult and extending an existing set of services
with a new one should be possible dynamically.

Services can run in different environments, possibly on different machines.
The framework should allow distributing services easily.

Whenever a service experiences heavier use than others it should be pos-
sible to balance the load on that service by means of adding several instances
of that same service to the platform. The framework has to allow running
multiple instances of a same service.

23

24 CHAPTER 3. ARCHITECTURE OF ORIGO

3.2 Framework
Origo Core is service oriented [44]. The services are provided by nodes and
the core is the message bus and controller. Based on programmed use cases,
the Origo Core controls the other Origo nodes by sending control instructions.
The use cases are programmed as Eiffel classes. Control instructions are sent
as asynchronous messages over a reliable message layer.

3.2.1 Nodes

The Origo Core framework provides functionality common to all nodes. The
communication infrastructure implements reliable message passing and node
discovery. When building a distributed platform using the Origo Core frame-
work, only the node specific parts have to be implemented additionally. To
facilitate this, Origoprovides several hooks, extension points and documen-
tation.

Node discovery: As soon as an Origo node starts running, it sends a
discovery message to the P2P network to look for core nodes. After receiving
response, the node registers at all running core nodes. Each node stores
information to contact each core node and each core node also keeps contact
information on all known running nodes. Using these details, a node can send
a message to a random core and each core can address messages to specific
nodes. This approach allows scaling and dynamic extension or update, as
there is no single point of failure and nodes can be added and removed at
any time. Because nodes can leave the network, the discovery process is
periodically restarted, with a default interval of 10 minutes.

3.2.2 Communication

The most important aspect of Origo Core is communication between the
different services and applications forming a bigger platform. The services
interact using each others data and exchange status information that is then
reflected in the state of the entire platform. The exchange of data is multi-
lateral, as one message possibly can be used for further processing by more
than one other service.

Goals for Origo Core are to integrate services and applications that are
running on different platforms and to scale well when need arises. These
two reasons (platform plurality and scalability) combined with the nature of
data exchange made us look into existing peer-to-peer framework implemen-
tations.

24

CHAPTER 3. ARCHITECTURE OF ORIGO 25

Figure 3.1: Receiving a message

With the JXTA [2] P2P specification standard we found a suitable frame-
work. Applications like Collanos [45] show the possibilities of JXTA. the
standard is implemented in Java and C and thus provides a way to inter-
face to applications written in those languages. As Origo Core itself is im-
plemented using Eiffel [46], we made an implementation [5] of the JXTA
standard for Eiffel.

Using JXTA, Origo can propagate data through the platform to all ap-
plications and services that require a certain data item. The routing and all
other protocols related to that data exchange are handled by the P2P infras-
tructure and take place in a platform and technology independent fashion,
thus not excluding future extensions of the integrated platform with new
applications, services or technologies.

The Origo Core framework uses a message-passing architecture [47].
Nodes exchange data as messages. The protocol for message transport guar-
antees that no message is lost, or received twice. This allows to send asyn-
chronous messages reliably from node to node.

Threading: Messages are received in one thread. This receiving thread
creates a job per message and adds it to a queue. Several worker threads
process the job queue and execute all actions a use case foresees for a given
message. This separation ensures that execution of actions does not block
the communication layer (see Figure 3.1).

25

26 CHAPTER 3. ARCHITECTURE OF ORIGO

create l_msg.make
l_msg.set_reply_handler (agent (a_msg: O_MESSAGE)
do

mutex.lock
condition_variable.signal
mutex.unlock

end)
mutex.lock
send_message_core (l_msg)
condition_variable.wait (mutex)
mutex.unlock

Listing 3.1: Synchronous messages

Main Event Loop: Sometimes, it is preferable to execute all actions in
the main thread. This is necessary whenever if a non-thread-safe library is
accessed in the use case (for example a database library). To allow this,
actions can be registered to be executed in the main thread. As soon as a
message for such an action is received, the call to the handler will be added
to a job queue that is processed in the main thread.

The reliable message passing layer of Origo is implemented as a JXTA [2]
service using VamPeer[5]. The reliability layer of TCP [48] is the model
we took to implement our own reliable communication. Each message has
a unique generated ID. After reception of a message, an acknowledgment
message containing the ID is sent back. A receiver additionally keeps a list
of arrived messages to avoid duplicate messages if there should be a problem
with the acknowledgment message. This gives a reliability in the following
sense:

– The sender knows if a message was received.

– Each message is received only once.

Unlike TCP, there is no guarantee about the order in which the messages
arrive; as messages are self contained, asynchronous units, this is not needed.

Synchronous Messages: It is possible to simulate synchronous message
passing with asynchronous messages. To do this, the sending thread is
locked after sending the message and a reply handler is registered which
will unlock the thread (see Listing 3.1). In most cases it is better to use
wait_with_timeout instead of wait and handle the timeout case.

26

CHAPTER 3. ARCHITECTURE OF ORIGO 27

3.2.3 Using the Origo Core framework

Writing use cases: Use cases are created in the core node and are imple-
mented as Eiffel classes. This allows very good flexibility and performance
at the cost of not being able to change them without recompilation. Future
work may be to extend the Origo Core framework with a scripting language
that allows describing use cases.

Writing Client nodes: To create a new Origo node, include the Origo
node library in your project. Your custom node should Inherit from the class
O_NODE_CLIENT and it should implement the following features:

– peer_name – the name of the peer, must be unique in the Origo system

– peer_description – the node description

– register_message_handlers – handlers for general messages

– register_*_message_handler – handlers for specific messages

The framework provides an API call to retrieve information about the
existing names from a live and running instance. Therefore it is possible to
find a unique name for a new node that will be added to the instance.

Received messages are handled by message handlers which can be reg-
istered for messages of a certain type or for all messages (catch all). In
addition it is also possible to register a reply message handler when a mes-
sage is sent. Such a reply handler will then be called instead of the normal
message handlers.

To send a message, the following features are available:

– send_message_core – send a message to a random core, this is used to
start a use case, e.g. from an external API node

– send_message_reply – send a message back to its originating node

3.2.4 Design principles

Origo Core and the development platform using Origo Core follow a few
design principles: Scalability, extensibility and integration.

27

28 CHAPTER 3. ARCHITECTURE OF ORIGO

Scalability: As mentioned before, Origo Core is built in a way that allows
for good scalability and redundancy. It is possible to have multiple core
nodes. For each use case a random core is selected by the peer starting the
use case. After this, messages belonging to the same use case are sent as
replies and therefore the same core node is used. This allows keeping track
of the state in a use cases.

It is also possible to scale other nodes as all communication goes over
core nodes which can distribute requests. For example it would be possible
to have multiple storage nodes (see Section 3.4.3), each responsible for a range
of data. As requests arrive at the cores, they would redirect the requests to
the correct storage node. In a similar way, keeping a backup of a storage
node is made easy as all requests that change data would be sent to both
nodes and all data inquiry requests would be sent to either one of the nodes.

Extensibility: Extension of the platform means that a new service or ap-
plication can be added to an Origo platform, without a complete rewrite of
the platform or a complete redefinition of the involved databases and asso-
ciated use cases. This is possible by adding a new custom node as described
above.

We note, however, that some services or applications are more difficult to
wrap as nodes to be used as extensions than others.

Integration: The third design goal – Integration – is achieved by providing
a API construction framework within Origo Core. A platform built using
Origo Core should expose API for all services and applications it consists of.
Exposing an API with which a user interacts with the integrated services
within a platform, simplifies management of changing service component
interfaces. Another advantage is the possibility to build up a regression
testing suite that uses such an API.

By offering an API Origo Core allows other applications to use a platform.
For example – the Origo development platform does not interfere with the
way you develop software. But once the system under development is ready to
be released this can be done by using the API exposed by the Origo platform
directly from within the tools you are using to develop your software system.

Integration means that by providing an API that is general enough, in-
teractions coming from outside the platform are not only possible but en-
couraged. We are providing and XML-RPC [6] API layer. This makes it
possible to integrate Origo API calls quickly into any scripting environment
and development tool that you are using.

28

CHAPTER 3. ARCHITECTURE OF ORIGO 29

3.2.5 Origo instances

An Origo Instance is an integrated platform built using Origo Core. Our main
goal was to build a framework, that allows combining external applications
to become an integrated platform for developers.

In this Section we show how such an integrated platform can be built.
We discuss the external applications that are selected, show how to integrate
them into an Origo Instance. We then also show how an integrated platform
can evolve over time and how a new external application can become a part
of the platform.

The Origo development platform that we use to show how to build Origo
instances is an online platform that developer teams as well as software users
can interact with through various ways (see below).

The development platform is used to host the generated binary releases
of software projects, it hosts the web site and the documentation of a project
and it redirects to external sources of information (like web interfaces to
configuration management servers for example). The platform integrates a
bug tracking system, a configuration management repository, forums and
blogs. Origo Core orchestrates the set of external applications and services.
Figure 1.2 in the first Chapter shows the entire development platform. The
P2P back-end is built with the Origo Core framework. The nodes inside
the back-end provide access to the external applications and services (see
Figure 1.3). The API layer is one of the ways to interact with the platform
and will be detailed in the next paragraphs.

The services and applications used in todays software development pro-
cess are subject to rapid change. A platform that wants to remain competi-
tive and up to date must provide means for integrating emerging applications.
Using the Origo Core framework together with the steps discussed above such
an extension, evolution or adaption is accommodated.

Interacting with an Origo instance: Software development involves
many different tools, services and applications. What remains common to
the development process is the path from source code, that is being written
to the publication of a software release.

Along this path all the different applications that are used for develop-
ment come into action. The development platform that we are building with
Origo takes a precise look at the different actions along the path and proposes
automation and integration where possible.

The platform provides a number of interfaces for interaction. On top of
the back-end itself resides a web interface that can be accessed with a browser.
This web interface provides a user interface for all parts of the development

29

30 CHAPTER 3. ARCHITECTURE OF ORIGO

platform and for some of the functionality of the external applications – more
on this in Chapter 6.

The second possibility to interact with the development platform is the
exposed API. As discussed before, many actions along the path from the
code to the publishing of a projects’ release can be automated. Automation
is only possible if the platform that is hosting the project provides an API
that allows other applications from outside the platform to use it. Defining
which API calls are exposed to the outside world is part of the task of the
designers of an integrated platform solution that uses Origo Core.

The third way of interacting with the development platform is to use
applications that interact with the development platform using the API.
There is a number of development environments and other tools that use
Origo API. The most popular ones are the plug-ins for Eclipse, VisualStudio
and EiffelStudio. Others are being developed at the time of writing such as
a widget for OS X or a makefile binding. For a complete list of applications
using the Origo API refer to the web site.

The API that the integrated platform offers is the part of the system
that allows integration of the platform into a development teams’ process.
By providing an API layer that is independent of the tools developers are
using to program debug and compile their projects, the platform can be
used by everybody. With the choice for XML-RPC [6] for the API a wide
range of programming languages already offer frameworks to communicate
with the platform. For those that do not provide ready made XML-RPC
frameworks, the protocol is using HTTP as transport layer and support can
thus be implemented quickly.

3.2.6 Dependencies

To avoid having to reinvent the wheel, a lot of functionality from external
libraries is used for Origo Core. On the upside this makes it possible to
share code with other projects and reuse existing code; on the downside we
encountered a few bugs in the libraries that were quite hard to track down
but could be fixed and therefore help to improve the used libraries.

– EiffelStore: an object-relational database abstraction library is used
to access the database through ODBC.

– EiffelThread: is the multithreading library for Eiffel.

– Eposix: is a posix [49] wrapper library for Eiffel. Origo uses it to start
the nodes as daemons.

30

CHAPTER 3. ARCHITECTURE OF ORIGO 31

– Framework base: is an utility library from the official Eiffel Subver-
sion repository. We use its flexible command line argument parser.

– Goanna: is a web application library for Eiffel. We use its XML-RPC
implementation and fastCGI binding in the API nodes.

– Gobo: Gobo provide free and portable Eiffel tools and libraries. We
use various parts of the Gobo data structures and collection framework.

– Log4e: is a logging framework for Eiffel. We use it for logging in
VamPeer and Origo Core.

– Thread Extension: a small library provifing helpful extensions to
work in a multithreaded Eiffel environment. We use it in VamPeerto
manage thread pools.

– VamPeer: the Eiffel implementation of the JXTA [2] P2P protocol
which is used for the communication layer of Origo Core.

3.3 Front-end

The integrated platform built using Origo Core combines several external
applications. Each of these applications can possibly have its own web in-
terface, like for example a web front-end for a subversion repository. But
also external applications that have no web interface themselves offer their
functionality to Origo Core and the platform may want to provide its own
user interface for managing these applications.

When combining a number of applications both with and without user
interface to become one integrated platform it is neither possible nor desirable
to leverage the entire functionality in the web interface. Successful web
applications today present slim, but highly functional and fast user interfaces.
The development platform aims in the same direction. The web interface
presented to the user only allows a subset of actions to be carried out. To be
able to use all functionality one has to use the platforms API. The subset of
actions that can be made available in the web interface is not fixed. If use
of the platform shows that a certain desired action is missing, it is possible
to integrate it into the web interface as well. The design restriction that the
web interface should remain slim and fast remains however.

The applications that provide a web interface themselves continue to do
so in the development platform. The single sign-on functionality of Origo
Core serves as gateway to them. In this case the platform only forwards

31

32 CHAPTER 3. ARCHITECTURE OF ORIGO

the interactions taken and the added value is that the authentication and
authorization are taken care of.

We believe that developing applications not only involves a team of en-
gineers, but should also involve users of an application. Users are the main
source of feedback for a development team. The closer the user community
and the developer community can be, the more feedback the developers get
from their software users. This results in better software, that is maintained
better and will again attract more users. In Chapter 6 the third version of
the web interface of the development platform is presented.

3.4 Back-end

The back-end of the development platform is built using Origo Core. As
mentioned before, Figures 1.2 and 1.3 show the different parts of the back-
end. In this Section the node types involved are discussed in more detail. All
node types relate to the development platform that is built using them, but
their abstracted functionality is suitable for integration into other platforms
built using Origo Core as well.

3.4.1 API node

The API nodes provide an XML-RPC [6] interface for various Origo Core
services. It uses the XML-RPC interface from Goanna [50]. Each call sends
a message to the Core where the corresponding use case is started. There
are two operation modes for the API node. The internal mode provides some
special services (like user signup, password handling, ...) that should only
be available for calls executed by the front-end. Other wise denial of service
attacks on the API of an Origo instance would be possible. The external
API provides all remaining services and can be accessed once the API client
is authenticated and authorized.

Goanna provides several possibilities to connect to the XML-RPC inter-
face. The most efficient solution is to use a web server like Apache [34] or
lighttpd [51] and use the fastCGI [52] binding. Figure 3.2 shows the con-
nection between the clients and the Origo nodes with web servers in the
middle.

For our development platform, the Lighttpd web server is used, as it
provides better performance, better scalability and allows easy load balancing
across multiple API nodes comparing to the other available web servers.

32

CHAPTER 3. ARCHITECTURE OF ORIGO 33

Figure 3.2: API web server connection

3.4.2 Build node

The Build node makes it possible to start a build of a hosted project and
return the compilation result. At the moment it is implemented as a process
call to an external script and the return value of the external script is returned
as compilation result.

3.4.3 Storage node

All the data of Origo is stored in storage nodes. These nodes accept all
kinds of access and modification messages. Internally, the storage nodes
use a database to store and retrieve data. The storage nodes are split into
an interface and a persistence layer. The interface layer handles incoming
messages and and calls features on the persistence layer which performs the
database access. This keeps the interface clean of database specific code.The
storage nodes store specific information about the state of the development
platform and also about the configuration of the involved services and appli-
cations. The storage nodes constitute the model of the MVC pattern used
for Origo Core. They can be accessed from the entire P2P network within
Origo Core.

For database access EiffelStore [53] and a small wrapper, to simplify
access to query-results and error handling, is used. The used database is
MySQL [54] and we access it using the ODBC [55] binding of EiffelStore.

33

34 CHAPTER 3. ARCHITECTURE OF ORIGO

3.4.4 Configuration node

To use external tools like Subversion [56] or an email server, a way to generate
configuration files and execute configuration scripts is needed. Configuration
nodes are the back-end part that is used for such purposes.

To create work items for Subversion commits, a hook script is used which
is automatically called by Subversion after a commit. This script then re-
trieves additional information like the changes of the commit and makes an
API call on the internal API to register an event of project life and conse-
quently trigger notifications of all concerned developers and users. The script
is a based on the mailer.py from the Subversion delivery.

The mail node enables the development platform to send an email. Email
notification of events in project life as well as maintenance alerts or user
interaction happens on the development platform through email. The mail
node is implemented by using the SMTP [57] support of EiffelNet [58] to call
a local or remote mail server which handles mail delivery.

3.4.5 Use cases

Log in: The log in of a user is an example for a simple use case (see
Figure 3.3) where only few nodes take part. A client executes an XML-RPC
call on an API node. This node sends a message to the cores which forward
it to the storage nodes that lookup user credentials and – upon success –
return a session. The session is forwarded to the API which returns it as the
result of the XML-RPC call.

Password reset: A more complex use case is the resetting of a password.
Additionally to the API, core and storage nodes also a configuration and
mail node are involved (see Figure 3.4). First a new password and the email
address is retrieved from the storage nodes, then an email with the new
password is sent to the user and all configuration files for external applications
and services are generated anew.

3.4.6 Authentication and autorization

In the process of building an integrated platform with Origo Core, a number
of external applications and services are combined. All of them provide some
form of user authentication, user management and role distribution. Users of
such a platform should not need to remember all usernames and passwords
to be able to interact with the platform. To address this, Origo Core has a
authentication and authorization functions built into the framework.

34

CHAPTER 3. ARCHITECTURE OF ORIGO 35

Figure 3.3: Log in sequence diagram

Using core and storage nodes, the framework stores all usernames and
credentials required by the external applications. Using the web interface
passwords and usernames can be registered with the platform. This allows to
provide single sign-on functionality and thus interacting with the integrated
platform is easier. The platform is aware of the external applications and
their authentication mechanisms. If a user interacting with the platform has
not provided a username and password for one of the applications or services,
the platform handles automatic creation of user credentials.

To have finer control on allowed actions of Origo users the framework
provides authorization schemes based on roles. Origo Users can have different
sets of rights according to their role; – the development platform uses few
different roles in order to keep things simple, but this can be extended without
changing the framework architecture. The external API allows users to log
in to the development platform. During log in credentials are checked by
storage nodes and a session is generated which represents this user. API
calls require this session. A session maps to an Origo user but the same
Origo user can have more than one session at a time. After a certain time of
inactivity a session expires and becomes invalid.

To avoid brute-force attacks but still allow external applications to use
the API, instead of a login with username and password, a login with a user
and an application key is provided. Each external application and each Origo
user can generate a custom user key which can then be subsequently used to

35

36 CHAPTER 3. ARCHITECTURE OF ORIGO

Figure 3.4: Password reset sequence diagram

36

CHAPTER 3. ARCHITECTURE OF ORIGO 37

log in and obtain a session. The session received by a login with username
and password or with an application key are equal.

Authorization in Origo is based on several access groups. Each group can
be either global or project-specific. Examples of global access groups are:

– Origo User

– Origo Administrator

Examples of project-specific access groups are:

– Project Owner

– Project Developer

The group structure is flat: groups can only contain users and not other
groups.

For each action that requires authorization, a policy defines which access
group is needed. For example to add a new member to a project as project
developer, the action has be executed by a project owner of this project or
by an Origo administrator.

3.4.7 Deployment init scripts

On Unix and Linux, init scripts are in charge of starting background daemons.
Init scripts provide the possibility to start, stop and restart such a daemon.
The init scripts also read some configuration which allows to configure things
like log level or listening interface.

As the Origo nodes already provide an option to daemonize, the scripts are
relatively straight forward and could be created based on a skeleton provided
by the Debian distribution. Before starting, a check is made if the process
is already running, otherwise the process is started. Similar during the stop,
a process with this name is searched and first a TERM [59] signal is sent,
if this does not stop the process a KILL [59] signal is sent to ensure that
the process quits. This is mostly done by using the start-stop-daemon [60]
tool. The rendezvous node is written in Java it does not provide a way to
daemonize itself, therefore the start-stop-daemon [60] tool is used to detach
the process from the console and put it into the background. This also writes
a file which has the process ID in it and which is used to stop the process,
similar to the way an Origo node is stopped, first by sending a TERM [59]
signal and then a KILL [59] signal.

37

38 CHAPTER 3. ARCHITECTURE OF ORIGO

Figure 3.5: Benchmark results

3.5 Performance

We did various performance benchmarks and profiling to assess scalability
and find out where the performance can be further improved.

Origo Benchmarking: to test overall performance and scalability of the
platform, a tool to issue large numbers of API calls which then trigger Origo
messages and actions in nodes is used. This is a realistic benchmarking
scenario as almost all use cases of Origo Core start on the API. To do the
testing, the ab tool from Apache [34] is used.

Figure 3.5 shows how Origo scales with one server and with two servers
using multiple API nodes. Some more performance results can be seen in
the Origo project of the platform 1.

It is interesting to note that if Apache is used, the performance is worse
and does not scale at all. If Lighttpd is used the performance is better and
also scales better. We can see that having multiple API nodes on the same
machine scales well and also having multiple machines does scale very well.

1http://origo.ethz.ch/wiki/performance

38

http://origo.ethz.ch/wiki/performance

CHAPTER 3. ARCHITECTURE OF ORIGO 39

3.5.1 Profiling with Valgrind

To find out where most computation time was spent, we use callgrind from
the Valgrind [61] suite for profiling. As valgrind works on the C level, we
built a small tool retranslating the C names back to Eiffel names [62]. This
data is analyzed with KCachGrind [63] which generates helpful graphical
representations. A sample of such a graph can be seen in Figure 3.6. The
graph shows the call trace and the relative time spent in the features relative
to the selected feature.

3.5.2 Performance estimation

As the performance tests show, the limit for the current setup is around 50
log in requests per second. If we consider "login" as a representative request
this can be used to estimate how many users the current setup of Origo can
serve. This does not include the load of external programs like the Subversion
repository backup processing or the web site itself.

We estimate that on average a user that visits the web site executes an
API request every 20 seconds. The other time is spent reading pages and
doing web site requests that do not execute API calls. So if we can handle 50
requests per second and an average online user executes a request every 20
seconds, that results in the possibility to have about 1000 concurrent users
online. Experience from other projects show, that in online projects, no
more than 10% of all registered users are concurrently online. Therefore the
current setup should be able to serve about 10000 registered Origo users.

39

40 CHAPTER 3. ARCHITECTURE OF ORIGO

Figure 3.6: Valgrind profile example

40

CHAPTER 4. COMMUNICATION INFRASTRUCTURE 41

Chapter 4

Communication Infrastructure

In this chapter we describe what kind of communication is needed for Origo.

4.1 P2P systems

Peer-to-peer systems have become very popular in the last few years. They
allow users to share resources (such as calculation power or information) in a
distributed and decentralized way. Peer-to-peer (henceforth called P2P) tech-
nology is different from the client-server model which relies on one central
server fulfilling all tasks for the clients. In a P2P system every participant
is considered equivalent. An overview of P2P systems is given in [64]. The
survey is based on the most important systems and summarizes the key
concepts. In P2P applications, we often want to perform common tasks like
discovering other peers, sending and propagating messages and sharing infor-
mation. While many P2P applications implement their own solutions, there
also exist frameworks which provide an API for most of these common tasks.

One of the design goals for Origo Core was to be scalable and dynamically
extendable. We wanted to try to achieve this goal by using a P2P based
approach for building the back-end of Origo with Origo Core. For Eiffel,
there was no P2P framework available. Therefore we implemented one based
on an existing specification: JXTA. We call our framework VamPeer.

The main purpose of our implementation is to have a P2P framework for
Eiffel, so we can build Origo Core using it; VamPeer is the communication
infrastructure for Origo nodes.

Chapter 3 introduces Origo Core and the development platform built
using it. The P2P library is standalone and does not depend on Origo Core –
it can thus be used to build other P2P based applications in Eiffel. VamPeer
is generic and can be used for many other purposes than Origo Core.

41

42 CHAPTER 4. COMMUNICATION INFRASTRUCTURE

JXTA is an open-source P2P framework specification created by Sun Mi-
crosystems [65]. It is one of the most mature platforms in its field. JXTA
(pronounced juxta) is composed of several modules each implementing a spe-
cific JXTA protocol (for example the discovery protocol). The protocols are
XML based. The decision to use JXTA was quite simple since it is the only
platform independent P2P framework we found. Porting JXTA to Eiffel gives
us the advantage to remain compatible with other JXTA implementations.
While the reference implementation is written in Java JSE, there also exist
other bindings written in C, JXME and other languages. Most of the other
smaller bindings are not yet ready for production use.

4.2 Criteria for choosing a P2P framework

One of the most similar other frameworks is Jini. Jini is not suited for our
purpose since it only runs on Java. Furthermore, it uses a central server
to locate network services in contrary to JXTA which follows a completely
decentralized P2P model. There is also another framework called OogP2P
but since it is a simple research project and is not maintained anymore,
we did not consider it for implementing Origo Core. Besides frameworks,
there are plenty of P2P networks defining protocols for sharing content (for
example GnuNet). Research projects such as Chord usually provide special
algorithms for a distributed hash tables. These projects do not meet our
requirements because they focus more on sharing information and lookup
algorithms instead of application construction facilities.

We choose to implement an Eiffel port of JXTA because JXTA is used
more and more in modern applications (for example Collanos Workplace). A
short overview of the mentioned P2P frameworks and protocols is available
at the VamPeer web site1.

4.3 JXTA Concepts

Before we describe the design of VamPeer, we give an introduction to JXTA.
We show how the JXTA protocols are designed and present an overview of
the specification. The full specification [66] covers the basic ideas around
JXTA and specifies the messages which go over the wire. For more details
on semantics, we recommend the literature or looking at the reference imple-
mentation source code.

1http://vampeer.origo.ethz.ch

42

http://vampeer.origo.ethz.ch

CHAPTER 4. COMMUNICATION INFRASTRUCTURE 43

The paper [67] focuses on release 2 of the JXTA protocols and gives a
good overview. The free book by Brendon Wilson [68] explains JXTA with
many Java examples and [69]2 goes more into the details of the Java reference
implementation. Unfortunately, the books are slightly out of date.

We will first look at peer groups, define JXTA IDs, advertisements and
then introduce the different services and protocols available. Afterwards, we
present the overall P2P networking infrastructure. We do not remain only at
the JXTA specification level but also show a few design ideas used in JXTA
JSE, the Java reference implementation3.

4.3.1 Peer groups

A peer group is a compound of peers agreeing to run the same set of services4.
When a peer joins a peer group, all services needed should be loaded accord-
ing to the peer group’s specification. Thus, a peer is always a member of at
least one group as there would not be any running services at all otherwise.
A peer may belong to more than one peer group. The super peer group which
is loaded first is usually the world peer group (WPG). All other groups are
direct or indirect children of the WPG. This is because only one peer group
can perform the actual handling of network traffic. The specification does
not explicitly mention a parent-child relationship among peer groups, but it
is handled that way in JXTA JSE and also in VamPeer.

4.3.2 World Peer Group

The WPG is defined as the peer group in which all JXTA peers reside, even
if they are not communicating with each other. The WPG is somewhat
a special peer group which is automatically loaded and may not support
all services. In the C implementation, there is actually no explicit WPG
whereas VamPeer uses one for configuration purposes only. The WPG’s ID
reads urn:jxta:jxta-WorldGroup.

4.3.3 Net Peer Group

The WPG has only one direct child: the net peer group (NPG) which is now
a true normally running peer group configured with all JXTA services. When

2www.samspublishing.com provides a free sample chapter: “Java Implementation of
JXTA Protocols”

3JXTA JSE is currently available in version 2.4.1, see [65].
4A service is a set of features following a specification either made by the JXTA project

or the user, see Section 4.4.

43

www.samspublishing.com

44 CHAPTER 4. COMMUNICATION INFRASTRUCTURE

talking about the NPG, we usually mean the public net peer group with the
ID urn:jxta:jxta-NetGroup. It should only be used for development and
testing purposes (as long as no other group has been created). Sun provides
a public infrastructure for this peer group – unfortunately, the servers have
been unavailable or under heavy load for the last couple months5.

When using JXTA as a framework for a custom P2P application, one
should create a new private NPG so that the application will not get in
contact with peers from other applications6. It has its own network.

Other peer groups are children of the NPG. Although services can be
shared among peer groups, one should have good reasons to split the appli-
cation into several groups as peer communication is only possible within the
same group.

4.3.4 IDs

We already mentioned IDs for peer groups. Also other entities in JXTA
have an ID: peers, modules, advertisements and other resources. A JXTA ID
must be a complete identifier referring to a unique resource. JXTA IDs follow
the URN format (see [70]) with the namespace jxta. Additionally, the URN
namespace specific string is prefixed with a format ID announcing how the ID
is formatted. The general form looks like this: urn:jxta:format-specificid

Although the format is written explicitly, one should never make any
assumptions about the ID format. Of course, it is allowed to optionally
gather some information from an ID when the format is recognized.

4.3.5 UUID format

Most IDs are in the JXTA uuid format. They are in hexadecimal form rep-
resenting 1 up to maximum 64 bytes. The last byte (the last two hex digits)
always specifies the type. Each type stands for its own schema. Usually, the
number contains one or two UUIDs7, each 16 bytes long. Table 4.1 shows
the defined types for the uuid format and all the information they contain.

5This downtime being cumbersome, it is no problem as one can easily setup an own
rendezvous/relay server, see Section 4.4.

6This is not a guarantee however; every JXTA peer may connect as long as it knows
the address and has a purpose.

7A “Universally Unique Identifier” (UUID) is a random number (containing also time
information) meant to be universally unique (the probability to create two same UUIDs
in the same context is very small). They are fully defined in [71]. You may prefer the
corresponding RFC [72] which describes also the UUID format but focuses more on UUID
as a URN namespace.

44

CHAPTER 4. COMMUNICATION INFRASTRUCTURE 45

Sample IDs look like this:

– Peer group ID:
urn:jxta:uuid-822A7C9E6B804759870B81B10070E9C9\
59616261646162614A7874615032503302

– Module class ID:
urn:jxta:uuid-261F502615134AA99FDC99E3751E6B8505

ID byte Type name Information contained
01 Codat ID Group UUID, Codat UUID, Codat Hash
02 Peer group ID Group UUID, Parent group UUID
03 Peer ID Group UUID, Peer UUID
04 Pipe ID Group UUID, Pipe UUID
05 Module class ID Module UUID
06 Module specification ID Module class UUID, Specification UUID

Table 4.1: UUID ID types in JXTA IDs

4.3.6 Advertisements

Another important concept in JXTA are advertisements. An advertisement
is an XML document describing any kind of resource. It contains metadata.
The JXTA protocols are then used to transport and share advertisements
with other peers. For peers, peer groups and all the other JXTA entities,
there are advertisement schemes defined. It is the JXTA way of creating new
types of advertisements for each used entity. In a file sharing application for
example, one would create a file advertisement containing a codat ID8, the
name of its owner, the creation date and the ID of the peer that hosts the
file.

An advertisement has an expiration time, to ensure that no old advertise-
ments are passed around. As advertisements cannot be withdrawn or deleted
on remote peers, one should not set the expiration time too high; default ex-
piration is two hours, but implementations may vary. When resources are
valid for a longer time than the expiration time, the advertisement has to be
recreated and published again. Below we show two advertisement types to
better illustrate their purpose.

8A codat is just a container for any kind of data, for example file content.

45

46 CHAPTER 4. COMMUNICATION INFRASTRUCTURE

4.3.7 Peer Advertisement

One of the important advertisements is the one describing a peer. This
is for example used to discover peers. It contains the peer ID, the peer
group ID and an optional peer name as well as a description. Each service
may additionally add a service parameter with some specialized information.
Listing 4.1 shows a sample peer advertisement. The service parameter con-
tains the information for the endpoint service: a route advertisement that
advertises the physical endpoint address (IP host and TCP port).

46

CHAPTER 4. COMMUNICATION INFRASTRUCTURE 47

Listing 4.1: A sample peer advertisement for a peer in the public NPG
<?xml version="1.0" encoding="UTF−8"?>
<jxta:PA xmlns:jxta="http://jxta.org">
<PID>urn:jxta:uuid−59616261646162614E50472050325033\
1A227980E5924E80A3FD8ECD73D4C31803</PID>

<GID>urn:jxta:jxta−NetGroup</GID>
<Name>My sample peer node</Name>
<Desc>Development test peer</Desc>
<Svc>
<MCID>

urn:jxta:uuid−DEADBEEFDEAFBABAFEEDBABE0000000805
</MCID>
<Parm><jxta:RA><Dst>
<jxta:APA>

<EA>tcp://129.132.105.170:32725</EA>
</jxta:APA>

</Dst></jxta:RA></Parm>
</Svc>

</jxta:PA>

4.3.8 Peer Group Advertisement

The peer group advertisement announces the existence of a peer group. It
contains the group ID, the module specification ID9 and optionally a name,
description and service parameters.

4.4 JXTA services

Until now, we have just introduced peer groups and the general terms ID
and advertisement. In this section, we will look at services and what JXTA
protocols they are providing. JXTA is modular. Each feature or protocol
is available as a service module. Thus, a peer group can disable unneeded
modules.

Module definition: JXTA modules can be loaded dynamically. This
means that a JXTA peer can theoretically load module code from another
peer. For specifying and identifying modules, several module advertisements
exist: A class of modules providing the same local behavior and API is iden-
tified by a unique module class ID (MCID) and announced with a module

9See Section 4.4 for an introduction to modules and their specifications.

47

48 CHAPTER 4. COMMUNICATION INFRASTRUCTURE

class advertisement. Specifications for a module class are identified with a
module specification ID (MSID). Its module specification advertisement in-
cludes a version number and a URI where a human-readable description can
be found. The specification focuses on the remote behavior and the protocol.
All modules implementing a module specification can be advertised with a
module implementation advertisement. This specifies the targeted environ-
ment and may provide the entire code or a package name and a description
where the code can be fetched. The three module definition layers allow
to have various specification versions for a single module class and also any
number of module implementations for each environment.

We will now present the main services we have focused on in VamPeer:

Endpoint service: The endpoint service is the core service. All messages
coming from the network (through the transport modules) are redirected to
reach here and are then sent to other peers. The purpose of the service is to
route the messages to the services that are interested.

Endpoint messages: The endpoint service is dealing with endpoint mes-
sages. Each transport module must be able to send them over or read them
from the wire. A message is basically just an ordered list of key/value pairs
(elements). The key is restricted to a namespace whereas the empty names-
pace and the jxta namespace are predefined for user respectively JXTA
internal purposes. You may have any number of namespaces and keys. An
element may additionally define a MIME type10 and a signature element
which is rarely used. The endpoint service adds some elements to outgoing
messages, for loopback detection and for addressing.

Endpoint addresses: The source of the message and particularly the des-
tination address must be defined: an endpoint address can be used for various
forms of addresses. The string format looks like this:

protocol://address/service/param

The protocol part specifies the transport module to use: TCP, jxta, http for
example. The address is protocol specific: For TCP and HTTP for example,
it is of the form: ip:port, for JXTA it is a peer ID in URN format. For
destination addresses, service defines the final service; param is an optional
parameter for the given service.

10See [73] for a general introduction to MIME types and [74] for the XML type, which
is used in JXTA messages.

48

protocol://address/service/param

CHAPTER 4. COMMUNICATION INFRASTRUCTURE 49

To send messages to a peer, one may either create a destination endpoint
address directly with the destination’s IP and port number or alternatively
just set the peer ID, which is the preferred way (because dealing with IP
addresses is discouraged in higher level services). It is the endpoint router ’s
task to resolve the peer ID to the real endpoint address as described in the
next section.

Transport modules: The transport modules are responsible for sending
endpoint messages to another peer and for reading incoming messages from
the network. Therefore, they register themselves as available transport mod-
ule in the endpoint service, each one for its own protocol. They provide
support for sending a single message to a peer, to ping a peer (looking if the
remote peer is online) or to propagate a message. Each transport specifies its
own wire representation. There is no required transport module and protocol
but the low level transport TCP is usually enabled together with the HTTP
transport. It is also be possible to send messages via SMTP or any other
protocol. TCP transport is simple and fast, HTTP has the great advantage
to pass through firewalls since most of them allow HTTP traffic.

The transport modules do not guarantee message delivery even when
TCP is used. This is very important. The original message sender cannot be
sure that his message has arrived at the destination. The message transport
is usually not secured except for the jxtatls transport which uses TLS to
encrypt data. It is based on top of the endpoint router to provide a secure
path from the source to the destination peer.

Endpoint router: A special transport is the endpoint router. It is not
used to transport messages over the wire but to route messages with a peer
ID as destination address to the correct gateway. To do so, it rewrites the
destination address and passes the messages again to the endpoint service,
which then sends the message using a real transport. A message cannot be
sent directly to the peer because there is no direct connection to it. Router
peers can forward messages to other networks. The task for this module is
to query for routes and to send the message to the first route gateway. It
will try to connect using the fastest transport module available (whenever a
connection to that peer is already opened, the related transport is considered
to be the fastest).

When a peer, is configured to act as router, it accepts and forwards mes-
sages from other peers. It also maintains a route cache to be able to handle
messages to be routed faster, without always having to first seek for routes.

49

50 CHAPTER 4. COMMUNICATION INFRASTRUCTURE

Rendezvous service: The rendezvous service is used for propagating mes-
sages through the peer group and/or the local network. This fundamental
service is used for sending queries to all peers.

Rendezvous lease protocol: A rendezvous client has to subscribe to a
rendezvous server to be able to send messages for propagation and also to
receive propagated messages. Therefore, a lease protocol is defined which
manages this. When a client peer joins a peer group, it tries to contact to a
rendezvous server. There are several ways to find one:

– The configuration of peer contains some endpoint addresses (addressing
the peer directly with TCP or HTTP).

– The platform configuration of the peers specifies a seeding URL where
a rendezvous server list is published. This is the most common and
simple way for publishing rendezvous servers. It is also very useful for
maintenance because only one list has to be updated to point all the
new peers to other servers.

– As soon as a peer establishes contact with other peers, it may send them
discovery queries for rendezvous peers. It may also cache rendezvous
advertisements11, so it does not have to find new servers everytime
when starting up.

– It is also likely, that other peers reside in the same local network. There-
fore, a peer may send a discovery query via multicast to the local net.

Once a rendezvous gets a lease request, it may send back a lease granted
message – a lease with restricted validity for, usually 30 minutes. During
this time, messages are propagated to the subscribed peer which is allowed
to send a propagation message to the rendezvous. As leases are not valid for
long, a client has to send lease renewal requests until it gets another lease.
Renewal and initial lease requests look the same. JXTA JSE asks for renewal
when the first half of the lease has elapsed. When a peer leaves a peer group,
it should send a lease cancel message, so the rendezvous does not try to
propagate messages to that peer anymore. A rendezvous client should only
be registered with at most one rendezvous and should always send a lease
cancel message to peers which send propagation messages without being the
rendezvous in use. For further details on lease messages, please consult the
specification [66].

11A rendezvous advertisement promotes rendezvous server capability of a peer.

50

CHAPTER 4. COMMUNICATION INFRASTRUCTURE 51

Message propagation protocol: The message propagation protocol is
used to propagate messages. It adds a message element12 which has an XML
document containing a unique message ID, a TTL, a path and the name
of the final destination. The protocol ensures, that duplicated messages
are discarded as well as messages that are too many hops away from the
source peer. This can be done by looking at the message ID and the TTL
respectively. Every hop decrements the TTL value, so the message can be
filtered out when the value reaches zero. The protocol is also responsible for
loop detection. Every hop adds its peer ID to the message’s path and detects
when a message already passed by earlier. Based on the given service name,
the rendezvous service is able to pass the message to the correct service,
for example by using the endpoint service. Unlike older JXTA versions, a
rendezvous service should not repropagate every incoming message and thus
flood the network. Each service decides individually whether to re-propagate
a message or not – of course only as long as the peer is a rendezvous server.
Hence, a rendezvous server should have some knowledge about the network
and which peer may have which information. It is able to direct messages
only to those peers that may have use for the propagated message. Of course,
this heavily depends on the actual service and the type of the message.

Peerview protocol: As mentioned earlier, rendezvous servers need a good
knowledge of the peer network infrastructure. They also need to stay in con-
tact with other rendezvous servers to share propagated messages because
there may be any number of rendezvous (not just one) and propagated mes-
sages are expected to reach eventually every node in the peer group (not just
the subscribed peers of an owned rendezvous). To manage and share this
knowledge, the peer view protocol is used.

Resolver service: The resolver service13 is the first user of the rendezvous
service as it has to propagate queries. Its task is to provide a query-response
system. It is able to recognize received responses to a sent query by adding
meta information to queries like a handler name and a query ID. It attaches
the route information of the peer, so remote peers have the possibility to
respond even if they do not know the querying peer. The actual query can be
any string. The resolver service creates an endpoint message and combines
the query together with all the meta information to a XML document as
shown in Listing 4.2.

12The element name is the peer group ID prefixed with RendezVousPropagate.
13The service name is a little confusing: it means actually to resolve queries to responses.

51

52 CHAPTER 4. COMMUNICATION INFRASTRUCTURE

Listing 4.2: A sample resolver query XML document
<?xml version="1.0" encoding="UTF−8"?>
<jxta:ResolverQuery xmlns:jxta="http://jxta.org">
<SrcPeerID>urn:jxta:uuid−59616261646162614E50472050325033

\
1A227980E5924E80A3FD8ECD73D4C31803</SrcPeerID>

<HandlerName>BeerFinder</HandlerName>
<QueryID>1</QueryID>
<HC>0</HC>
<Query>Got a beer?</Query>
<SrcPeerRoute><jxta:RA><Dst>
<jxta:APA><EA>tcp://129.132.105.170:32725</EA></jxta:APA

>
</Dst></jxta:RA></SrcPeerRoute>

</jxta:ResolverQuery>

The hop count, which is incremented on each hop, ensures that the query
is not sent to far away. Although the rendezvous service already performs a
similar check, we have to do it again because the resolver does not always
need to use the rendezvous propagation mechanism. Queries and responses
can be propagated or sent directly to a specified peer. The resolver service
not necessarily depends on the rendezvous service but would of course be
limited to local network propagation and single message dispatching in a
situation without rendezvous. A resolver response looks basically the same
as a query. The actual response is a string. There is no hop count as it does
not make any sense here. Also the source peer ID and route are dropped
but there is a response peer ID, so the recipient knows from which peer
the response originates. A client service sending a query should be able to
register a listener for related responses, so it does not have to check itself if
the response matches the query. That is one of the main tasks of the resolver
service.

4.4.1 Discovery service

While he resolver does not maintain much data and only serves as an interme-
diate message layer for other services, the discovery service is a fundamental
part in JXTA and much information passes it. The discovery service deals
with all sorts of advertisements, so it knows about all peer resources (as ad-
vertisements are promoting resources). It serves as an advertisement storage
and it is also responsible for finding remote advertisements and for letting
other peers know about the locally stored ones.

52

CHAPTER 4. COMMUNICATION INFRASTRUCTURE 53

Discovery queries and responses: Whenever a service needs an adver-
tisement, it does a local discovery query which is equivalent to a storage
lookup. Generally, we distinguish between peer, peer group and other ad-
vertisements, so we specify the advertisement type in a query. A query may
restrict the search additionally with a key and a value name. The key is a
XML tag name. It is allowed for the value to contain the wild card character
– * – in the beginning and/or at the end. The number of answers may be
limited by setting a threshold. Querying remote peers is actually the same
but one may choose to send a query to a single peer or to propagate the
message in the group. In both cases, the resolver service is used for sending
the messages. The discovery query is an XML document specifying query
type, key, value, threshold and optionally the source peer advertisement.
Looking at the final endpoint message, we see a resolver element containing
a resolver query XML document which contains the quoted discovery query
XML data14. A peer is not obliged to respond to any remote discovery query.
Peers that have sent a query should expect no, one, or multiple responses.
They cannot expect that the threshold is respected, neither as minimum nor
as maximum. A discovery response message can contain several matching
advertisements. Additionally, it can also contain the responding peer ad-
vertisement. Discovery responses are not only used to respond to queries;
but it is also allowed to publish advertisements to other peers, especially the
rendezvous server, using a “response” message. To feed local storage with
advertisements, one just publishes them locally.

Shared Resource Distributed Index: As we have already seen, a ren-
dezvous server will not propagate every message. In the case of discovery
queries, the rendezvous makes use of a shared resource distributed index,
henceforth called SRDI (see [75]). The SRDI is an advertisement index con-
taining certain keys and values together with peer IDs enabling the ren-
dezvous to lead queries to peers which should have matching advertisements.
This monumentally reduces network traffic as peers that do not have the
needed information are not queried. Note that the SRDI does not contain
the entire advertisements but has some important keys and their values for
every advertisement a peer has. But how does the rendezvous maintain its
SRDI? Every edge peer sends its SRDI to its rendezvous. When newly joining
the group, it sends the full index. Later, it sends regularly (for example every
minute) a SRDI delta, that means only the key/values for newly discovered,
created or updated advertisements. When a rendezvous lease is canceled,

14The discovery query is quoted because the resolver service currently expects a simple
query string.

53

54 CHAPTER 4. COMMUNICATION INFRASTRUCTURE

the peer’s SRDI entries are removed automatically by the rendezvous. There
exists a generic SRDI XML document used for pushing SRDI entries to the
rendezvous. It contains also a TTL, so an SRDI entry is not valid forever
(like the advertisements themselves). The current JXTA implementations
do not index each XML tag of every advertisement. When creating a new
advertisement type, one should specify which elements are important and
should therefore be indexed. When speaking in database terms, one should
at least index the primary key attributes.

4.5 JXTA’s P2P infrastructure and peer roles

To bring some clarification into the partly insufficiently introduced peer roles,
we would now like to show a short overview of the entire JXTA P2P infrastruc-
ture: Although JXTA may use central rendezvous server lists when starting
up, we can definitely see the JXTA structure as a true P2P system. It does
not rely on central servers for any core task and uses the P2P structure for
all purposes. However, there are various peer roles in the network:

Edge peer: Whenever traffic or CPU power is expensive, an edge peer is
surely the right role for a peer. Such a peer heavily relies on other peers and
consumes parts of their attention. Most peers would actually choose this
kind of role.

Rendezvous peer: A rendezvous peer is providing a rendezvous server and
enables edge peers to make contact with other peers. In a JXTA network,
we need at least one rendezvous server because we usually want to discover
other peers and do not have the physical locations hard coded of other peers
that we want to communicate with.

Router peer: A router peer enables peers to communicate with others to
which they cannot connect directly. This is used for peers behind a NAT
gateway or a firewall. Therefore, router peers may have to manage all their
clients message traffic in one or both directions. Note that peer roles may
dynamically change. For example, a peer which cannot find any rendezvous
server could automatically become a rendezvous. This is of course adjustable
in the platform configuration.

54

CHAPTER 4. COMMUNICATION INFRASTRUCTURE 55

4.6 VamPeer Design

Keeping our goal in mind, we focus on the essential parts needed for Origo
Core porting all JXTA protocols to Eiffel too big a task for our setting. See
Section 8.2 for future work on VamPeer and how the library can be extended
to add missing features.

As we are implementing JXTA for Eiffel with regard to support the net-
work layer of Origo Core, we state the following requirements:

1. Origo Core peers may communicate among each other without being
disturbed by messages from other peer applications.

2. An Origo Core peer is able to advertise its existence to the peer group
and can also discover other peers, for example a core node.

3. An Origo Core peer is able to send messages to other peers. A message
may contain data of any type and length.

Mapping these ideas to the JXTA world, we specify the following require-
ments:

To fulfill the first requirement, we should be able to support private peer
groups. This means also that we need to be able to run an own JXTA in-
frastructure without using foreign resources on the net. This is exactly what
the JXTA specification recommends to do for peer applications. To enable
peer discovery in JXTA (second requirement), we need a set of services: Ob-
viously, we need at least the discovery service which allows us to publish and
query for (peer) advertisements. Then, we need the resolver service which
the discovery depends on. But to get into contact with unknown peers, we
heavily rely on the rendezvous service. The rendezvous server is the first peer
we contact and the advantages of the discovery service only is possible with
the help of the rendezvous. A rendezvous server is needed for the entire peer
group, not every peer needs to implement the server part. An Origo peer may
be a rendezvous client only. Therefore, we concentrate on the client part and
note the possibility to run the rendezvous server as a JXTA JSE peer. As
all discovery messages (and also messages from the resolver and rendezvous)
are based on normal JXTA messages, we clearly need the endpoint service
together with a transport module. Having these, we honor also the third
requirement of providing a message transport.

There is still a missing service: the endpoint router. Peers are addressed
with peer IDs, so we need the endpoint router to resolve the IDs to addresses
that specify the transport protocol and the exact address. This is only a

55

56 CHAPTER 4. COMMUNICATION INFRASTRUCTURE

small task of the router. There is no urgent need for the other functionality
enabling us to have peers behind firewalls and NAT gateways.

Summing up the set of required services, we get the list shown in ta-
ble 4.2. The requirements are fairly vague but we will provide more detail
later in this Section and show the resulting challenges when presenting the
implementation in Chapter 4.7.

Service module Functionality
Endpoint service Message layer abstraction
A transport module (e.g.
TCP)

Message sending and receiving over the
wire

Endpoint router (parts) Routing messages to available gateways
selecting a fast transport

Rendezvous service (client) Connection to peer group
Resolver service Query-response system
Discovery service Advertisement querying and publishing

Table 4.2: Required services

We now take a closer look at the design of VamPeer. By first introducing
the module structure, we see how the entire platform works.

4.6.1 Module structure

The JXTA structure is very modular; every service and every peer group,
even the platform (the world peer group) itself, is a module.

A module is an entity that can be started, suspended and stopped. This
enables the VamPeer platform to perform the entire start up process without
knowing every internal detail of every module.

INITIALIZING STARTING SUSPENDED STOPPED

INIT_FAILED START_FAILED

Figure 4.1: Module life cycle

Figure 4.1 shows a life cycle of a module. After successful loading where
usually the basic initialization like creating data structures is done, a module

56

CHAPTER 4. COMMUNICATION INFRASTRUCTURE 57

can be started. The suspended mode is available to temporarily stop a service
in order to make it rest for a while in standby. The start method has to take
care of the two possible calling states. To permanently shutdown a module,
one can call stop in suspended mode. A stopped module should not and
cannot be started again. If you really need to do this, you have to create a
new module instance.

There are also some states indicating fatal errors. When one of them
has occurred, a module should not be touched again. Only the constructive
operations init and start are allowed to produce errors. suspend and stop
are always expected to function properly.

A module is represented in VamPeer with the deferred class P2P_MODULE.
Figure 4.2 gives an idea about the classes which effect it. Also, we already
see how the peer groups are related with modules; that is what we will look
at in the next Section.

Figure 4.2: Module class hierarchy

4.6.2 Peer group modules

As a peer group specifies the available services for its group, it makes sense
to make a peer group responsible for managing its services. So we just have
to start the peer group when we would like to start the application’s P2P
support with all services. Therefore, the peer group is also a module which
can be started and stopped (P2P_PEERGROUP).

57

58 CHAPTER 4. COMMUNICATION INFRASTRUCTURE

Unfortunately, it is not that simple to start the entire P2P platform. To
load a module we need a parent peer group, an ID and a module implemen-
tation advertisement used for configuration. Thus, we need a bootstrapping
process that handles the loading of our main peer group – usually the net
peer group.

This is exactly the purpose of our world peer group (P2P_PLATFORM). In
VamPeer, it is not used for anything else but loading the NPG. As the WPG is
itself a peer group, it is also a module but with a different creation procedure.
This allows us to retrieve the needed data like the configuration directory
path and the logger object.

It is not yet clear enough why we do not just adapt the net peer group
to manage platform creation. At the moment, only one real peer group can
be run in VamPeer.

4.6.3 Defining a peer group

Defining a peer group implies to prepare several requirements:
As a peer group is in the first place a normal module, we first have to

establish the module configuration. This requires to have a module class ID
(MCID) and a module specification ID (MSID) which identify the local and
remote behavior as already pointed out in Section 4.4.

Another part of the group definition is built by the group ID, a name and
a description. Together with the MSID, we are now able to build the peer
group advertisement.

Modules are loaded by the MSID. This means that the module loader gets
a MSID (besides an arbitrary ID and a name) in order to load the correct
module code. Hence when loading a peer group, we have to provide its MSID.

As peer groups define which services (modules) they provide, the peer
group module code is responsible to load these modules. The group module
therefore somehow contains a list of needed module MSIDs. In our standard
group implementation P2P_GENERIC_PEERGROUP, this list is called modules and
define_modules is the method that initializes it. As we use a parent-child
relationship between groups, the group services are usually inherited by a
child group but one may easily redefine them.

When we inherit group services, we share the module instance. This
clearly makes sense for certain services which are not group context sensitive.
The top group which defines such a service is responsible for it (it is the only
authorized group to load, start and stop this module). To respect this rule,
the module list of the group also has to keep track of whether a module is
inherited or newly defined.

58

CHAPTER 4. COMMUNICATION INFRASTRUCTURE 59

When a module is loaded, the loader and later also the module itself
should be able to access the module implementation advertisement. The
loader may need the advertisement to know what module code to load for
the given MSID. The module itself may use the advertisement to lookup some
configuration parameters. Thus, the module implementation advertisement
has to be available for each used module.

Conventionally, the group module implementation advertisement contains
all advertisement of its modules. The peer group module will then extract
these and make them available.

There is one open issue with module loading: a running module has itself
an ID. We speak thereof of the assigned ID because the module loader assigns
an arbitrary ID to the module. Usually, we assign the MCID but it is not
necessary to do so. The module uses its ID to create a unique handler name
when registering with other services.

Summarizing, we need an implementation advertisement for each mod-
ule, where the one for the group contains all advertisements for its services.
Additionally, we should provide a peer group advertisement to declare the
group module as a JXTA peer group.

The entire module loading procedure is quite generic because of the dy-
namic module loading. Although Eiffel does not provide this, we choose to
stick to the convention and provide also these implementation advertisements
even if we only may use it to parametrize modules.

4.6.4 Services

With the strict module structure, we are basically done with presenting the
VamPeer’s design because everything is bundled into a module and therefore
every service looks quite similar. Nevertheless, we have to describe some
particularities, especially how services interact among each other.

4.6.5 Module choice

Each module resides in its own Eiffel cluster together with its related classes,
namely the XML document types. Module unspecific classes are located in
the main vampeer cluster. See Figure 4.3 for a clusters overview.

Listing 4.3: Clusters overview
vampeer/ (38 classes)
|−− discovery/ (3 classes)
|−− endpoint/ (4 classes)
|−− pipe/ (2 classes)

59

60 CHAPTER 4. COMMUNICATION INFRASTRUCTURE

|−− rendezvous/ (5 classes)
|−− resolver/ (5 classes)
‘−− transports/ (7 classes)

|−− router/ (4 classes)
‘−− tcp/ (5 classes)

The pipe service15 is not implemented but the module specification ad-
vertisement depends on the pipe advertisement.

Until now, we have spoken of generic transport modules but finally we
implement only one, the TCP transport.

TCP is actually a misleading name as most of the other transports in-
directly are TCP based as well. But with the TCP transport, we directly
reside on top of TCP using the JXTA wire representation for messages. It is
the most simple but also the fastest transport.

4.6.6 Service layers

We would like to clarify how all the JXTA services are related to each other.
Particularly, how messages are passed through. We do so by looking at two
examples which cover all services implemented in VamPeer. We first treat
an outgoing and later an incoming message.

Outgoing message: A discovery query which is sent out to be propagated
in the group. It can be a general query to find new peers. Figure 4.3 shows
the UML sequence diagram hiding the exact operation signatures. Below,
we comment each method call:

1 When the discovery service is called with
remote_query_advertisements, it creates a P2P_RESOLVER_QUERY
containing the discovery query string and a handler name (see the
incoming message example for its use). It then passes it to the resolver
which is requested to propagate the query (instead of just sending the
message to a single peer).

2 The resolver service then creates a P2P_ENDPOINT_MESSAGE with a mes-
sage element containing the resolver query string. It passes the message
together with the resolver service name to the rendezvous service.

3a The rendezvous adds another message element with some metadata to
the message. This informs the recipients that the message was propa-
gated (important when they do repropagation). The rendezvous then

15The pipe service implements the pipe binding protocol and provides virtual commu-
nication channels among several peers.

60

CHAPTER 4. COMMUNICATION INFRASTRUCTURE 61

Figure 4.3: Information flow for an outgoing discovery query

first propagates the message in the local network by simply calling the
endpoint propagation service.

3a1 The endpoint service now passes the message and the service name to
each transport propagation method. Actually, it makes only sense for
the TCP transport, as it supports IP multicast (other transports just
ignore the call). However, multicast is discouraged16 and mostly turned
off in the platform configuration.

3b When the peer is connected to a rendezvous server, it is able to do prop-
agation via this server. So the rendezvous service sends the message to
the peer ID of the server by calling the endpoint service send_message.
For this, it has to create a P2P_ENDPOINT_ADDRESS with the jxta protocol
and the peer ID of the server17.

3b1 To resolve the endpoint address, the endpoint service passes the mes-
sage to the endpoint router which is the registered transport module
for the jxta protocol.

3b2 The endpoint router does a (local) lookup for the given destination peer
ID (querying for peer and route advertisements). As soon as a gateway

16Multicasting should not be used because it causes much network traffic and may stress
some smaller edge peers. It poses also a risk for developers that test in local networks only
because things may work locally with multicast but maybe will not with remote peers.

17E.g.jxta://rdv-peer-id/rsv-service-name (while rsv-service-name is the resolver
service module class ID).

61

jxta://rdv-peer-id/rsv-service-name

62 CHAPTER 4. COMMUNICATION INFRASTRUCTURE

and a transport protocol is chosen, it calls the endpoint service again
to deliver the message with a rewritten, specific destination address18.

3b3 The endpoint service now passes the message to the specified transport
protocol which tries to connect to the specified peer and writes the
message to the wire. Note that there is neither a feedback to the caller
whether the message dispatching has been successful or not, nor an
acknowledgment message from the other peer. The TCP transport is
therefore seen as an unreliable transport.

Incoming message: The path for incoming messages is somewhat shorter.
We will continue our example and let the peer receive a discovery response.
To explain the three method calls, we first look at Figure 4.4 which presents
the calling sequence.

Figure 4.4: Information flow for an incoming discovery response

1 As soon as the message transport has received a message and the mes-
sage parsing from the wire has been successful, it calls the demuxmethod
of the endpoint service with a P2P_ENDPOINT_MESSAGE instance.

2 From the delivered message, the endpoint service extracts the destina-
tion address and from that the service name. Then it calls the registered
agent for this server name which is owned in our case by the resolver
service.

18E.g. tcp://129.132.105.170:9700/rsv-service-name

62

tcp://129.132.105.170:9700/rsv-service-name

CHAPTER 4. COMMUNICATION INFRASTRUCTURE 63

3 The resolver interprets the resolver message element and is able to
extract the response string and a handler name. It then calls the regis-
tered agent for this handler name and passes a P2P_RESOLVER_RESPONSE
object.

The discovery service will finally parse the resolver response string and
create a P2P_DISCOVERY_RESPONSE. From there, the delivered advertise-
ments (responses) are either published locally or they may be passed
to a further agent registered by a user service.

4.6.7 Address rewriting

To stay compatible with other JXTA implementations, we have to pay atten-
tion to a special topic: address rewriting (address mangling). The problem
is that messages may not be directed to the correct service in other imple-
mentations since they may have a slightly other peer group hierarchy.

In a JXTA platform, only one module can actually handle network traffic
(one module per transport protocol). But generally, it is possible to run
multiple peer groups at a peer such that each group has its own endpoint
service. Hence, the question is where we register the transport module(s).

As the JXTA protocol does not specify this, each implementation can
do as it likes. While in JXTA JSE the WPG owns the transport modules,
JXTA-C and VamPeer settle them in the NPG. The reason for that is that in
Java, the WPG is a real peer group whereas JXTA-C does not have a WPG
and we in VamPeer only use it for platform configuration purposes.

With multiple endpoint services and in order to receive messages, services
have also to be registered in the top peer group that owns the transport
modules. Such an indirect registration, which is automatically done behind
the scenes, is done with a mangled address which includes the original peer
group ID where the service is registered in the first point. Figure 4.5 shows
how a mangled address is assembled.

EndpointService:︸ ︷︷ ︸
Mangling prefix

jxta-NetGroup︸ ︷︷ ︸
Service’s group ID︸ ︷︷ ︸

New service name

/ service_name/service_parameter︸ ︷︷ ︸
Original service name/parameter︸ ︷︷ ︸

New service parameter

Figure 4.5: A mangled service handler name

With such a mangling scheme, it is clear that also the message destination
address has to comply to this rule. To send a NPG discovery message to a
Java peer, we have to mangle the address before because the discovery is in
the NPG but the Java transports are in the WPG. Sending the same message

63

64 CHAPTER 4. COMMUNICATION INFRASTRUCTURE

to a VamPeer peer, we would not have to mangle the address because its
transport modules are also in the NPG.

In the reverse direction, a Java peer will send discovery messages always
mangled and we would discard the message because we have no mangled
address registered for it as our discovery service already runs in the top
group NPG.

To overcome this, we register our services always with the mangled ad-
dress additionally to not loose any messages from Java peers. And to send
messages, we always mangle the destination addresses, but we do not force
it; hence, it is still possible to speak with other VamPeer peers without group
mangling.

4.6.8 Rendezvous propagation

In P2P networks, propagation is a central service because for many messages
we do not know which peer exactly uses the information. So we propagate
the message to everyone and hope that some peers use or process it. As we
have seen, propagation with group scope (instead of local network only) is
done relying on the rendezvous service.

When we hear about message propagation, we are tempted to classify it
as flooding the network. While this can be a solution (previous versions of
JXTA JSE did this), it is too traffic intensive and extremely inefficient.

We already mentioned in Section 4.4, that the rendezvous passes the
messages to the appropriate services which decide, based on some gathered
knowledge, if the message should be repropagated or not.

This means that we have to get away from the idea that we can only place
a JSE rendezvous somewhere and propagation just works. Either, we design
our peer application to use only standard services or we implement the user
services also in Java on the rendezvous peer. The third and best solution
would be of course to have an Eiffel rendezvous implementation.

4.7 Implementation

In this Section, we look at the implementation of VamPeer and describe
solutions for the most important tasks. The use of the library is documented
in Section 4.10.

64

CHAPTER 4. COMMUNICATION INFRASTRUCTURE 65

4.7.1 Dependencies

VamPeer is using several software libraries. The Gobo [76] library is used for
data structures, date/time and its XML generation and parsing support.

As we are mainly dealing with remote peers, we need a networking library.
We looked for a simple solution and got to the EiffelNet code [58]. Unfortu-
nately, the library is not used by many people, resulting in an outdated API
which is not always useful for each task. Therefore, we wrote an extension,
described in Section 4.7.2.

4.7.2 Socket extensions

The main problem with EiffelNet is the missing support for timeouts. When-
ever we wait for network data, we are not able to wait eternally. Generally,
there are two kinds of interrupts in these situations in which we like to quit
the reading/waiting task: first, when a certain time has been passed and sec-
ond, when we get an internal request for closing the connection such when
the user application is shutting down.

Another lack of EiffelNet is buffering. Usually, we want to assemble a
network message and send it as one packet. The straightforward idea to just
use a string does not really work well because with binary data, we have to
append 8-, 16- or 32-bit integers (respecting the network byte order!) – this
results in unmaintainable code. Additionally, we sometimes have to know
how large a buffer is (for example to specify a message body length).

We therefore wrote a helper class P2P_SOCKET_EXTENSIONS which provides
exactly these features: timing and buffering. We did not choose to create a
child socket class because the helper methods may be used for several types
of sockets: TCP or UDP. We provide methods for writing by using a buffer,
for reading and for some socket checks.

One may fill the buffer with strings and integers (from 8 to 64 bits, using
big-endian format). The buffer is a string and may be adapted and used at
will. As soon as the buffer is sent, the buffer is emptied again.

For the read methods (returning a string or the various integer types), one
has to set a timeout first. They read and wait until either they got exactly
the expected amount of data, they pass the timeout or a given constraint has
become active. The last two cases raise an exception. Of course for strings,
there is also a method reading up to a given data length (in many cases, we
do not know exactly how much data we are expecting).

The socket checks provide a way to wait until a connect request is success-
ful within the timeout and a way to check generally whether data is available
for reading.

65

66 CHAPTER 4. COMMUNICATION INFRASTRUCTURE

4.7.3 XML documents

JXTA uses XML documents. Every advertisement is in XML, and also every
higher level JXTA message. Therefore, we need a simple way to parse and
generate XML documents.

Figure 4.6 shows our class structure for XML documents. We hide the
exact operation signatures for simplicity and do not list all descendant classes.

Figure 4.6: XML document class hierarchy

The class P2P_XML_DOCUMENT manages most handling using the Gobo XML
interface. It is not an abstraction so that the underlying XML library can
easily be replaced; it rather provides helper methods just to simply build an
XML tree from elements, to get the content as a string and to build a tree
parsed out of a string. When parsing, we let Gobo build the full tree and we
afterwards provide callbacks for each root element and root attribute.

Its main client class is P2P_XML_CACHE (deferred) where all XML docu-
ment classes inherit from. It mainly declares central document methods,
such as creation, validation, output and element matching. It inherits from
P2P_DOCUMENT which provides an interface for very generic documents. The
XML tree is not built until out is called the first time. Further calls return
a cached XML string unless any element has been changed (renew_document
should always be called internally in element setters).

To create a new XML document type, we just need to inherit
from P2P_XML_CACHE, define some setters/getters for the actual content
elements and implement match, root_element_name, attribute_handler,
element_handler (to gather data after the parsing process) and document (to
create the XML elements). We may also redefine initialize and validate

66

CHAPTER 4. COMMUNICATION INFRASTRUCTURE 67

and add additional creation methods.
This interface is appropriate for general XML documents, we require an

additional interface for advertisements: P2P_ADVERTISEMENT. Each advertise-
ment has a unique ID used for the advertisements store in the discovery
service. It should also define its lifetime and the remote expiration time.
For SRDI, an advertisement should also define some elements which can be
indexed.

Hence, we declare a unified interface for advertisements as shown in Fig-
ure 4.6. All advertisement classes (such as P2P_PEER_ADVERTISEMENT) should
effect it.

4.7.4 Using UUID for JXTA IDs

For VamPeer, we use JXTA IDs in the UUID format as it is the case in JXTA
JSE. Look at Figure 4.7 to get an overview of the ID class hierarchy.

Figure 4.7: ID class hierarchy

P2P_ID is the main interface for an ID. Such an ID can be parsed and
written as a URN string (it is comparable and hashable). Direct descendants
can be instantiated are P2P_NULL_ID (for referencing no resource, actually
never used in VamPeer) and P2P_GENERIC_ID which may contain any valid ID
in any format.

We support the uuid format using the deferred class P2P_ID_UUID. It parses
the unique ID part and creates a byte array. For each ID type (such as
peer, peer group, codat ID. . .), there is an effecting class defining the byte
interpretation. Figure 4.7 shows two of them. Each such type also defines

67

68 CHAPTER 4. COMMUNICATION INFRASTRUCTURE

the characteristic UUID bytes, made available through the feature uuid19.
P2P_UUID_TOOLS is actually not related to the ID class structure but pro-

vides helper methods to create a random UUID and to parse/write a UUID.
In VamPeer, UUIDs are everywhere seen as ARRAY [NATURAL_8] with a ca-
pacity of 16 bytes.

For peer group IDs, there is a special interface P2P_PEERGROUP_ID. It is
independent on the uuid since we use other formats as well for peer group
IDs, for example the jxta format for the net and the world peer group.
The uuid version P2P_PEERGROUP_UUID is therefore descendant of two classes,
P2P_PEERGROUP_ID and P2P_ID_UUID.

It may be confusing that the jxta peer group IDs also provide a uuid
feature. It is used to generate child peer group IDs because children point
to the parent group uuid. The following examples try to clarify these ID
relationships:

World peer group ID: urn:jxta:jxta-WorldGroup
Implicit UUID: 59616261646162614A7874615032503320

Private net peer group ID:
urn:jxta:uuid- 822A7C9E6B804759870B81B10070E9C9︸ ︷︷ ︸

Group UUID

59616261646162614A78746150325033︸ ︷︷ ︸
WPG’s characteristic UUID

02

Peer ID, member of the private net peer group:
urn:jxta:uuid- 822A7C9E6B804759870B81B10070E9C9︸ ︷︷ ︸

Group’s characteristic UUID

2F3F01367359485B95D5C6CFA82B9775︸ ︷︷ ︸
Peer UUID

03

4.7.5 Threads

We address this Section to thread management in VamPeer, because we want
to present which threads exist and why users have to pay attention to some
details.

Threads are an absolute must when dealing with the network. But threads
are also a source for many software bugs because we cannot rely on all con-
tracts anymore in a multithreaded environment. Other threads may change
something in course of time. This is why we have to use locking mechanisms
to ensure exclusive access for a certain amount of time.

19While the peer group UUID in a peer ID is just meta information, the peer UUID is
the characteristic part.

20In ASCII, the 16 bytes stand for “YabadabaJxtaP2P3”. Actually, the last byte was an
error; it should be a “!” but they looked up the wrong number in the ASCII table (decimal
instead of hex). . .

68

CHAPTER 4. COMMUNICATION INFRASTRUCTURE 69

While we have synchronized environments in Java, Eiffel currently does
not support such a mechanism in the language itself21. We therefore have
to use the possibilities from EiffelThread which provides read/write locks
(for multiple readers, one writer), mutexes (simple locking) and condition
variables (for thread synchronization).

In VamPeer, we use at least four threads besides the main thread. We
will describe them now:

Main thread: First, we will look at what the main thread is used for. It
is the thread which starts the platform and is fully controlled by the user
application. Thus, the entire platform startup is done and all the other
threads are created by the main thread. Since VamPeer does not provide an
event loop, the user application has to handle its main thread itself. The
main thread is also used to shutdown the platform.

Most of the other threads are created by the TCP transport and its related
classes:

Server thread: The first thread created is the server thread.
P2P_TCP_SERVER binds a server port and listens for incoming connections.
When a new connection is accepted, it passes the socket to the main TCP
class (P2P_TCP_TRANSPORT) which handles the connection with other threads.
The server thread can be closed by calling shutdown (from another thread).
The socket will then be cleaned up and cause the server thread to terminate
instantly.

Connection threads: Each TCP connection gets its own thread. As soon
as a socket is passed from an incoming connection, or when a new socket
has to be created, the connection object P2P_TCP_CONNECTION launches a new
thread.

The thread manages waiting during connection setup and waiting for
incoming messages via its socket. It is important to know that message
processing (for received messages only) is handled by the connection thread.
This means, a service should never do extensive work in a processing agent.

It is therefore not possible for a message handler to wait for another
message retrieved with the same connection. However, sending messages is
allowed in such a handler (see next paragraph).

A connection thread terminates itself after a certain time but can of course
also be destroyed by calling close.

21SCOOP will be a good solution, but it is still a research subject.

69

70 CHAPTER 4. COMMUNICATION INFRASTRUCTURE

Message queue thread: Because services should not be affected by the
slow message delivery, outgoing messages are queued. The calling service
thread returns instantly and without result as soon as the message has been
successfully stored in our message queue.

P2P_TCP_TRANSPORT manages a message queue thread which waits for and
gets triggered on arrival of new messages. It then looks up a possible existing
connection or tries to open a new one. As soon as a connection state is in
a valid mode, it sends the message and removes it from the queue. It tries
several times when dispatching fails. Summarizing, we have two fix threads
for the TCP transport plus one thread per connection. In suspend mode, all
connections are closed and the server- as well as the queue manager thread
are stopped.

Rendezvous thread: The rendezvous service owns another thread. It is
used to maintain contact with rendezvous servers meaning to renew connec-
tion leases. Hence, this thread is mostly sleeping.

The thread is launched when the service is started and stopped when
the service gets suspended. During start, we have a bootstrapping problem
because not all services are started yet and the system might only be partially
functional. We cannot start sending messages in this state and have to wait
until the platform is started entirely.

That is the reason why the peer group is offering a method
when_fully_started returning True as soon as all group services are started
successfully or False on a failure. The rendezvous connection manager thread
calls this method before it begins to contact a rendezvous server to get a lease.

Discovery SRDI thread: The discovery service creates a thread to man-
age SRDI pushes. It regularly looks for new local advertisements and prop-
agates its index changes. Like the rendezvous connection manager, it waits
with index pushing until the platform has been started fully. The thread is
stopped also in suspend mode.

4.8 Advertisement store

Services and user applications should not have to store advertisements them-
selves but should be able to access a central store containing all advertise-
ments of the system. This store is implemented by the discovery service with
its local query methods. We would like to describe its advertisement store
here. The store can be divided into two parts, persistent and memory store.

70

CHAPTER 4. COMMUNICATION INFRASTRUCTURE 71

4.8.1 Persistent store

When starting the platform, a configuration directory must be declared. This
is used to store platform configuration and advertisements.

Listing 4.4: Persistent store directory layout

|−− Modules/
| |−− jxta:uuid−DEADBEEFDEAFBABAFEEDBABE000000010206.xml
| |−− jxta:uuid−DEADBEEFDEAFBABAFEEDBABE000000020106.xml
| |−− jxta:uuid−DEADBEEFDEAFBABAFEEDBABE000000030106.xml
| |−− jxta:uuid−DEADBEEFDEAFBABAFEEDBABE000000060106.xml
| |−− jxta:uuid−DEADBEEFDEAFBABAFEEDBABE000000080106.xml
| |−− jxta:uuid−DEADBEEFDEAFBABAFEEDBABE000000090106.xml
| ‘−− jxta:uuid−DEADBEEFDEAFBABAFEEDBABE0000000B0106.xml
|−− jxta:jxta−NetGroup/
| |−− Advs/
| |−− Peers/
| | ‘−−jxta:uuid−59616261646162614E504...3D4C31803.xml
| ‘−− PeerGroup.xml
|−− jxta:jxta−WorldGroup/
| |−− Advs/
| |−− Peers/
| | ‘−−jxta:uuid−59616261646162614E504...3D4C31803.xml
| ‘−− PeerGroup.xml
‘−− PlatformConfig.xml

The file hierarchy layout is simple as shown in Listing 4.4. For each
peer group a directory contains its group advertisement, one directory for
general and one for the peer advertisements. Each advertisement is stored as
a single XML file with shortened unique ID used as file name. For the module
implementation advertisements, a special modules directory is maintained.

The persistent cache is only used when the platform is loaded. During
initialization, configuration is read from disk or will be created and stored.
When the configuration directory is not present, it is created.

All advertisements are loaded into memory once the discovery service is
started. This enables peer applications to have advertisements permanently
available.

The class P2P_CACHE_MANAGER is responsible for accessing and managing
persistent cache. As soon as a platform instance is disposable, the cache
manager is ready for access too.

71

72 CHAPTER 4. COMMUNICATION INFRASTRUCTURE

4.8.2 LRU cache

The memory cache is implemented with a Least Recently Used (LRU) cache
in the class P2P_ADVERTISEMENTS_LRUCACHE. It is inspired by the JXTA JXME
project which is used for mobile applications with limited memory.

The LRU cache has a maximal capacity, so that the oldest, never used
entries are discarded. Furthermore, expired advertisements are removed au-
tomatically.

The discovery protocol is designed to distinguish between peer, group and
other types of advertisements. We have three LRU cache instances defined
in the discovery service, one for each type.

Advertisements are accessed by their unique ID or by a key/value search
which makes use of the advertisements match method. It is also possible to
retrieve a number of random advertisements (or all of them).

Advertisements are identified by their unique IDs defined in the advertise-
ment. When creating a new advertisement type, it is important to define a
scheme for the unique ID. While it is not always possible to create a unique
ID because the advertisement information is too common, we have to be
aware that an advertisement cannot be stored in the cache without having a
unique ID.

4.9 Shared creators

There are some important creators (also called factories) in VamPeer. All
creators can be accessed using the class P2P_CREATORS_SHARED:

ID creator: The ID creator represented by P2P_ID_CREATOR provides glob-
ally unique instances for the null, NPG and WPG ID and provides the pos-
sibility to parse an ID string and to create the appropriate ID object out of
it.

It knows and can handle the jxta and uuid format types. Custom creators
may be registered. Such an agent gets a generic ID and has to return a
specific ID object or Void if the ID is not recognized. The custom creators
can override the VamPeer types.

XML document creator: Specific XML documents are also derived with
a shared creator: P2P_XML_DOCUMENT_CREATOR. There are two methods to cre-
ate XML documents. Both expect the XML root element.

The first method document_from_element returns a P2P_XML_CACHE object
or Void whenever the creation was not successful. If the document type

72

CHAPTER 4. COMMUNICATION INFRASTRUCTURE 73

cannot be detected, it returns a valid P2P_UNKNOWN_XML_DOCUMENT.
It is used by the second method advertisement_from_element which sim-

ply tries to cast the result to an advertisement (P2P_ADVERTISEMENT).
The document creator is also useful for user services as custom document

types can be registered too, similar to the ID creator.

Wire message creator: The last creator is used for the endpoint mes-
sage wire representation. Currently, there is only one mime type used
(application/x-jxta-msg). Thus, the wire representation is always in binary
format, handled with P2P_WIRE_MESSAGE_BINARY.

4.10 Using VamPeer
In this Section, we look at the API and present how VamPeer can and should
be used. While we first list all possibilities, we describe examples which are
supplied together with the library.

4.11 Platform starting
For starting and stopping the platform, we always deal with a P2P_PLATFORM
instance. To get the instance, we call make passing the configuration di-
rectory path and a logger (L4E_LOGGER). The platform automatically reads
the configuration file PlatformConfiguration.xml, if available, and sets the
is_configured variable appropriately. If it is false, we have to provide a new
P2P_CONFIGURATION as shown in Listing 4.5.

73

74 CHAPTER 4. COMMUNICATION INFRASTRUCTURE

Listing 4.5: Configuring the platform instance
configure_platform is

−− Configure VamPeer platform instance
require

Logger_valid: logger /= Void
local

conf: P2P_CONFIGURATION
do

create platform.make (".vampeer", logger)
if not platform.is_configured then
−− New NPG Peer
conf := platform.default_configuration
conf.set_name ("Peer name")
conf.set_description ("Peer node description")
platform.configure (conf)

end
ensure

Platform_set: platform /= Void
end

The default configuration returns the settings for a new NPG peer: A
new peer ID is created, the TCP settings are set to automatic interface/port
detection and the rendezvous is set to client mode with the standard NPG
rendezvous servers. Before the configuration is fed the platform, we set an
appropriate peer name and a description.

The next step is to load the NPG. For the public NPG, this is easily
done with the standard_net_peergroup method which takes care of module
implementation advertisement creation and group loading.

74

CHAPTER 4. COMMUNICATION INFRASTRUCTURE 75

Listing 4.6: Loadingthe platform with the public NPG
start_platform is

−− Load and start net peer group
require

Platform_configured:
platform /= Void and platform.is_configured

do
−− Load NPG
npg := platform.standard_net_peergroup
if

platform.module_status /= platform.init_failed
then
−− Start Platform/NPG
platform.start

end
if

platform.module_status /= platform.start_ok
then

npg := Void
end

ensure
Npg_set: npg /=

Void implies npg.module_status = npg.start_ok
end

Modules can make use of start parameters which are provided with the
start_with_arguments command (expecting an ARRAY [STRING]). All started
modules receive the same arguments. However, the JXTA services do not
use them.

When the platform is successfully started, we can access the services via
the NPG peer group instance. Note that at this point, the rendezvous client
may not yet have connected to a server and propagated messages might get
lost.

We should not forget to maintain an event loop when we are done with
initializing, or the application will quit instantly. The platform does not
provide such a feature.

To stop the platform again, we call platform.stop. If you just like to
pause the P2P activity, you will like the suspend command (see Section 4.6.1).

4.11.1 Private peer groups

It is somewhat more complicated to load a private peer group since we have
to provide and create more specific settings. The entire process looks very

75

76 CHAPTER 4. COMMUNICATION INFRASTRUCTURE

similar, but we have to create another configuration and load the private
NPG differently.

Creating new IDs: The very first step is to create all the IDs used for
the new peer group. Please read the introduction in Section 4.6.3 at page 58
to get an overview about the definition of a peer group.

Listing 4.7 shows how to generate the three IDs used for a new private
NPG: a MCID and a MSID for the peer group module and finally the peer
group ID. A private NPG is always a child of the WPG, so we use the WPG
UUID as parent ID.

Listing 4.7: Creation of IDs for a new peer group
create_peergroup_ids is

−− Create all IDs used for a new peer group
local

mcid: P2P_MODULE_CLASS_ID
msid: P2P_MODULE_SPECIFICATION_ID
gid: P2P_PEERGROUP_ID
wpgid: P2P_WORLDGROUP_ID

do
create mcid.make_new
create msid.make_new_with_class (mcid.uuid)
create wpgid.make
create gid.make_new_with_parent (wpgid.uuid)

end

In a P2P application the code above cannot be used; the creation of the
new IDs is a one-time process. One has to hard code the new IDs for an
application. Instead of using the example above, the idcreator example shows
how to generate all the different kinds of IDs.

Creating a configuration: To create an appropriate configuration, we
have to set the peer ID, name and description in a P2P_CONFIGURATION object
as shown in Listing 4.8. Additionally, we have to add service configurations
for the TCP and the rendezvous module. For the TCP configuration, one
may choose the default with default_tcp_configuration. The rendezvous
configuration needs to be adapted to the groups rendezvous servers, see Sec-
tion 4.12.3 for more detail.

76

CHAPTER 4. COMMUNICATION INFRASTRUCTURE 77

Listing 4.8: Creating a platform configuration for a private peer group
new_configuration: P2P_CONFIGURATION is

−− New configuration for a private peer group
require

Group_id_valid: gid /= Void and gid.is_valid
local

pid: P2P_PEER_ID
rdvconf: P2P_RENDEZVOUS_CONFIGURATION

do
−− New peer ID
create pid.make_new_with_group (gid.uuid)
−− Rendezvous client configuration
create rdvconf.make
rdvconf.add_seed_uri ("http://stablehost.org/rdvs.cgi"

)
create Result.make_with_id (pid)
Result.add_service_parameter

(transport_tcp_mcid, default_tcp_configuration)
Result.add_service_parameter

(rendezvous_mcid, rdvconf)
ensure

Result_set: Result /= Void and Result.is_valid
end

The constants for the TCP and rendezvous MCIDs are listed in
P2P_CONSTANTS.

Creating a module implementation advertisement: A module im-
plementation advertisement for the group should be created when it is not
available in the cache yet. Listing 4.9 shows how we first can get a standard
advertisement containing all advertisements for the JXTA services. We then
add a user service and store the entire document to disk using the cache
manager.

77

78 CHAPTER 4. COMMUNICATION INFRASTRUCTURE

Listing 4.9: Creating a peer group module implementation advertisement
set_peergroup_implementation_advertisement is

−− Make sure that peer group
−− implementation advertisement exists

require
Platform_valid: platform /= Void

local
params_doc: P2P_XML_DOCUMENT
pg_mia, smia: P2P_MODULE_IMPLEMENTATION_ADVERTISEMENT

do
if

not platform.cache_manager.
has_module_implementation_advertisement (pg_msid)

then
pg_mia := platform.

peergroup_implementation_advertisement
(pg_msid, "PG_CLASS", "group description")

params_doc := Result.parameter.document
−− Add user service impl adv
smia := platform.

default_implementation_advertisement
(service_msid, "SERVICE_CLASS",
"service description")

params_doc.
create_root_child_element ("Svc", namespace_empty)

params_doc.
add_child_element
(params_doc.last_element,
smia.document.document.root_element)

−− Store group impl adv
platform.
cache_manager.
store_module_implementation_advertisement (pg_mia)

end
end

Loading a private NPG: To load a private peer group, the platform
provides the method load_net_peergroup which expects the group ID, the
specification ID and an agent for instantiating the group.

We do not like to load the peer group module directly because we want
to have a unified access through the platform object. This also allows the
platform to be up to date with its module status.

78

CHAPTER 4. COMMUNICATION INFRASTRUCTURE 79

Listing 4.10: Loading a private NPG
load_peergroup is

−− Load a private net peer group
do

npg ?= platform.
load_net_peergroup (gid,
pg_msid, agent peergroup_loader)

if
npg /= Void and npg.
module_status /= npg.init_failed

then
npg.group_advertisement.

set_name ("Group name")
npg.group_advertisement.

set_description ("group description")
platform.cache_manager.

store_peergroup_advertisement
(npg.group_advertisement)

end
end

peergroup_loader (a_pg: P2P_PEERGROUP;
an_id: P2P_ID;
a_mia: P2P_MODULE_IMPLEMENTATION_ADVERTISEMENT):
P2P_MODULE is
−− Private NPG loader

do
if

a_pg = platform and an_id.
is_equal (gid) and
pg_msid.
is_equal (a_mia.specification_id)

then
create {PG_CLASS} Result.

init (a_pg, an_id, a_mia)
end

end

79

80 CHAPTER 4. COMMUNICATION INFRASTRUCTURE

4.12 Using Services
After starting the platform, we will only work with the peer group instance
and its services. All modules are registered in the peer group, so we may
access them through our NPG. While the JXTA services have an easy access
method (for example npg.endpoint_service), we have to access user services
through their module name: npg.lookup_module("servicename").

4.12.1 Endpoint service

The endpoint service is central, because all other services directly or in-
directly rely on it. This includes all services and as well as all transport
modules.

Receiving endpoint messages: We first look how services use the end-
point service. When they are ready to receive endpoint messages, they
register a service name, an optional service parameter and a handler us-
ing extend_service. The service name is the assigned module ID of the
registering service and is therefore unique.

The actual, internal handler name is the combination of the service name
and the parameter. When we specify a parameter, we get only those messages
that exactly match the service name and the parameter. If no such handler
exists, the handler matching only the service name will be called. Note that
we can only have one handler per service; when a handler is registered, a
possibly old handler for the same service name/parameter is silently replaced.

Message handlers get an endpoint message together with the extracted
source and destination endpoint address. Handlers should not do long pro-
cessing jobs and should return as soon as possible.

See Listing 4.11 for an example message handler. It prints out the content
for the message element with name “dummy” from the user namespace.

Reaching remote peers: For actively reaching other peers, there are three
possibilities:

1. send_message and send_message_mangled

2. propagate and propagate_mangled

3. ping

To send a message, we call one of the send message methods passing an
endpoint message together with an endpoint address. The endpoint address

80

CHAPTER 4. COMMUNICATION INFRASTRUCTURE 81

Listing 4.11: Example endpoint message handler
process_message

(a_msg: P2P_MESSAGE; a_source,
a_destination: P2P_ENDPOINT_ADDRESS) is
−− Process incoming endpoint message

require
Message_valid: a_msg /= Void
Source_valid: a_source /= Void
Destination_valid:

a_destination /= Void and a_destination.
service_name.is_equal (sname)

local
msgel: P2P_MESSAGE_ELEMENT

do
msgel := a_msg.

element_by_namespace_and_name
(a_msg.namespace_user, "dummy")

if msgel /= Void then
print (msgel.content)

end
end

81

82 CHAPTER 4. COMMUNICATION INFRASTRUCTURE

Listing 4.12: Creating and sending an endpoint message
send_endpoint_message (a_dest: P2P_PEER_ID) is

−− Send endpoint message to ‘a_dest’
require

Dest_valid:
a_dest /= Void and a_dest.is_valid

local
ea: P2P_ENDPOINT_ADDRESS
msgel: P2P_MESSAGE_ELEMENT
msg: P2P_MESSAGE

do
create ea.

make_with_id (a_dest, "pingservice", Void)
create msg.make
create msgel.

make_string (msg.namespace_user,
"Data", Void, "Ping")

msg.extend (msgel)
peer_group.endpoint_service.

send_message (ea, msg)
end

should use the protocol jxta with a peer ID. Listing 4.12 shows an example
for this.

To learn if you need the “mangled” version or not, you may revert to
Section 4.6.7 on page 63. However, using send_message_mangled is usually
the safer way, but requires to pass the group ID of the calling service.

The propagate methods pass the message to all transports which should
make use of transport specific propagation techniques. Currently, only the
TCP transport can handle this request by sending a UDP multicast packet22.
However, our TCP module implements only outgoing multicast and cannot
read any incoming multicast messages.

Using the endpoint propagation method will at best reach peers in the
local network, never the entire peer group. To propagate a message, we do
not pass a full destination address because it is protocol and destination
unspecific; we just pass the destination service name and parameter.

While the methods for sending or propagating messages are normally
asynchronous, the ping command is a time-consuming call as it waits for a
remote answer. We do not send messages with ping, we just use it to check

22The message size is therefore limited to 16KB.

82

CHAPTER 4. COMMUNICATION INFRASTRUCTURE 83

if the given endpoint address is valid and available to us or not. The TCP
transport for example tries to open a connection and to do a handshake with
the remote peer.

Transport handling: Transport modules register with the endpoint ser-
vice but use the method extend_message_transport. Transports may either
be responsible for incoming (P2P_MESSAGE_RECEIVER_TRANSPORT) or outgoing
messages (P2P_MESSAGE_SENDER_TRANSPORT) or both; the endpoint service is
able to deal with these types.

Transports may induce messages by calling the demux command which
analyzes the message and passes it to the appropriate service. The endpoint
service will simply ignore messages for which no handler exists.

Message filtering: The endpoint service can filter messages. It is possible
to extend filters for incoming or outgoing messages. Filters may not only
decide whether a message is discarded or not but may also alter the messages.
Listing 4.13 shows how such a filter handler can look like.

Listing 4.13: Example endpoint message filter
message_filter

(a_msg: P2P_MESSAGE;
a_src, a_dest: P2P_ENDPOINT_ADDRESS):
P2P_MESSAGE is
−− Discard incoming messages, if ‘ignore_all’ is set

require
Message_valid: a_msg /= Void
Source_valid: a_src /= Void
Destination_valid: a_dest /= Void

do
if ignore_all then

logger.info ("Discarding message from: "
+ a_src.out)

else
−− feed message back to other filters and services
Result := a_msg

end
ensure

Result_set: ignore_all = (Result = Void)
end

83

84 CHAPTER 4. COMMUNICATION INFRASTRUCTURE

4.12.2 TCP this is the last candidate. next esc will
revert to uncompleted text. ransport module

For the TCP transport module, we will not show the interface, because a
user never gets into direct contact with the module features. But we want
to show how a user can configure the transport.

The TCP transport looks for its service parameter in the platform con-
figuration. The configuration must exist or the module will not start. There
are currently three values to set: the Port, the InterfaceAddress and the
MulticastOff flag.

Listing 4.14: Full TCP transport configuration

<Parm type="jxta:TCPTransportConfiguration">
<MulticastOff></MulticastOff>
<Port>9701</Port>
<InterfaceAddress>

129.132.105.170
</InterfaceAddress>

</Parm>

When the MulticastOff flag is set, the TCP module will disable prop-
agation via multicast. When the flag is not set, only sending of multicast
messages is supported. The module currently does not support listening for
multicast messages. We should therefore disable multicast.

The port specifies the server port. If it is not set, the module will auto-
matically choose a port in the range 1024–65’535.

The interface address also concerns the TCP server. When the address is
set, the module will only accept messages for the given address. We may use
this in combination with VPN (virtual private network) to lock out messages
from unauthorized sources.

When the interface address is not specified, the module tries to detect the
interface and only listens on this interface. It is important for the platform
to know its own IP, namely to create the peer advertisement which includes
the route information.

The platform can not always detect its IP correctly. It has to use a
connection to find out the local IP. This is done when the rendezvous seed
URL is resolved when the platform is started (see next Section). When the
platform does not need to get the rendezvous seed list, it will set the local
IP to 127.0.0.1.

84

127.0.0.1

CHAPTER 4. COMMUNICATION INFRASTRUCTURE 85

4.12.3 Rendezvous service

The essential rendezvous service interface is small as it only has to provide
methods to propagate messages23. The main part of the entire server con-
nection handling is done internally and is not really of interest for a user.

Message propagation: When propagating a message, one has to provide
the endpoint message, the destination service name/parameter and a TTL.

The TTL is an integer value indicating the maximal number of hops the
message can be forwarded. Usually, we just set the maximum Ttl_max (50
hops).

There are several propagation methods: propagate_in_group
sends the message to all connected rendezvous servers whereas
propagate_to_neighbours uses the endpoint propagation method (propagat-
ing to the local network). propagate is usually the preferred method as it
calls both methods above. We provide the possibility to propagate messages
to a given list of peers with propagate_to_peers.

The rendezvous service is responsible for sending messages, the recipient
endpoint service will pass the message directly to the specified service, the
rendezvous service is not involved on the recipient side.

When we repropagate a message (meaning to propagate a received prop-
agated message), the rendezvous service is able to detect this and automati-
cally reuses the meta data stored in a special rendezvous message element.

Rendezvous events: As many services rely on message propagation, they
would like to make sure, that the current peer is connected to a rendezvous
so that message propagation is guaranteed. However, just at the time when
the platform has started, the rendezvous connection is not available yet. So,
it is rather useless at this time to use the service.

We therefore need a way to know when the connection will be of use to
the services. That is what rendezvous events are designed for. Interested
parties may register for such events. Current supported rendezvous types
are only the connection and disconnection events to a rendezvous server as
we currently just implement an edge peer.

To receive these events, we register an agent with
extend_rendezvous_event_handler. The agent should expect a
P2P_RENDEZVOUS_EVENT which provides the event type and the involved
peer ID (e.g. the rendezvous server). An agent should not do time con-
suming processes as it would stall incoming messages from the rendezvous.

23See Section 4.4 for a detailed rendezvous service description.

85

86 CHAPTER 4. COMMUNICATION INFRASTRUCTURE

Listing 4.15 shows how to publish the peer advertisement as soon as we are
connected to the group.

Listing 4.15: Example rendezvous event handler
process_rendezvous_event

(an_event: P2P_RENDEZVOUS_EVENT) is
−− Publish our peer advertisement
−− to group when connected to rdv

require
Event_valid: an_event /= Void

do
if

an_event.type =
{P2P_RENDEZVOUS_EVENT}.
type_connected_to_rendezvous

then
peer_group.

discovery_service.
publish_advertisement_remotely
(peer_group.peer_advertisement, Void)

end
end

Rendezvous Seeds: We have to specify the rendezvous server address (or
multiple addresses) so that a new, isolated peer can contact the group. For a
peer application, one would elect some peers as permanent rendezvous servers
and make their addresses available.

As described in Section 4.4, there are several ways to do this. The pre-
ferred solution is to maintain a file, accessible through HTTP, with a ren-
dezvous server list. The peer configuration then would be hard-coded to this
URL. The NPG rendezvous list can be found at the following address, List-
ing 4.16 shows its content:
http://rdv.jxtahosts.net/cgi-bin/rendezvous.cgi?2

Listing 4.16: Public NPG rendezvous seeds
http://209.128.126.120:9700
http://209.128.126.120:9710
tcp://192.18.37.36:9701
tcp://192.18.37.37:9701
tcp://192.18.37.38:9701
tcp://209.128.126.120:9701
tcp://209.128.126.120:9711

86

http://rdv.jxtahosts.net/cgi-bin/rendezvous.cgi?2

CHAPTER 4. COMMUNICATION INFRASTRUCTURE 87

Edge peers then randomly try one of the seed addresses and continue
trying until they get a connection lease.

The rendezvous configuration contained in the platform configuration file
is simple and looks like the one in Listing 4.17. VamPeer updates the con-
figuration with known servers, once it has resolved a seed URL.

Listing 4.17: Example rendezvous configuration
<Parm type="jxta:RdvConfig" config="client">

<seeds>
<addr seeding="true">

http://\origo.ethz.ch/rdv.cgi
</addr>
<addr>tcp://129.132.105.170:9700</addr>

</seeds>
</Parm>

4.12.4 Resolver service

Resolver handlers: Clients using the resolver service choose a unique han-
dler name and register a handler agent for processing query messages and
one for response messages. Queries and responses are tightly coupled because
when one sends a query, one is also interested in replies and a typical peer
will perform queries and replies. The handler registration works with the
extend_handler command. The handler name is usually the client service
module ID.

A resolver query handler gets a P2P_RESOLVER_QUERY object containing
the query string with some meta information. The agent should set the
repropagate flag in the query object to specify if the resolver should re-
propagate the message or not. Repropagation is only done by the resolver
if the peer is configured as a rendezvous. The response handlers have the
equivalent signature, they expect a P2P_RESOLVER_RESPONSE instance. Besides
queries and responses, the resolver handles also SRDI messages.

Querying and responding: To send a query, we build a
P2P_RESOLVER_QUERY as shown in Listing 4.1824. Besides the query
string, it needs the source peer ID, the handler name and an integer ID. The
ID helps to identify responses. The resolver automatically adds the source
peer route advertisement so that every recipient is able to respond directly.

24The final query would then look like in Listing 4.2 on page 52.

87

88 CHAPTER 4. COMMUNICATION INFRASTRUCTURE

Listing 4.18: Sending a resolver query
send_resolver_query (a_dest: P2P_PEER_ID) is

−− Send a resolver query
require

Dest_valid: a_dest /= Void and a_dest.is_valid
local

query: P2P_RESOLVER_QUERY
do

create query.
make (peer_group.peer_id, handler_name,
1, "Got a beer?")

peer_group.
resolver_service.send_query (a_dest, query)

end

The example sends the query to a specific peer but it is possible to send
messages to the entire group. We have to use the propagate_query method
which only expects the query.

Responding is equivalent. It is somewhat easier to respond to a received
query because P2P_RESOLVER_RESPONSE provides a constructor to create a re-
sponse out of a query: make_from_query.

Note that a response does not need to be preceded by a query. This means
that a response can also be propagated in order to publish information to
everyone.

4.12.5 Discovery service

As we already know is the discovery service used to deal with advertisements.
It provides methods for querying and publishing, locally and remotely. Most
functions differ between peer, group and other (general) types of advertise-
ments because also the discovery protocol does.

Querying: A query always consists of the advertisement type and possibly
a key/ value pair. The value may be unspecified in local queries meaning to
find all advertisements that have an element named like the key. Wild cards
are allowed in values as already described in Section 4.4.

For local queries, we call one of the local_*_advertisements methods
(there is one for each type) passing the key and a value. The return value is
a list of all matching advertisements.

It is possible to get an advertisement from the store using its unique ID.
This is done with a local_*_advertisement command. While passing an ID

88

CHAPTER 4. COMMUNICATION INFRASTRUCTURE 89

for the peer or group advertisements, one has to specify the exact unique ID
as STRING when looking for an other advertisement type.

Local queries can always be performed except when the discovery module
is stopped or has failed during the start.

Remote queries are done with the query_remote_advertisements method.
For this, we need to build a P2P_DISCOVERY_QUERY object and possibly specify
a single recipient peer and a response handler. When the recipient peer is
not specified, the query is propagated to the group.

A query may contain an advertisement type, a key/value pair, a threshold
and a source peer advertisement. We have to pay attention to the different
semantics for some attribute combinations.

Normally, we specify all attributes which means we search all matching
advertisements of the given type. The threshold defines how many results we
receive at most. However, we could receive a lot more since we may receive
answers from various peers. A peer query example is provided in Listing 4.19.

Specifying only the type Peer and the threshold 0, all recipient peers
should send a response with their own peer advertisement.

Listing 4.19: Sending a remote discovery query
discover_buddy is

−− Send discovery query for
−− peers named "Buddy"

require
Network_connected:

peer_group.rendezvous_service.is_connected
local

query: P2P_DISCOVERY_QUERY
do

create query.make
(peer_group.discovery_service.type_peer)

query.set_threshold (10)
query.set_restriction ("Name", "Buddy")
peer_group.discovery_service.

query_remote_advertisements
(query, Void, agent response_handler)

end

response_handler
(a_response: P2P_DISCOVERY_RESPONSE) is
−− Prints buddy IDs of all results

require
Response_valid:

89

90 CHAPTER 4. COMMUNICATION INFRASTRUCTURE

a_response /= Void and a_response.is_valid
local

advs: DS_LIST_CURSOR
[P2P_PEER_ADVERTISEMENT]

do
from

advs := a_response.
all_peer_advertisements.new_cursor

advs.start
until

advs.after
loop

print (advs.item.peer_id.out + "÷ N")
advs.forth

end
end

When the key/value pair is not specified, recipient peers should return
a random advertisement set matching the given type. The set count should
not exceed the threshold value.

Response handlers: In the discovery service, there are two possibilities to
add a response handler. If we are interested in our query, we specify a query
ID handler when querying. This handler will be called when a response for
our query is received. Since multiple responses can be sent, the handler stays
registered until we call remove_queryid_listener.

The other response handler type serves general responses which can be
registered through extend_response_listener. Whenever a response is re-
ceived, the discovery calls all response agents (actually, after a possible, spe-
cific query ID handler).

When no response handler is called, the discovery will itself locally publish
all received results. So, whenever we register a handler, we have to handle
the results and publish them, if needed.

It is only possible to register handlers for responses. Queries are always
handled by the discovery service itself.

Publishing: Publishing an advertisement locally, using
publish_advertisement_locally, means to save it in the local adver-
tisements store under its unique ID. An older advertisement with the same
ID is replaced.

On remote publishing, we may either choose to build the dis-
covery response ourselves or to just pass a single advertisement to

90

CHAPTER 4. COMMUNICATION INFRASTRUCTURE 91

publish_advertisement_remotely. We may specify a recipient peer, when
we do not want the response to be published to the group.

A P2P_DISCOVERY_RESPONSE contains a list of results and the type and the
key/ value pair. A responder may also provide its peer advertisement.

An advertisement is always published together with its remote expiration
time. When the lifetime is not set, the default expiration time for remote
peers defaults to two hours.

Note that remotely published advertisements cannot be revoked. They
may be passed among group peers until they expire. Though, it is possible to
delete an advertisement locally using one of the flush methods which expect
the unique ID advertisement.

See Listing 4.20 to see a publishing example and how to set the lifetime.

Listing 4.20: Publishing an advertisement remotely
publish_advertisement

(an_adv: P2P_ADVERTISEMENT) is
−− Publish an advertisement
−− setting its lifetime to a day from now

require
Advertisement_valid:

an_adv /= Void and an_adv.is_valid
do

an_adv.set_lifetime_relative (86400000)
peer_group.

discovery_service.
publish_advertisement_remotely
(an_adv, Void)

end

4.13 Writing a P2P application

While the VamPeer library offers basic P2P features, the overlying applica-
tions will have to specialize them and to design their own application mes-
saging protocol above JXTA.

For its design, we recommend to rely on the JXTA services, especially on
the discovery. The use of advertisements is a core idea in JXTA and it is
recommended to create advertisements for user related entities too.

Writing a user service: Applications will usually create at least one ser-
vice which closes the gap between the application logic and JXTA.

91

92 CHAPTER 4. COMMUNICATION INFRASTRUCTURE

To create a module, we just inherit from the deferred class P2P_MODULE
and effect the methods start, suspend and stop25. We usually also redefine
the init method to create needed data structures.

We have to implement the feature check_dependencies which identifies
the required module dependencies used for loading. It is therefore called in
the precondition of init. We are allowed to use other services, but we have
to check their availability first.

While it is simple to build a user service, the integration into the peer
group involves several steps.

As the user service is a module, we have to build a MCID, a MSID and a
module implementation advertisement. Listing 4.9 already pointed out how
to do this.

Because we change the set of user services in the group, we will certainly
have to build a private peer group as described in Section 4.11.1. We now
also have to specialize the peer group implementation by creating a new peer
group class which inherits from P2P_GENERIC_PEERGROUP. define_modules and
load_extern_module should be redefined as shown in Listing 4.21.

Listing 4.21: Redefining peer group modules
define_modules is

−− Define Group services in ‘modules_list’
do
−− add standard modules from
−− parent peer group to ‘modules_list’
Precursor
−− add user service to the end of ‘modules_list’
modules_list.put_last

(["user_service", service_mcid,
service_msid,
parent_is_owner_if_available])

end

load_extern_module
(an_id: P2P_ID;
a_mia: P2P_MODULE_IMPLEMENTATION_ADVERTISEMENT;
a_name: STRING): P2P_MODULE is
−− Load user module

do
if

service_msid.is_equal (a_mia.specification_id)
then

25Please read Section 4.6.1 for further details.

92

CHAPTER 4. COMMUNICATION INFRASTRUCTURE 93

create {SERVICE_CLASS}
Result.init (Current, an_id, a_mia)

else
Result := Precursor (an_id, a_mia, a_name)

end
end

The parent_is_owner_if_available flag means that the module loader
will only create a new module loader if the parent peer group did not define
this module. If each peer group would need its own instance, we would
specify current_is_owner.

Using the new private peer group implementation, our user service will
be loaded and managed by VamPeer.

4.14 Examples

The current release of VamPeer also contains some examples that new users
can use to get into the code and to test the library. We describe them here
and show how to run them.

Endpoint message sender/handler: The first example shows how to
use the endpoint service. It was originally created when the other services
were not available yet. Therefore, it does not make use of the discovery to
find other peers.

It consists of two parts, namely two peers: the endpoint_message_sender
and the endpoint_message_handler, which both run in the public NPG. The
sender will send a simple endpoint message to the handler peer which sends
a reply message back. Both peers log the events to the standard output, so
we can see what is currently happening. While the handler only quits when
we shut it down (with Ctrl-C), the sender terminates as soon as it receives
the reply.

The handler’s platform is configured to listen on port 9710 while the
sender chooses its port automatically. To start the sender, we have to specify
the handler peer IP and port. This is not the way we would do it with other
peers in our application. We want like to limit our example to the endpoint
service possibilities.

To run the example locally, we start the endpoint message handler and
afterwards the sender application with the arguments: localhost9710. The
logging level is set to INFO, so we can see when the platform has been started
and the message has been sent and received.

93

9710
localhost 9710
INFO

94 CHAPTER 4. COMMUNICATION INFRASTRUCTURE

Looking at the code, we see how the sender creates and sends an endpoint
message and how it registers the service listener to receive the reply. The
handler looks similar but also uses the endpoint filter method to display all
incoming messages.

The example is very simple but shows how the minimal configuration for
a VamPeer application.

4.14.1 Rendezvous propagation

The next example demonstrates the rendezvous propagation mechanism. It
resides in the rendezvous_propagate example directory. The application con-
nects to a NPG rendezvous and propagates a message every five seconds.

When running multiple instances, we can see the propagated messages
from other peers. But it does not work; messages are not propagated to
the entire group. The reason for this is, that we would have to adapt the
rendezvous server to repropagate messages for our specific service26.

Thus, this example shows how we can not use the rendezvous service
for propagating any message and it shows how important it is that the ren-
dezvous server is part of the P2P system and not just a standard JXTA
infrastructure peer.

4.14.2 Discovery

The discovery example shows how we can find other peers in the public
NPG. We just run multiple instances and they should be able to discover
each other. The application only expects a configuration directory path as
argument.

The details of the discovery procedure are as follows: As soon as we are
connected to a rendezvous, we publish our peer advertisement in the group.
We then send one peer query request and wait one minute for responses.
Incoming peer advertisements are printed out immediately.

When no other peers are known to the rendezvous, we should at least
receive the rendezvous peer and our own advertisement. Note that we may
get responses from multiple peers, not only from the rendezvous because the
rendezvous propagates the query request also to the others.

26See Section 4.6.8 for more details to this.

94

CHAPTER 4. COMMUNICATION INFRASTRUCTURE 95

4.14.3 JXTA JSE rendezvous server

The last two examples make use of the NPG rendezvous servers. But we
mentioned already that the public infrastructure is not accessible at the mo-
ment. Hence, we will have to run our own NPG rendezvous server. The
RdvServer example shows how we can set it up using the JXTA’s reference
implementation JSE in version 2.4.1.

The Java application provides a rendezvous and a relay server and is
configured to listen on port 9700 on all interfaces. When we start the script
startNPGPeer.sh, the rendezvous will be started in the NPG.

To point the discovery example to our new rendezvous server, we have
to change its platform configuration. We normally start the discovery ap-
plication first to generate the configuration directory. Then, we are able to
change the configuration XML file by replacing the old seeds and the NPG
seed URL with the new destination address.

95

9700

96 CHAPTER 4. COMMUNICATION INFRASTRUCTURE

96

CHAPTER 5. SEARCH MECHANISMS 97

Chapter 5

Search mechanisms

Various systems and models have been described in the past for coordinating
components in distributed settings. This section starts by presenting a simple
abstract model of lookup, and then relating that model to a set of predating
approaches. This work has been published as a paper [4] and is used for
search in Origo Core.

5.1 Lookup model

Components are described towards the outside world by respective specifica-
tions (see Figure 5.1). Lookup services basically provide components, they
are a means to construct and advertise such specifications and they are also
a mechanism to query components based on (specification) templates. The
composition and nature of these specifications and templates, as well as the
matching between them, vary between approaches.

MATCHING

Specification Template

Internal,
The component External,

The component’s runtime environment

Implicit

Explicit

Figure 5.1: Component and lookup model

97

98 CHAPTER 5. SEARCH MECHANISMS

Internal vs. external specification: When viewing specifications as
being based on different properties, one can in a first step distinguish between
internal and external properties. Internal properties are based on the nature
of components themselves, i.e., they reflect properties of a given component.
External criteria reflect properties which pertain to the surroundings of the
component, such as its context or (runtime) environment.

Implicit vs. explicit specification: In a second step, one can distinguish
between implicit and explicit properties. The former kind of criteria reflect
intrinsic properties of the services provided by a given component; they are
not influenced by the nature and set of targeted clients for that component,
or the means by which the component is made available to such consumers.
Explicit criteria in contrast, manifest in the way the component’s very de-
sign is influenced by the perspective of making it ultimately available to the
outside world.

Static vs. dynamic evaluation: Furthermore, the evaluation of the
matching can be static, i.e., based on attributes of component specifica-
tions which are evaluated once and for all when the component is loaded,
or dynamic, in which case the matching becomes a continuous process (see
Section 5.6).

5.2 Examples
We illustrate the above model through a set of well-known lookup services,
and overviewing derivatives for each. Results are summarized in Table 5.1
(due to the sparse occurrence of dynamic criteria in common lookup services
the distinction static/dynamic is however omitted).

Domain Name System (DNS): DNS is very likely to be the most fre-
quently used, static, name-based lookup system. Components are IP ad-
dresses, the specifications are (internal) host names, the templates are host
names as well, and the matching tries to find the component that registers
with a given host name (explicitly) and returns it’s IP if possible.

Network Information Service (NIS): NIS is one of the oldest type-
based, static lookup systems. Components are the entries of the maps (ex-
ternal), the specifications are map names (implicit), the templates are either
map names or nicknames (e.g., passwd for passwd.byname), and the match-
ing is the result of the ypcat command.

98

CHAPTER 5. SEARCH MECHANISMS 99

CORBA: The Common Object Request Broker Architecture
(CORBA) [16] defines both a Naming Service and Trading Object
Service for name-based and type-based lookup of objects respectively. The
Naming Service represents the original means of looking up objects based
on a hierarchical naming scheme, where an object is registered (explicit)
and made available by attaching it (external) a unique name N1. · · · .Nn of
which each component Ni is a name/kind-pair. In this case, specifications
and templates are both defined as sets of such pairs. Names for the Java
RMI registry, or regular expressions, are similar in that sense, with n = 1.

The Trading Object Service offers rich combinations of means of defining
the service type of a component. The most preferred way of attaching a
type specification to a component consists in attaching it a name/value-pair.
This definition of a component is external and explicit as well: the “type”
describes actual properties of the component itself, but is not implicit like
the actual classification of a component according to the type system of the
considered language/environment.

Note that the OMG has more recently specified the Interoperable Name
Service, defining URL-format object references that can be typed into a pro-
gram to reach services at a remote location, including the Naming Service.

RM-ODP: The Reference Model for Open Distributed Processing (RM-
ODP) [77] defines, similarly to CORBA, both a “white pages” (name-based)
and “yellow pages” (type-based) lookup service (both explicit and external),
going by the names of relocator and trader respectively. The latter service
describes two roles which interacting components may take: exporters of
services, and importers. A service description is an interface (type) and a set
of properties attached to it, and a service offer binds a service description
to a concrete component, which can be a CORBA object or another object.
Properties are thus used to describe specifications and templates, the latter
ones being more precisely combinations of properties; rules are expressed
based on properties and operators (these are called matching criteria).

A novelty of the trader specification is the description of delegation and
collaboration among individual trader units, which however does not seem
to impact the model ultimately perceived by an application programmer, as,
expressed in our terminology, specifications are simply cascaded.

UDDI: The universal description, discovery and integration (UDDI) [78]
specification defines a lookup service for web services. Such a registry is
centered around a public cloud, a set of replica nodes storing white pages
(abstract services by "name"), yellow pages (by "type"), and green pages

99

100 CHAPTER 5. SEARCH MECHANISMS

(by "description" and "location"). Targeting at web services, UDDI encom-
passes a set of XML messages for SOAP-based interaction with registries.
Each party is described through a business entity, several of which can be
linked through publisher assertions. A business service is a particular web
service offered by a business entity. Such a service is described by one or
more binding templates, which optionally contain textual service descrip-
tions, and URLs for the respective services. Finally, binding templates refer
to one or more tModels, which contain the pointers to actual descriptions
of the services offered, and delineate the interaction protocols with the re-
spective services. All the above-mentioned entities describe a refined pattern
for specifications in the sense of our model introduced before-hand. The en-
forcing of authentication is covered in our model by external explicit criteria
(see Section 5.5.5). The load distribution among nodes forming the public
cloud is achieved in our implementation in an efficient manner by distribut-
ing the matching, greatly transparently, over a peer-to-peer overlay network
(see Section 5.6).

Note that UDDI is a rare example of dynamic lookup, where components
can be notified of changes in specifications of other components. Further
examples are given by load balancing, or reuse frequency [79].

Service Groups: Sadou et al. [14] introduce a notion of service group
to mediate between client and server components. These are motivated by
the desire for type evolution, e.g., the possibility of adding parameters to
methods. Just like in RM-OPD, the approach introduces both a notion of
type which reflects provided services (i.e., the server side) in the terminology
introduced by the authors, and a notion of role which represents the needs
of customers (i.e., the client side).

At a first glance, one could hence be brought to viewing the types of [14]
as specifications in our case, roles as templates, and service groups as defining
the matching, respectively. However, the emphasis of [14] consists in making
services of a given type available to clients expecting a slightly different type.
Service groups are thus a form of glue aiming at expressing how to pass from a
given type to a given role. They consist in stubs for respective server objects,
which transform invocations based on a given role (the expected type) such
as to fit the effective type. In our model, this represents explicit, internal
component registration, and the specifications are made up of the stubs.

In a sense, HydroJ [11] and LuckyJ [12], can be seen as similar approaches
to service groups, as these are also based on some notion of type. Bor-
row/Lend [80], a derivative of the Type-based Publish/Subscribe (TPS) ab-
straction [81], as suggested by the name of the latter paradigm, in contrast,

100

CHAPTER 5. SEARCH MECHANISMS 101

Criteria Explicit Implicit
External UDDI, CORBA Naming,

Trading, Java RMI, Linda,
Regular Expressions, Tagged
Sets, Borrow/Lend, SecOS

Reuse Frequency, Load Bal-
ancing, NIS

Internal HydroJ, LuckyJ, Service
Groups, DNS

Method Dispatch, Bor-
row/Lend

Table 5.1: Coarse classification of lookup services

is primarily based on type-based matching of inherent Java object types (im-
plicit, internal). The types are augmented by (dynamic) predicate evaluation,
and with keys (explicit, external).

Coordination Spaces: The Borrow/Lend abstraction can in fact be seen
as a variant of the Linda Tuple Space [9] with callback functionalities. The
original Tuple Space is a means of exchanging information among distributed
components, based on tuples of place holders (types) and values, i.e., a mix-
ture of value-based and type-based matching, where values can also be char-
acter strings. This demonstrates how thin the border between types and
values is.

Just like Borrow/Lend, Tagged Sets [82] are a variant of Tuple Spaces,
where tuple items can also be predicates (leading to a dynamic evaluation),
or keys (symmetric or asymmetric). Similarly, SecOS [83], supports the use
of keys, with a partial matching. Clearly, any such criterion is explicit and
external.

5.3 A note on values and types
A distinction that is often made when discussing component lookup is the
one between values and types. This is nicely illustrated by the metaphors of
“white pages” and “yellow pages” respectively.

However, component lookup in a distributed heterogeneous environment
is basically untyped. Matching components for their “type” boils down to
matching such components for the name of their type, an internal property
of these components. The possibility of registering several objects under
a same given name, as supported by many systems, illustrates this seam-
less transition; by doing so, such a name becomes more a type description
than a unique identifier. The issue of matching in such a setting becomes
essentially a question of depth, in a way similar to the issue of object copy-

101

102 CHAPTER 5. SEARCH MECHANISMS

ing/cloning [84]. Any categorical distinction between values and types at this
level seems unnatural. This is captured by our abstract notions of specifica-
tions and templates, which will become clearer through the matching model
presented in Section 5.4, and illustrations thereof in Section 5.5.

5.4 Matching model

The matching model presented in this section has resulted from the desire of
capturing all the different lookup criteria outlined in the previous section.

In our model, the matching of components against requirements builds
on the two basic notions introduced in the previous section, namely spec-
ifications and templates. The former roughly represent actual component
descriptions (i.e., server-side views of components, see Figure 5.1), and the
latter represent requirement descriptions (i.e., client-side views of compo-
nents). In our matching model, specifications and templates are related by
matching modules. Our goal is to be able to combine several specifications
and templates into a compact notation and to design a lookup mechanism
that sorts the retrieved components in a list.

Our solution relies on mathematical formulae containing templates. As
an example the formula t0 + 3.0 − t1 ∗ t2 combines the three templates t0,
t1 and t2. Such a formula will be evaluated for each component C that has
specifications s0, s1 and s2 respectively corresponding to each template. The
evaluation replaces each template with a value (the matching value) that is
calculated by applying a matching function (?i) between the specifications
of the component and the templates. As an example evaluating the formula
with given specifications will return the evaluation of:

(?0(s0, t0) + 3.0−?1(s1, t1)∗?2(s2, t2))

For each component, this formula yields its matching value. When a
client looks a component up, it is given a list of components sorted by their
matching values in descending order. Components for which the matching
value is 0 or below are omitted from the list. In the remainder of the sec-
tion we define the theoretical framework to formalize this intuition using
denotational semantics.

102

CHAPTER 5. SEARCH MECHANISMS 103

5.4.1 Matching modules

A matching module is a triplet encompassing a set of specifications S, a set
of templates T and a matching relation ?.

mm ::= (S, T, ?)
where ? : S× T→ N

5.4.2 Specifications

A specification S is itself a set of specification terms si. Informally, a spec-
ification term is the specification for a component according to a given for-
malism. A template T is itself a set of templates terms ti. Informally, a
template term delineates a set of components according to a given formal-
ism. The matching relation ? is a function that takes a specification term
and a template term as arguments and returns a natural number.

In short, we define here what we need for providing ways of matching
specifications and templates. Our goal being to integrate several of these
modules into a multi-module specification, we do not enter into details but
rather give examples of this in Section 5.5.

5.4.3 Qualified specifications

A qualified specification term qs is a specification term annotated with a
qualifier.

s ∈ Si

val ::= n ∈ N
comp ::= < | > | 6= | ≤ | ≥ | =

qualifier ::= required comp val | ∅
qs ::= s qualifier

Qualifiers on specification terms are used as a way for the component provider
to order differences in the treatment of the matching. We specify two dif-
ferent types of qualifiers: ∅ that means that we do not modify the ba-
sic mechanism (that we always omit in practice as a notation abuse) and
required that allows us to filter and impose a condition on the matching
for specific specification terms. This latter qualifier allows us, in particular
to envision security-constrained matching as shown in Section 5.5.5. Even if,
for now, we only consider the qualifiers required and ∅ we could imagine
other qualifiers that modify the infrastructure’s behavior accordingly.

A component specification CS consists of a set of qualified specification
terms that appear at most once in the set of specifications of a given matching

103

104 CHAPTER 5. SEARCH MECHANISMS

module.

CS ::= {qs1, ..., qsn}
such that ∀ i, j ∈ [1, n] si ∈ s0 sj ∈ s0 ⇒ i = j

A component specification is the way a component provider can describe its
components.

5.4.4 Templates

A template T∈ T consists of a mathematical formula using mathematical
operators and template terms.

t ∈ Ti

op ::= + | − | ∗ | /
T ::= n ∈ N | t | T op T

The idea is, that unlike qualified specification terms that are composed in a
list to make the component specification, we compose template terms to a
mathematical formula in order to allow component seekers to allocate more
weight to some specification. It also allows to exclude components that
answer to a specification by using subtractions and divisions to lower their
matching values and possibly rule them out of the returned list.

5.4.5 Matching

The valued matching of a component specification CS with a template
T consists in matching on the specification and calculating its value ac-
cording to the template definition. It is defined as follows:

valuedMatch ::= CS?vT

VJ·K : valuedMatch→ Q ∪ {∞}
VJCS?vnK = n
VJCS?vtK = 0 if 6 ∃ qs = s0 q0 ∈ CS

such as ∃ mm0 = (S0, T0, ?0) | t ∈ T0, s0 ∈ S0

?(s, t) otherwise
VJCS?vT1 op T2K = VJCS?vT1K op VJCS?vT2K

The intuition behind the matching we describe is the following: each template
term within the mathematical formula of the template is replaced by the
result of the application of the matching relation between the template term
and the specification term of the component specification.

104

CHAPTER 5. SEARCH MECHANISMS 105

The matching compliance of a component specification CS with a tem-
plate T describes the specification terms matched. It is defined as follows:

compliesToMatch ::= CS?cT

CJ·K : compliesToMatch→ B
CJ{s required comp0 n0}?cT K = true if ∃ t in T s.a. VJs?vtK comp0 n0

false otherwise
CJ{s∅}?cT K = true
CJ{qs1, ..., qsn}?cT K = CJ{qs1}?cT K ∧ ... ∧ CJ{qsn}?cT K

As a simple explanation, a template complies with a specification if all the
required conditions on the specifications are fulfilled by any of the basic
templates.

5.4.6 Component selection

Finally, we can define the selection mechanism built on top of the valued
matching and the matching compliance. A component C declares its inter-
face in its component specification CS. The component repository C consists
in a set of components stored with their specifications. These can be selected
using the selection operator ↓ that returns a list of components for which we
show the semantics E .

C ::= {(CS1, C1), ..., (CSn, Cn)}
lookup ::= C ↓ T

EJ·K : lookup→ list of (CSi, Ci)
EJC ↓ T K = {(CS ′

1, C
′
1), ..., (CS ′

m, C ′
m)} ⊆ C

such that
∀i ∈ [1, m], CJCS ′

i?cT K and VJCS ′
i?vT K > 0

and ∀i, j ∈ [1, m], i < j ⇔ VJCS ′
i?vT K ≥ VJCS ′

j?vT K

Intuitively, the final result of a component selection on a repository is a list
containing elements from the repository ordered by decreasing matching val-
ues. That way, we can obtain the component that is best adapted regarding
to the templates we defined. In the next section we show examples of such
matching modules and how they can be used.

5.5 Illustration
This section illustrates our generic model of component lookup through a
small set of existing lookup schemes. More examples can be found in a longer

105

106 CHAPTER 5. SEARCH MECHANISMS

version of this paper [85] (e.g. examples based on nominal and structural
subtyping or on reuse frequency [79]).

5.5.1 Unique identifiers

As a first simple example, we consider the selection mechanism based on
a unique component identifier. In that case the matching module can be
described by the following triplet:

mmUId ::= (N, N, ?UId)
where ?UId : N× N 7→ { 0, 1 }
?UId(x, y) = 1 ifx = y

0 otherwise

As a first example of use, we can imagine a collection of software components
that have unique identifiers:

C = {({1UId}, C1), ..., ({1337UId}, C1337), ..., ({nUId}, Cn)}

Looking up component identified by number 1337 can be made as follows:

C ↓ 1337UId = {({1337UId}, C1337)}

Note that a variation of this module can be used to describe the DNS.

5.5.2 Regular expressions

Among the most widespread and popular descriptions of components are
component APIs, and component documentation. One can imagine selecting
components based on criteria expressed on their textual description, in ad-
dition to other specifications. An example is selecting components according
to their author(s), as appearing in the documentation. This constitutes the
case of matching regular expressions (note that we use the original regular
expressions as defined in Kleene algebra):

char ::= a | ...
string ::= char | string string
expr ::= ∅ | char | (expr expr) | (expr + expr) | expr∗
mmregexp ::= (string, expr, ?regexp)

where ?regexp : string × expr 7→ N
?regexp(s, e) = number of occurrences of s in e

Now imagine that a user wants to obtain a component for which John Doe
is indicated as the main author of that component in the accompanying

106

CHAPTER 5. SEARCH MECHANISMS 107

documentation and preferably take the component with the unique identifier
1337. A collection including such a component could then be:

C = { ({1UId, “...author : John Doe...”regexp}, C1), ...
({1337UId, “...author : John Doe...”regexp}, C1337), ...
({nUId}, Cn)}

Looking up a component fulfilling at least one of these characteristics would
then produce:

C ↓ (1337UId + “ ∗ author : John Doe ∗ ”regexp) =
{ ({1337UId, “...author : John Doe...”regexp}, C1337),

({1UId, “...author : John Doe...”regexp}, C1)}

Looking up a component fullfilling both criteria can be made as follows:

C ↓ (1337UId ∗ “ ∗ author : John Doe ∗ ”regexp) =
{ ({1337UId, “...author : John Doe...”regexp}, C1337)}

5.5.3 Load balancing

Another criterion of component linking, is its current load.

mmload ::= (N, ∅, ?load)
where ?load : N×∅ 7→ N+

?load(n) = number of components currently using component n

Imagine that a user wants to obtain the component which is currently ex-
periencing the smallest load written by John Doe. Suppose also that some
components support only up to 10 clients at the time. A collection containing
such components could then be specified as follows:

C = {({1UId, “...author : John Doe...”regexp, C1), ...
({1337UId, “...author : John Doe...”regexp, required 1337load < 10.0}, C1337), ...
({nUId, nload}, Cn)}

A programmer wishing to get such a component should perform the fol-
lowing lookup (note that the result is dependant of the number of clients
currently connected to both components):

C ↓ (“ ∗ author : John Doe ∗ ”regexp/(1.0+load)) =
{ ({1UId, “...author : John Doe...”regexp, C1),

({1337UId, “...author : John Doe...”regexp}, C1337)}

107

108 CHAPTER 5. SEARCH MECHANISMS

5.5.4 Compliance to an interface

It very often happens that programmers want to obtain components that
comply to a given interface. Informally, compliance to an interface is ex-
pressed in terms of a structural subtyping relationship. Suppose that I1 is
compliant to I2 if and only if I1 has at least the same procedures as I2.

p procedure names
t types names
procedure ::= (p, {t0, ..., tn})
I ::= {procedure1, ..., proceduren}
mmcomply ::= (Interfaces, Interfaces, ?comply)

where ?comply : Interfaces× Interfaces 7→ {0, 1}
?comply(I1, I2) = 1 iff I2 ⊆ I1, 0 otherwise

Supposing that some components offer procedures to set and get their internal
attributes, the collection of components could be:

C = {({1UId, {set_a {V oid, string}, get_a {string}, decrement {}}comply, C1), ...
({1337UId, “...author : John Doe...”regexp}, C1337), ...
({nUId, nload, {set_a {V oid, string}, get_a {string}}}comply, Cn)}

Then a program seeking for components that comply to an interface contain-
ing set_a and get_a could make the following lookup:

C ↓ {set_a {V oid, string}, get_a {string}}comply =
{ ({1UId, {set_a {V oid, string}, get_a {string}, decrement {}}comply, C1),

({nUId, nload, {seta {V oid, string}, geta {string}}}comply, Cn)}

Variants of this example are countless as we could return the number of
procedures in common, or the number of lacking procedures etc. However
this is the simplest variant and it corresponds to the approach of service
groups [14].

5.5.5 Secure linking

By specifying a required clause, a component provider can enforce the
matching of a specification as a necessary precondition for handing out any
reference to its component. Our current example is presenting encrypted
matching and can be considered as a subset of tagged sets [82] or any other
matching mechanisms driven or restricted by encryption [83, 80].

108

CHAPTER 5. SEARCH MECHANISMS 109

We call E(K, value) the encryption and D(K, value) the decryption, for
which we give the semantics SJ·K that we detail below.

SKey SymetricKeys
AKey Asymmetric Keys (private)
AKey Asymmetric Keys (public)
value ::= basicvalue | valueAKey | valueSKey

e ::= value | E(SKey, e) | E(AKey, e) | D(SKey, e) | D(AKey, e)

SJ·K : e 7→ value
SJvalueK = value
SJvalueK = value
SJE(SKey, e)K = SJeKSKey

SJE(AKey, e)K = SJeKAKey

SJD(SKey, eSKey)K = SJeK
SJD(AKey, eAKey)K = e

The associated matching module is then:

mmCrypt ::= (Keys, Keys, ?Crypt)
where ?Crypt : Keys×Keys 7→ {0, 1}

?Crypt(K1, K2) = 1 if SJD(K2, E(K1, value))K = value
0 otherwise

A collection containing components being locked by an asymmetric key AKey
could then be :

C = {({1UId, “...author : John Doe...”regexp, C1), ...
({1337UId, “...author : John Doe...”regexp, requiredAKeyCrypt = 1.0}, C1337), ...
({nUId, nload, AKeyCrypt}, Cn)}

A programmer wishing to know all the components locked with AKey should
then make the following lookup:

C ↓ AKeyCrypt =
{({1337UId, “...author : John Doe...”regexp, requiredAKeyCrypt = 1.0}, C1337)
({nUId, nload, AKeyCrypt}, Cn)}

Implementation-wise, locking a component with a cryptographic key means
that the access to the component should be made on the platform where the
component is located. Similarly to tagged sets [82], the keys do not need to
transit through the network.

109

110 CHAPTER 5. SEARCH MECHANISMS

5.6 Implementation
This section first presents our Eiffel implementation of the model described in
Section 5.4. Thereafter, we show how to use the implementation of COLOSin
practice.

The implementation of the COLOS model consists mainly in the specifi-
cations, templates and the surrounding component infrastructure. Currently
the framework consists of 21 classes with 1700 lines of code altogether. We
are extending it to more component models and plan on making it available
as open-source.

Specifications: LL_SPECIFICATION is a list of LL_SPECIFICATION_TERMs. The
deferred (abstract) class LL_SPECIFICATION_TERM should be subclassed by
a programmer who wants to define his own matching module. The only
mandatory feature to be implemented returns a STRING representing the
name of the corresponding matching module. The infrastructure already
implements the features to look through the specifications given that the
LL_SPECIFICATION_TERMs return the correct matching module name. This en-
ables an implementation based on hashtables. Just like for templates, which
are described in following Section, we use the possibility to define our own
infix operators for setting constraints on the specifications that describe a
component. The Eiffel programming language makes it easy to define these
operators and together with automatic conversion functions they allow writ-
ing easily readable code.

Templates: To implement our prototype, we relied on two features of the
Eiffel language, namely (1) user-defined infix operators and (2) user-defined
automatic type conversion. Infix operators allow us to compose templates
using the infix operators as defined by the natural mathematical intuition
while automatic conversion lets us have valid types for general mathemati-
cal operations. According to the latest definition of Eiffel and the priority
of the operators, the usual priorities apply. The infix operators are coded
into LL_TEMPLATE and are thus inherited by all templates. The automatic
conversion from DOUBLE to LL_TEMPLATE ensures that we can compose doubles
and templates in a same expression containing infix operators. In short, the
Eiffel compiler (ISE Eiffel 5.7) converts mathematical formulae containing
templates by transforming the doubles that they contain into TEMPLATES. As
an example, the formula

template:= 2.0∗template0−1.0/(template1−template2)

is automatically transformed by the compiler into:

110

CHAPTER 5. SEARCH MECHANISMS 111

template:=
((create {LL_TEMPLATE}.make_from_double(2.0))∗template0)
−

((create {LL_TEMPLATE}.make_from_double(1.0))/(template1
−template2))

The deferred class LL_TEMPLATE_TERM, inherits from the class LL_TEMPLATE.
A programmer wishing to implement a matching module should subclass it
and implement the feature match that takes an LL_SPECIFICATION_TERM as an
argument and he should also provide a feature returning the name of the
matching module as mentioned previously. Note that in our infrastructure
the only LL_SPECIFICATION_TERMs that can be passed as parameter to the
match feature are the ones actually belonging to the same matching module.

Decentralized lookup. The current matching prototype infrastructure
performs centralized component lookup. We are currently in the process of
augmenting our implementation for efficient component lookup in peer-to-
peer (P2P) settings, which will make our infrastructure available as a service
within a peer group of JXTA networks [2].

In order to complete such a decentralized lookup efficiently, it is very
useful to be able to “decompose” the matching. The idea can be viewed
as a generalization of the problem of content-based event routing in P2P
networks, where event contents are viewed as consisting in several properties
which are each matched against values, and an overlay network can be built
which regroups participants with common interests and whose nodes many
perform matching of only subsets of the properties (e.g. [86]).

In order to be able to decompose the matching in the lookup problem, a
little help is however required from the programmer. Both specifications and
templates have to provide access to a tree-based representation of themselves,
akin to abstract syntax trees. The individual tree nodes represent elementary
matching operations, and can be performed in a decentralized, yet minimally
redundant, manner.

The logical regrouping of several tModels to a bindingTemplate, several
bindingTemplates to a businessEntity, and several instances of latter kind to
a businessService in UDDI (see Section 5.2), is but an illustration of such a
decomposition.

5.6.1 Using the library

In the current state of the implementation of COLOS, a programmer wish-
ing to use the component lookup mechanism can simply instantiate the class

111

112 CHAPTER 5. SEARCH MECHANISMS

LL_COMPONENT_COLLECTION and the components along with their specifications.
By subclassing the two deferred (abstract) classes LL_SPECIFICATION_TERM
and LL_TEMPLATE_TERM, the programmer can implement a matching module.
It implies setting two variables and redefining the feature match. Note that
keeping a reference to the object encapsulating a component with its speci-
fication allows revoking parts of the specification dynamically.

In the following example (see Figures 5.2 and 5.3) we show how one de-
scribes a component and then uses our lookup mechanism to match require-
ments against the entire component repository. We see how the specification
terms are first declared and enriched with the corresponding information.
Then they are added to the component’s specification. Note how the less
operator is used to impose a constraint on the specification about the com-
ponent’s load. In the second Listing (see Figure 5.3) of the example it is
shown how to prepare a component lookup. Instead of specifications we are
now preparing templates that are put together to match against the com-
ponent repository. The ^-operator is used to initiate the matching. In the
resulting list the components are ordered according to rating of the matching
in respect to the template formula. In this case we are only interested in the
component with the highest rating and we are therefore only obtaining the
first component of the resulting list.

5.7 Conclusions
Lookup mechanisms are an essential part of the very foundations of dis-
tributed component interaction. Various systems and specifications have
been proposed in the literature, each targeting at a specific setting.

We have presented COLOS, a generic model of component lookup, which
can be used to express most predating lookup schemes. COLOS matches
component specifications against templates using mathematical formulae.
We have described this matching through denotational semantics, illustrated
it through various examples, and presented an implementation of COLOS in
Eiffel. The implementation reflects exactly the theory and uses automatic
transformations as well as infix operators to obtain extremely compact and
intuitive code. We envision the definition of further “common” matching
modules, and intend to implement our framework on top of a fully decen-
tralized peer-to-peer overlay network. Furthermore, we plan to port it to
a wider range of programming languages and platforms in order to obtain
interoperability.

112

CHAPTER 5. SEARCH MECHANISMS 113

uid_specification_term: LL_UID_SPECIFICATION_TERM
regexp_specification_term: LL_REGEXP_SPECIFICATION
load_specification_term: LL_LOAD_SPECIFICATION
...
create uid_specification_term.make ("1337")
create regexp_specification_term.make ("This component...

author: John Doe")
create load_specification_term.make (Current.component)

Current.add_specification_term_to_spec(
uid_specification_term)

Current.add_specification_term_to_spec(
regexp_specification_term)

Current.add_specification_term_to_spec(
load_specification_term<10.0)

...

Figure 5.2: Specification declaration

uid_template: LL_UID_TEMPLATE
regexp_template: LL_REGEXP_TEMPLATE
load_template: LL_LOAD_TEMPLATE
component: LL_COMPONENT
components: LL_COMPONENT_COLLECTION
...
create uid_template.makr ("1337")
create regexp_template.make ("∗author: John Doe∗")
create load_template.make
component:= (components^((uid_template+regexp_template)

/(1.0+load_template))).get_first_component
...

Figure 5.3: Using the lookup infrastructure

113

114 CHAPTER 5. SEARCH MECHANISMS

114

CHAPTER 6. USING ORIGO 115

Chapter 6

Using Origo

In previous Chapters Origo Core and the development platform built using
it are described. To make the platform usable as a central point for manag-
ing project life, we provide a web interface. It should provide all necessary
functionality to manage a project hosted on the platform. It uses and ex-
tends the use cases defined in Origo Core. Additionally a work item system
is integrated into the web interface. Work items display notifications about
changes and evolution of a project on the Origo-Home page. Work items can
be used by a developer or a user to keep track of changes in his own and
bookmarked projects.

6.1 Design

The web interface uses the free open-source content management system
Drupal [38]. Drupal provides an extension system with themes, modules and
hooks. It has a big user community and therefore many extending modules
and a good documentation exist. Drupal provides powerful tools like an API
for web forms which allows the creation of forms that can be designed using
the theme system.

The Origo theme for Drupal is built using this themeing framework. It
uses PHP files defining the structure and CSS files defining the rendering
of the page. Drupal can be extended with modules. These modules use
hooks to interact with internal Drupal processes. Relying on this extension
mechanism, it is normally not necessary to modify code in Drupal Core itself
(for the web interface of the development platform there is one exception,
described later).

115

116 CHAPTER 6. USING ORIGO

Figure 6.1: Work item icons

6.1.1 Work items

Work items are notification on changes in a project. They help a developer
to keep track of project evolution.Work items can be used by other platform
users who want to stay informed about the development of projects they
are interested in. Work items are created on key events in the system. For
example when a wiki page is edited or Subversion commits takes place. Some
work items are created and triggered in the web interface others come from
Origo Core use cases and commit work items are triggered by Subversion
server hooks. Each work item has its own icon, seen in Figure 6.1.

Work items are stored and managed within the central database of the
development platform and are therefore not restraint to a specific project
page. This way a user can access all relevant work items, no matter what
project site he is currently on. Several use cases are available to create,
view and manage work items. To distinguish between new and old work
items a work item is marked read when a user reads the work item. For
implementation details see Section 6.7.

6.1.2 Drupal sites

Drupal provides a sites system to host several sites with only one Drupal code
base. Each project has its own directory within the sites directory and can
have its own modules or themes. Modules that available to all projects are
stored in sites/all. The correct site is determined by looking at the entered
URL, if no match is found the default site is displayed. For the development
platform, we do not have project specific modules, therefore all additional
modules are located inside sites/all. To provide better maintainability the
site specific settings file is modified to use an include file. This makes it easier
to make changes to the settings file. Only the database settings remain in
the project specific file.

116

CHAPTER 6. USING ORIGO 117

6.1.3 Scalability

Origo Core is designed to scale. The web interface is also built with this
goal in mind. It is possible to distribute the hosted projects pages and cor-
responding databases across multiple web server machines. To support more
projects the databases can be moved to other servers. It is possible to use
several database servers because the database server can be set individually
for each project site. The authentication and authorization system we have
implemented for the web interface can handle logins over several web and/or
database servers.

6.2 Drupal modules

6.2.1 Origo Auth: authentication and auhorization

The Origo Auth module handles user registration, log in, log out, password
change and password reset. It contains a session handler that scales across
multiple machines and a includes an XML-RPC client.

User Registration: When registering a user with the normal Drupal user
registration, a user is created in the Drupal database belonging to the project
page the registration form was filled out. For the development platform we
need a global user registration which creates an Origo user by using XML-
RPC in the platform database of the back-end as well for all integrated
applications and services.

To achieve this we modified the existing user registration for Drupal sites.
Using the Drupal hook system this is possible without changing code in any
of the Drupal core modules. First the hook_form_alter replaces the validate
and submit functions of the registration form. The form now calls our own
functions instead of the functions defined in the user module.

The submit function origo_auth_register_submit then makes an Origo
API call to internal_user.add to create a new user. On success the function
origo_auth_authenticate (see Section 6.2.1) creates the Drupal user and logs
him into the system.

Session Handling: Drupal provides a simple session management using
PHP session. This system works of course fine for single Drupal instances,
but does not meet all requirements for the development platform. For one
thing we would like to keep the user logged in not only in the local project.
If he goes to another project (ie. another Drupal instance) he is still within

117

118 CHAPTER 6. USING ORIGO

the development platform and should be logged in. One possibility would be
to store the PHP session ID in a cookie accessible in all projects. While this
is possible for a single server environment, it does not work with multiple
servers because the session itself would have to be transfered to the other
server. Because of security reasons neither the storage of the session on the
client is a solution.

Another problem is that each Drupal instance has its own user database.
So if a user is logged in to one project, we cannot simply log him into an-
other project instance because the user might not exist in the other user
database. Using just one user database would limit scalability, and keeping
them synchronized would be very complicated.

The third problem is that the development platform itself has a session
system. If an Origo session expires one has to log in again to get a new
session. Therefore we need the username and the password.

The solution we came up with is to store an additional cookie on the
client. This cookie stores the Origo username and the encrypted password.
With this information available in all Drupal instances we can simply log the
user on to every instance using the login function.

The Origo session system is an extended Drupal session system using
PHP sessions and the additional cookie. The green part in Figure 6.2 shows
the session system in a flowchart. When accessing a page the system checks
if the Drupal cookie and/or the Origo cookie is available.

– If both cookies are missing the user is just an anonymous user.

– If the Drupal cookie is missing and we only have the Origo cookie a
login using _sess_load_origo_user() is performed.

– If the Drupal cookie is available and the Origo cookie is missing we
remove the PHP session and log out the user in this instance. This
means deleting the Origo Cookie performs a logout on all projects.

– If both cookies are available we check if they are valid and both for the
same user. If so a login using the PHP session and the normal Drupal
session system is performed. If the user data does not match a login
using the Origo session and _sess_load_origo_user() is performed.

The function _sess_load_origo_user() extracts the user and the en-
crypted password from the cookie. After decrypting the password
internal_user.login is called using XML-RPC to log in the user into Origo
and get the Origo session. The Origo session is stored in the Drupal user
object. After the Origo login the user has to be logged in into Drupal. A

118

CHAPTER 6. USING ORIGO 119

check on the local user database shows if the user is already available. If
so, his data is updated, otherwise he is added to the database. To assign
the correct access rights it is then determined if the user is an administra-
tor, a project owner, a project member or just a normal Origo user. See
the orange part in Figure 6.2 for a graphical representation of the function
_sess_load_origo_user().

Because at the time the session code is executed most of the Drupal code
is not yet loaded, we cannot use the integrated xmlrpc() function. We use
the functions from the PEAR package XML_RPC [87] instead.

User log in To intercept the Drupal login system the form validate call-
back for the login form is changed using the hook hook_form_alter. We use
the validate handler instead of the submit handler in this case because the
XML-RPC request validates the entered data and because we do not want
to overwrite the rest of the login performed in the submit handler. The
new validate handler calls origo_auth_authenticate function to perform the
login on Origo. First a XML-RPC request to internal_user.login is exe-
cuted. This call returns the Origo session which is stored in the Drupal user
session. After the successful call the role of the user is determined using
authorization.is_allowed_project XML-RPC requests. Finally the Origo
cookie containing the username and encrypted password is created.

User logout As described in Section 6.2.1 the complete logout in all project
instances is performed by destroying the Origo cookie. Therefore we use
hook_user to hook into the user logout and destroy the Origo session.

Password change: The Origo Auth module overwrites the Drupal pass-
word change. The existing password change would only change the password
in the project specific Drupal database. For Origo we need to change the
password directly in Origo using a XML-RPC request. Drupal has a pass-
word change field on the user edit page. This page also has some fields that
cannot be used with Origo, so we use the hook hook_menu to intercept the
original edit menu and create a new one currently only containing the fields
that allow changing the password. The corresponding submit function sets
a new password calling internal_user.change_password over XML-RPC.

Lost password: If the user forgets his password he needs a way to re-
set it. As for the user registration (see Section 6.2.1) we use the hook
hook_form_alter to change the form validate and submit handlers of the
existing password reset function. The new submit handler starts an

119

120 CHAPTER 6. USING ORIGO

Figure 6.2: Session handling and user log in

120

CHAPTER 6. USING ORIGO 121

XML-RPC request to internal_user.reset_password. This call starts the
USER_RESET_PASSWORD use case in Origo Core which takes care of generating a
new password and sending it to the user in an email. This generates also the
password for all the external applications like SVN and FTP that the user
belongs to.

XML-RPC wrapper: Many of the Origo API calls require a valid ses-
sion. This session is returned by the internal_user.login XML-RPC re-
quest and is only valid for a limited amount of time. If the session expires
each request that requires a session will return an error. A relogin with
internal_user.login is necessary to get a new session. To provide an au-
tomated relogin if a session is expired the Origo Auth module provides a
wrapper to the Drupal xmlrpc() function.

There are two functions available: origo_auth_xmlrpc() which basically
is the same as the original xmlrpc() and origo_auth_xmlrpc_session() which
is used for API calls that require a session.

origo_auth_xmlrpc_session() adds the current Origo session as first argu-
ment and calls the Drupal xmlrpc() function. If this function returns an error
indication the session is not valid, a relogin using _sess_load_origo_user()
(see Section 6.2.1) is done. After the relogin xmlrpc() is executed again with
the new session. If there is still an error it has to be a serious problem and
the error is therefore given to the caller.

6.3 Origo-Home

The Module Origo-Home is the Origo web main module and provides besides
several other functions features for work items, project settings, releases and
Origo administration. Functions are organized in groups and moved to in-
clude files whenever it was possible. All functions are still defined in the hook
hook_menu which defines the path a function is available at.

Origo-Home is the main page to view work items. A project tab is shown
for each project a user is either developer or has bookmarked it. Normally
only the unread work items are shown and they become read by following
the link or using the checkbox. When selected to show all work items the
read workitems are shown too.

This page makes several XML-RPC requests to Origo Core. First the
own and the bookmarked projects are retrieved using project.list_of_user
and user.list_bookmark. Wit workitem.list_projects the workitems for
these projects are retrieved (see Section 6.7.8) and listed in a table for each

121

122 CHAPTER 6. USING ORIGO

Figure 6.3: Origo-Home showing the work items

project. Depending on the work item type the information shown in the
table is extracted and displayed.

To enable fast tab switch a JavaScript is used. Drupal contains the
JavaScript library jQuery, which makes it straightforward to add fancy ef-
fects or AJAX to a page. A JavaScript together with an AJAX request
is used to set the read state of a work item. A click on the checkbox
fires an asynchronous request which sets the state in Origo using XML-
RPC. As soon as this request completes the redering of the work item is
changed to look greyed-out or marked unread to look bold and colorful again.
Origo-Home has a link to mark all workitems of the project as read it calls
workitem.set_read_status_project.

Work item subscription: The work item subscription settings pro-
vide a simple way to manage the work item notifications (see Sec-
tion 6.7.7). Using calls to project.list_of_user and user.list_bookmark
the own and the bookmarked projects are retrieved. For each of
these projects user.list_workitem_subscription retrieves the currently set
notifications. After submitting the form an XML-RPC request with
user.set_workitem_subscription sets the new notifications.

122

CHAPTER 6. USING ORIGO 123

Project bookmarks: Origo-Home module provides a list of all book-
marked projects which it gets by a XML-RPC request to user.list_bookmark.
There are also two menu paths defined in the hook hook_menu to add and
remove bookmarks. These paths can be used as links to quickly add or
remove a bookmark and are implemented by calling user.add_bookmark or
user.remove_bookmark XML-RPC. Both adding and removing also sets or re-
moves all the workitem subscriptions (see Section 6.7.7) for the corresponding
project.

Project list: The project list contains all projects hosted on Origo. This
list uses the internal API call internal_project.list to retrieve the projects
because the list should also be available to anonymous user which do not
have session. Projects flagged hidden are not shown in this list. Most of the
hidden projects are student projects created in courses at ETH.

User key request: External software using the Origo API requires the
user to enter a user key instead of his password. This page provides a way
to request a key using the API function internal_user.generate_key.

E-Mail change: This page allows a user to change his e-mail address and
is implemented using a XML-RPC request to internal_user.change_email.

Project settings: On the Project Settings page a project owner can man-
age some project settings.

The members page allows adding and removing project members or own-
ers. This is done by calling project.change_group with XML-RPC.

The description page allows changing the project description using the
XML-RPC methods project.retrieve and project.change_description.

Changing the logo is possible on the logo settings page. Adding a logo
uploads the picture to the local Drupal instance and uses the Drupal theme
system to display the logo. Additionally the executed XML-RPC method
project.change_logo updates the logo filename in Origo.

Project creation request: Every Origo user can request the creation of a
new project. The project creation itself is done manually by an administrator
for security reasons. However several features are implemented to automate
this process.

A user can request a project on the create project page. He has to pro-
vide the name, a description and if it is a closed or open-source project. An
XML-RPC request to project.request_add checks if the project name is valid

123

124 CHAPTER 6. USING ORIGO

Figure 6.4: Project request table

and still available and adds the project to a request table in Origo (see Fig-
ure 6.4). Using the Drupal mail function a mail to the administrators is sent
including the entered data and a link to a creation form. This creation form
defined in origo_admin_create_project_form_request_page is only available
to administrators and loads the details for the requested projected with the
XML-RPC request to project.request_retrieve. The administrator may
now make changes to the entered data and the confirmation mail. Send-
ing the form starts the project creation process which includes the project
creation, adding the requesting user as project owner (see Section 6.3) and
sending a mail to the user informing him about the created project.

Administration menu: The admin menu provides an interface to the
XML-RPC methods reserved for administrators.

There is a project list like the one open for all users (see Section 6.3).
The difference to the open project list is the usage of the external API call
project.list and that is also shows the hidden projects.

To send newsletters or important information to all users an administra-
tor can use the mass mail function defined in origo_admin_massmail_page()
which starts a XML-RPC request to origo_system.mail_all.

A project creation form allows the direct creation of a project without
using the request mechanism described in Section 6.3.

Finally the function origo_admin_status_page shows the result of the
XML-RPC request to origo_system.status which returns some information
about the running nodes.

6.4 Issue tracker
The issue tracker module is the web interface to the Origo issue system. Is-
sues are implemented in Drupal as a new node type and issue replies are
simple comments. The hook hook_insert is used to intercept node insertion

124

CHAPTER 6. USING ORIGO 125

Figure 6.5: Checkbox to flag a page private

and make a call to release.add via XML-RPC. This call returns the project
specific issue ID which is stored in an additional table issues in the Dru-
pal database. The standard comment system is also modified in the hook
hook_form_alter to execute the XML-RPC method release.comment

6.5 Developer pages

The Developer Pages module is a simple module that adds the possibility to
flag pages as private. Private pages can only be accessed by project members
and can be used to store project internal information. Work items created
from private pages are also only visible to project members.

This module is a Drupal node access module and uses several hooks to
perform its task. hook_node_grants is used to define the node access rights,
hook_nodeapi is used to keep track of node inserts and changes to update the
table containing all private pages. hook_form_alter is used to add a checkbox
at the end of a node edit form (see Figure 6.5) giving the possibility to mark
this node private.

6.6 Existing modules

Captcha Module: Because spam bots are everywhere nowadays it is nec-
essary to protect all functions that can be accessed without a valid login.
This includes user registration and password reset. The Captcha module
provides a simple math challenge a user has to answer. The protection is
not as strong as it would be with an image captcha, but the image captcha
module had several bugs which made it impossible to use. Fortunately at
the moment the current system suffices.

Diff module: Diff shows differences between node revisions. It adds a new
tab on top of nodes like wiki pages and shows all changed word in a colored
view.

Form store module: Provides form information to other modules and is
needed by the Captcha Module.

125

126 CHAPTER 6. USING ORIGO

wget http://www.google-analytics.com/urchin.js -q -O
/data/www/Origo/static/urchin.js

Figure 6.6: Cron job command for Google Analytics

GeSHi filter module A filter to highlight source code using GeSHi. [88]

Google Analytics module The Google Analytics module is used to
gather advanced web statistics using Google Analytics [89]. It works by
including a JavaScript on top of each page and can therefore retrieve in-
formation that is not available in web server logs. The included JavaScript
is hosted on www.google-analytics.com which turned out to be a bottle-
neck, therefore we modified the module. Instead of including the script from
www.google-analytics.com we used a local copy on our local server. A
simple daily cron job (see Figure 6.6) is scheduled to download the script to
make sure the script is up to date in case Google releases a new version.

Google Co-op CSE module Google Custom Search Engine [90] is a ser-
vice to include Google search on your on web site. We use this service to
provide an Origo wide search over all projects.

Image module: Allows uploading, resizing and viewing of images.

Image assist This module allows users to upload and insert images into
posts. It automatically generates an add image link below text fields.

Pathauto module: Provides a mechanism for modules to automatically
generate aliases for the content they manage. This is used to generate wiki
links.

PEAR Wiki filter: Filter which uses the PEAR Text_Wiki [91] package
for formatting.

Tag Query Language: A nice tag query language. This can be used to
write queries to retrieve nodes with specific tag. For example one could to
write a query for all open issues assigned to him.

Wikitools module: Provides helper functionality to have wiki-like behav-
ior.

126

wget
http://www.google-analytics.com/urchin.js
-q
-O
/data/www/Origo/static/urchin.js
www.google-analytics.com
www.google-analytics.com

CHAPTER 6. USING ORIGO 127

6.7 Work item implementation

workitem_id The work item ID, unique in the system

type The work item type (1=Issue, 2=Release, 3=Commit, 4=Wiki,
5=Blog)

creation_time Time stamp when the work item was created

project_id ID of the project this work item belongs to

project Name of the project this work item belongs to

user Name of the user responsible for the work item creation

is_read 1 if the user has already read this work item, 0 otherwise

6.7.1 Issue work item

Issue work items are created for new issues and issue replies. The following
additional information is included:

project_issue_id The issue ID, unique in the corresponding
project

title The title of the issue

description Detailed description or text provided in the issue

is_new 1 if this is a new issue, 0 if it’s a reply

url Link to the issue web page

Origo API call: Issue workitems are created after inserting the issue itself
in the ISSUE_ADD and ISSUE_COMMENT use cases, which are started by the XML-
RPC methods issue.add and issue.comment. Because issues are already
stored in Origo only the issue_revision_id needs to be stored in the table
workitem_issue. Figure 6.7 shows this relation.

Drupal integration: The issue work items are created on new issues and
issue comments in the Issue Tracker module. (see Section 6.4)

6.7.2 Release work item

A release work item is created on each new release. It contains the following
information:

127

128 CHAPTER 6. USING ORIGO

Figure 6.7: Work item tables

128

CHAPTER 6. USING ORIGO 129

name The name of this release

description Detailed description

version Version of this release

url Link to the download page

file_count Number of files included in this release

file_name_X Filename of file X (X = {1 .. file_count})

file_platform_X Platform for file X

Origo API Call: When adding a release with the release.add API call
Origo starts the RELEASE_ADD use case. After inserting the release itself it
takes the ID of this releases and inserts a new workitem into the tables
workitem and workitem_release as shown in Figure 6.7.

Drupal integration: When using the web site for releas-
ing files the work item (and release) creation is triggered inside
origo_home_create_release_form_submit in the origo_home module.

6.7.3 Commit work item

A commit work item is created for each commit in the Subversion repository.
It contains the following information:

revision The SVN revision associated with this commit

log Log describing the commit

url Link to the WebSVN page for this revision

diff Diff for committed files (this is truncated for large commits)

Origo API call: Commit work items are created in the internal XML-
RPC method internal_commit.add which starts the COMMIT_ADD use case. As
shown in Figure 6.7 all data is stored in the table workitem_issue.

Subversion integration: The commit work item creation is triggered by
a SVN post-commit hook. The used script is an adaptation of the standard
commit mail script which uses XML-RPC instead of mailing the changes.
The script gets the user, project, revision, commit log and generates a diff of
all changes which are then used to call internal_commit.add.

129

130 CHAPTER 6. USING ORIGO

6.7.4 Wiki work item

Wiki work items are created for new and changed wiki pages and contain the
following information:

title Wiki page title

diff Diff of wiki changes

revision Drupal node revision after change

old_revision Drupal revision before change

url Link to the wiki page

diffurl Link to the diff page for this wiki page

Origo API call: The use case WIKI_ADD started in the XML-RPC method
internal_wiki.add adds wiki work items into the workitem_wiki table (see
Figure 6.7). Besides a diff between the revisions which is generated using the
PEAR Text_Diff class [92] the old and new node revision is stored.

Drupal integration Adding or editing wiki node types is intercepted in
the Origo-Home module (see Section 6.3) within the hook hook_nodeapi.

6.7.5 Blog work item

Blog work items are created for new and changed blog posts and contain the
following information:

title Blog title

diff Diff of blog changes

revision Drupal node revision after change

old_revision Drupal revision before change

url Link to the blog entry

diffurl Link to the diff page for this blog entry

Origo API Call: Adding blog work items in Origo is similar to adding
wiki work items. It uses the API call internal_blog.add to store blog work
items in the table workitem_blog.

Drupal integration: Adding or editing a blog node type is intercepted
with the hook hook_nodeapi like for wiki workitems.

130

CHAPTER 6. USING ORIGO 131

6.7.6 Access Control

While blog and release work items are accessible for everyone, commit, wiki
and issue items have an access control mechanism. Commit items for closed-
source projects are of course only visible for project developers to keep the
source closed. Wiki pages and issues can be set private so we have to do the
same with their work items. If the corresponding wiki page or the issue is
private the work item is only visible for project developers.

6.7.7 Notification

Origo provides different ways to notify users about new work items. First
there is the work item list on Origo-Home. New work items can also be
queried via the API and mail notification is available.

A user can set how and for which work item types he wants to get notified.
This is done using the web interface (see Section 6.3) or directly using the
API. The XML-RPC method to be used is user.set_workitem_subscription.
The core use case USER_SET_WORKITEM_SUBSCRIPTION then adds the subscrip-
tions into the table user_workitem_subscription. There is also a call
user.list_workitem_subscription available to read out the current subscrip-
tions.

6.7.8 Work item retrieval

To retrieve the work items there is either the XML-RPC method
workitem.list or workitem.list_projects. The work item list on Origo-
Home is implemented with a call to workitem.list_projects which retrieves a
given number of the newest work items for each own and bookmarked project.
The parameter unread_only is used to retrieve only unread work items, oth-
erwise read and unread will be retrieved. The method workitem.list also
lists a given number n of work items, but this method just returns a total
maximum of n newest work items in all own and bookmarked projects. If
five work items are requested and the first project already has ten new work
items then only five work items of this project are retrieved and none from
any other project.

A detailed single work item is retrieved with a call to the XML-RPC
method workitem.retrieve.

All retrieve calls implement the access control described in Section 6.7.6
and the subscription settings described in Section 6.3. So only work items a
user wants to see and is allowed to see are retrieved.

131

132 CHAPTER 6. USING ORIGO

6.8 Teaching

Our work involves teaching software engineering and software architecture
to large numbers of students. The teaching activity is always accompanied
with practical work in software projects. First year students learn program-
ming using the method of the inverted curriculum [93] where they acquire
programming skills by using existing libraries first as clients and then start
extending them. In higher level courses we encourage students to participate
in existing open-source projects to practice distributed software development
and interaction with teams consisting of globally spread engineers. In both
scenarios Origo is the information management platform that students use
to coordinate their efforts. Students can create projects hosted on Origo and
use them as communication platform. To prevent that immature or unfin-
ished projects clutter the platform, such student projects hosted on Origo
can be hidden from the publicly available projects list.

In Section 6.8.1, we present an evaluation on how working in open-source
projects affects student motivation.

6.8.1 Open-source projects in programming courses

We teach software engineering techniques, design patterns, and project de-
velopment models in our courses. Teaching these topics to students with-
out actually exposing them to industry grade software may not only sound
preachy, but may also leave no remaining impression. Open-source software
offers great opportunities to bring real-life experience directly into the class-
room [94, 95]. In particular, open-source software can be used to emphasize
the importance of high quality software design, the role of design patterns,
the need of good documentation, and the relevance of social skills in a real-
world environment.

Over the last years, only a few instructors reported on their experimenta-
tion with open-source software in the classroom. Allen et. al. [96] used Dr.
Java - an open-source Java programming environment - to teach extreme pro-
gramming techniques. Students of Fuhrman [97] freely chose an open-source
project which they inspected to propose corrections in the design. Fuhrman
did not require students to implement their improvements, but many still
did. Carrington [98] allowed students to choose from a list of open-source
projects that are useful to software engineering and let them inspect, report,
and extend the tools during his course. Except for contributions by students
to Dr. Java, these experiments refrained from actively submitting changes,
bug fixes, or improved designs to the open-source projects.

The assignment described here combines the freedom of choosing an ar-

132

CHAPTER 6. USING ORIGO 133

bitrary open-source project with the ultimate goal of students contributing
to it. Allowing students to freely choose the project, on which they intend to
work, lets them adapt the assignment to their personal interests. Requiring
students to contribute back to the open-source project, increases the prestige
of their work and the effort that they are willing to put in the assignment.
Students experience all the tasks needed to adapt existing software: under-
standing it, identifying a needed improvement, designing the solution, imple-
menting, testing, and adapting to the requirements for contribution. During
this work, they need to get socially involved with the other developers of the
open-source project, having to deal with the communication problems that
occur frequently with distributed development.

This work presents a thorough evaluation of the approach by using a
questionnaire focusing on students’ motivation [99]. The study compares the
motivation of students working on an open-source project to the motivation
of a control group from another course working on a traditiona(exercise)
project.

Course setup: This study focuses on two programming courses: an ad-
vanced Java course (the experimental course, roughly 70 students, master-
level) and a course on concurrent object-oriented programming (the control
course, roughly 30 students, master-level). Both courses are elective courses
that can be chosen both by Bachelor and Master students, but also by post
diploma students (e.g. PhD students). For the project the experimental
course required groups of students (maximum 5 people) to contribute to a
Java open-source project of their choice. The control course relied on a given
artificial project to be solved by groups of maximum 3 people. The goal of
the projects was in both cases to deepen the understanding of the lectures
by putting the concepts to work. Both projects spanned over 6 weeks and
started at the middle of the semester. For both courses the results of the
project influenced significantly the final grade of the course (respectively 40%
and 65% of the final grade).

The following sections describe each of the project assignments in more
details.

Control course project: In line with the focus of the course the project
required the students to build a group of command line programs, that use a
given concurrency framework and demonstrated its capabilities. The second
part of the project consisted in extending the framework with a rendezvous
synchronization mechanism that did not exist previously.

The exact assignment was to: (1) program the required tasks, (2) answer

133

134 CHAPTER 6. USING ORIGO

questions, and (3) write a report including a description of the code as well
as the answers to the questions.

Open-source project: At the beginning of the course, students were in-
formed about the grading scheme and that they would have to form groups
for the project. Students received the project description only at the mid-
dle of the semester. At this occasion, lecturers and students discussed the
nature of the community work that open-source projects involve. The discus-
sion showed that very few of the seventy students had actively participated
or even contributed to an open-source project. Obviously, all of them had
already used open-source software.

The project description included an initial selection of popular and active
open-source projects (see Table 6.1). The main criteria for selecting these
projects were activity of the community, existence of a project plan, existence
of a bug tracking system, and the availability of the code through a repository
so that students are able to create branches on which they can work.

Table 6.1: Open-source projects

P
ro
je
ct
s
Su

gg
es
te
d

Anteater: http://aft.sourceforge.net
ArgoUML: http://argouml.tigris.org
JEiffel: http://se.ethz.ch/projects/benno_baumgartner
JSR’s: http://www.jcp.org
Open Office: http://www.openoffice.org
Tomcat: http://tomcat.apache.org
XmlIO: http://www.bifrost.org/xmlio/index.shtml

P
ro
je
ct
s
C
ho

se
n

Azureus: http://azureus.sourceforge.net
Eclipse: http://www.eclipse.org
GPSylon: http://www.tegmento.org/gpsylon
JUnit: http://www.junit.org/index.htm
Maven: http://maven.apache.org

O
th
er

P
ro
je
ct
s

CaCMS: http://cacms.sf.net
Columba: http://www.columbamail.org
FreeGuide TV: http://freeguide-tv.sourceforge.net
Gham: http://www.hattrickitalia.org/gham
Hunt for Gold: http://huntforgold.sourceforge.net
JackSum: http://www.jonelo.de/java/jacksum
Jython: http://sourceforge.net/projects/jython
Tapestry: http://tapestry.apache.org
WTflash: http://sourceforge.net/projects/wtflash

134

http://aft.sourceforge.net
http://argouml.tigris.org
http://se.ethz.ch/projects/benno_baumgartner
http://www.jcp.org
http://www.openoffice.org
http://tomcat.apache.org
http://www.bifrost.org/xmlio/index.shtml
http://azureus.sourceforge.net
http://www.eclipse.org
http://www.tegmento.org/gpsylon
http://www.junit.org/index.htm
http://maven.apache.org
http://cacms.sf.net
http://www.columbamail.org
http://freeguide-tv.sourceforge.net
http://www.hattrickitalia.org/gham
http://huntforgold.sourceforge.net
http://www.jonelo.de/java/jacksum
http://sourceforge.net/projects/jython
http://tapestry.apache.org
http://sourceforge.net/projects/wtflash

CHAPTER 6. USING ORIGO 135

Each description of the proposed projects included references to the rele-
vant web pages, wikis, mailing lists, and URLs of the bug tracking systems.
It also included an informal evaluation of the projects’ organization such as
specifics about the development process (e.g. was it bug-driven or planned).
This information provided a starting point when looking for possible contri-
butions to the project.

Besides this selection of projects students could also look for other Java
open-source projects and assess their suitability for contributions. As Ta-
ble 6.1 shows, half of the students chose one of the proposed projects and
the other half selected one of their own.

The assignment was to: (1) get an overview of the project, (2) identify
the parts to which they would contribute code, (3) contribute, (4) write a
report recalling their experience.

Outcomes: The students generally spent a lot of time and produced qual-
ity software.Their contributions include the world map plug-in integrated in
the latest versions of Azureus, various bugfixes for the Eclipse Maven plug-
in, CSV-exporting Tapestry components, bugfixes and extension of the GPL
Hattrick Manager, bugfixes of JUnit, bugfixes and major improvements of
the Columba Mail Client,extensions of GPSylon, bugfixes of the FreeGuide
TV, a GUI for JackSum, extensions of WTFlash, extensions to the game
“Hunt for Gold”, and finally extensions to CaCMS to include WebDav sup-
port. These are only the projects producing code that is shipping in the
products. The course’s wiki page1 provides much more details.

6.8.2 Evaluation of motivation

Background: Students who are motivated by a task are more likely to
succeed in solving it. According to Pintrich, students’ motivation is strongly
correlated with their academic success [100]. In particular, Pintrich shows
that students are more motivated if:

1. they believe that they are able to solve the task at hand.

2. they feel in control of their learning.

3. they are personally or situationally interested in the task.2

1http://wiki.se.inf.ethz.ch/tjp_06/index.php/Project_page
2Personal interest describes a disposition of an individual to be attracted to a particular

activity or topic while situational interest describes a state of an individual where the
interest results from the task itself.

135

http://wiki.se.inf.ethz.ch/tjp_06/index.php/Project_page

136 CHAPTER 6. USING ORIGO

4. they believe what they are doing is valuable and useful for themselves.

5. they have social and/or academic goals that they pursue.

By comparing the above motivational influences for the open-source project
approach and the traditional project approach, one can expect the open-
source project to increase personal and situational interest (3) and to give
them the impression that the task is more valuable and useful (4) than the
traditional projects’. One can also expect that the traditional project ap-
proach is better at providing assurance of success (1) and impression of con-
trol (2).

To assess the validity of using an open-source project against using a tra-
ditional project, a good indicator is to compare the motivation associated to
both projects. The Questionnaire on Current Motivation (QCM) [99] assesses
the current motivation of students working on a specific task and therefore is
well suited for such a purpose. The QCM is based on the "classical" model
of motivational psychology [99] (see Figure 6.8) that states that personal and
situational factors influence the current motivation which in turn influences
behavior i.e. learning. It also benefits from a whole theoretical psychology
framework that allows to easily compare and aggregate questions.

The QCM itself uses 18 items (questions) that measure four factors of
current motivation: anxiety (fear of failure), probability of success, interest,
and challenge. The full questionnaire is available online3 and reproduced
in the Appendix. The QCM items formulate statements for which students
assign 1 to 7 points depending on how much they agree with the statements
(1: totally disagree, 7: totally agree). As an example:

I enjoy problem solving tasks like the ones that emerge in the project work.
� 1 � 2 � 3 � 4 � 5 � 6 � 7

Results: To assess the motivational implications of the open-source project
assignment, the students of the Java programming course filled in the QCM
twice: once just after receiving the project description, and the second time
at the end of the project. The control course had a similar setting. In the
rest of the section we use the following abbreviations:

QCMEt1: questionnaires of the experimental group at the beginning of the
open-source project

3http://se.ethz.ch/people/pedroni/qcm.html

136

http://se.ethz.ch/people/pedroni/qcm.html

CHAPTER 6. USING ORIGO 137

person
(motives)

situation
(potential

stimuli)

current
motivation

behavior

Figure 6.8: Basic model of classical motivational psychology [6]

QCMEt2: questionnaires of the experimental group at the end of the open-
source project

QCMCt1: questionnaires of the control group at the beginning of the project

QCMCt2: questionnaires of the control group at the end of the project

The responses QCMEt1, QCMEt2, QCMCt1, and QCMCt2 can be used to
compare the two groups in two dimensions:

– Motivational differences between the experimental and the control
group (comparing QCMEt1 to QCMCt1 and QCMEt2 to QCMCt2).

– Motivational changes over time for both of the groups (comparing
QCMEt1 to QCMEt2 and QCMCt1 to QCMCt2).

Differences at the beginning: The 18 items of the QCM were com-
bined into measures for each of the four dimensions. Based on this data,
the analysis uses T-Tests4 for independent sets to obtain the factors that
differ significantly between the two groups for each of the two points in time
(means are gathered in Figure 6.9).

The comparison shows that QCMEt1 and QCMCt1 differ significantly for
the factors probability of success and anxiety (see (∗a) respectively (∗b) in
Figure 6.9). The interpretation of such a result is that when students begin
to work on an assignment requiring contributions to a real-world open-source
project, they feel more uncertain about their success and therefore their fear

4T-Tests allow to determine if the means of data differ significantly. In general, this is
assumed to be the case if the calculated value p < 0.05.

137

138 CHAPTER 6. USING ORIGO

of failure is higher than for a traditional small “toy" project. More surpris-
ingly, students are at this point in time not significantly more interested or
more challenged by the open-source project than by the traditional project.

Differences at the end: The comparison of QCMEt2 and QCMCt2 shows
that the factors probability of success and anxiety do not differ significantly
between the experimental and the control group any more. Interestingly
enough, the level of confidence is identical in both groups. The factor in-
terest changed (with p = 0.065): the interest of the experimental group in
their project grew while the interest of the control group diminished. The
interpretation is that the fascination of working on an open-source project
settles in only after the first hurdle of basic understanding and involvement.
Working on a traditional project is interesting in the initial design phase but
looses fascination over time.

Another interesting outcome can be detected by comparing individual
statements. First, the statement “If I succeed with the project, I will feel
a little proud of my proficiency” was significantly higher at the end of the
projects for the experimental group than for the control group. Second, the
statement “I would also work on a project like that in my free time” also
produced a significantly higher result for the experimental group. This is
consistent with the following intuitive interpretation. Contributing to a real-
life project is very likely to make students proud and may even make them
wish to continue contributing after the mandatory work is completed. But
also having completed a project specifically designed for a course is not that
rewarding on its own.

Comparison over time for both groups: The second part of the eval-
uation was done using T-Tests for paired sets of data to obtain significant
changes over time. These tests show that for the experimental group the
values for the factors interest, anxiety, and probability of success significantly
improved (see (∗c), (∗d), and (∗e) in Figure 6.9). It seems that students
working on the open-source project first underestimate their capabilities and
then gain confidence. This results in a significant increase of the probability
of success and a reduction of the anxiety. The increase of interest is probably
due to students beginning to understand the challenging and interesting sides
of their programming project while working on the open-source project. For
the control group no significant change occurred during the project.

Outcome: The open-source project results in a somewhat more unstable
situation. Students start with a higher level of fear of failure and a lower level

138

CHAPTER 6. USING ORIGO 139

c

In
te

re
st

 (t
1)

Su
cc

es
s

(t
2)

A
n

xi
et

y
(t

2)

C
h

al
le

n
g

e
(t

2)

In
te

re
st

 (t
2)

Su
cc

es
s

(t
1)

A
n

xi
et

y
(t

1)

C
h

al
le

n
g

e
(t

1)

*
*
*

*
*
a

b

d

e

2.0

3.0

4.0

5.0

6.0

7.0

experimental group

control group

Figure 6.9: Mean and standard deviation of the four factors with a range of
possible values from 1.0 to 7.0. (*) denotes significant differences (p < 0.05).

of probability of success, while gradually gaining more confidence and finally
showing a deeper interest in the subject. In particular, students feel more
proud of completing the open-source project and are more likely to deepen
their knowledge by continuing to work on it after they finished the official part
of the work. This conclusion verifies the assumptions from section 6.8.2 which
stated that students working on the open-source project value their work
more, but are less confident in their capabilities and control. With the present
data it is not possible to declare one of the approaches definitely better
than another, but using open-source projects is as good as using traditional
projects and helps students build self-esteem.

6.8.3 Complementary items

The previous section showed how an open-source project impacts on stu-
dents’ motivation. To estimate students’ activity, learning effect, and com-
mitment additional items complement the QCM. These questionnaires were
distributed to the students of the experimental course at three occasions
during the course period - at the beginning, in the middle, and at the end.

From over thirty additional items covering questions about the course,
the weekly assignments, and the project, three are detailed here. These
three items all concern the project and represent a general trend emerging
from these additional questions on the project5.

5For details see http://se.ethz.ch/people/pedroni/qcm.html

139

http://se.ethz.ch/people/pedroni/qcm.html

140 CHAPTER 6. USING ORIGO

The first item assesses activity. This item addresses how much time is
spent on the open-source project. The second item - learning effect - quanti-
fies the students’ perception on the knowledge learned because of the open-
source project. The third item is the commitment that results from the
project work. This third item was evaluated only at the middle and at the
end of the course. The results of these complementary three items help to
identify improvements for a future course.

Results: The item addressing the activity was: “I am putting much effort
into the project”. Students assigned 1 to 5 points capturing how much they
agree with this statement (1: totally disagree, 5: totally agree). Figure 6.10
shows that the mean effort invested in the open-source project drops towards
the middle of the project’s lifespan.

t2 t3t1

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

Activity

Learning Effect

Commitment

Figure 6.10: Means of activity, learning effect and commitment

The statement “I am learning much by doing the project” assessed the
learning effect that students attribute to the open-source project. As for the
activity, the felt learning effect decreases in the middle of the course and rises
again towards the end (see Figure 6.10).

The item to measure the commitment of students was included only twice:
at the middle and at the end of the course. It stated “I feel responsible to
make the project a success.” and the resulting averages show an increase
towards the end of the course (see Figure 6.10). Additional comments made
by students in the questionnaires support this observation: “It was a lot of
work, but very cool to have taken part in an open-source project.”

The evaluation for the three additional items used a variance analysis
with repeated measures to find out whether the averages between points in
time differ significantly. This was the case for all of the presented items.

140

CHAPTER 6. USING ORIGO 141

Outcome: At first sight, the decrease of learning effect and activity in the
middle of the course might be surprising. But it is important to see the course
and the project in the context of the other activities the students take part
in. In fact, students were busy with midterm exams for other courses at this
point in time. To overcome the problem of multiplied pressures, instructors
need to consider both the project phases and the other obligations students
have at university. In particular, during the time consuming phase of design
and implementation lectures could be reduced or transformed into interactive
lab sessions.

6.8.4 Conclusions and future work

The paper has two main contributions. Firstly, we show that having students
collaborate on open-source projects within the frame of a course is interesting
and has advantages over using an artificial project. Secondly, using a study
backed up by research in psychology enables a scientifically sound evaluation
of the approach.

This article described our first attempt at using open-source projects
within a course. It showed that students were obviously afraid at first but
felt more proud of their achievement in the end. The next iterations of the
course will integrate this result and find solutions to cope with students’ fear.
A first approach is to give them a much more detailed standard operating
procedure to get started with their projects. Such an approach could include
the following steps: (1) use the open-source software as a tool, (2) explore
the code in search for programming patterns, (3) identify weak points or
adequate extensions that result in a contribution, and (4) design, implement,
and deliver the code. As a second measure, we plan to have several groups of
students work on the same project (but not the same subject) so that they
constitute a community within the open-source community. This would then
show the projects in a more friendly and social way than currently.

We plan to repeat the open-source project and its assessment with under-
graduate students to ensure that the results also apply to this population.
Our priority is to develop further the methodology assessing teaching ex-
periments by motivation analysis and identifying other settings in which it
applies. In particular, we will experiment the impact of having contests,
written exercises, programming assignments, in-class exercises, or in-class
practical sessions on students motivation.

Small FAM
QCM questions, adapted from [99]:
(I) I enjoy problem solving tasks like the ones that emerge in the project work.

141

142 CHAPTER 6. USING ORIGO

(S) I think I can tackle the difficulties of the tasks involved in the project assignment.
(S) Probably, I will fail solving the project assignment.
(I) What I like about the project assignment is the role of the researcher that discovers connections.
(A) I feel pressure having to perform well solving the project assignment.
(C) This project assignment is a real challenge for me.
(I) After reading the instructions, the project assignment seemed very interesting to me.
(C) I am very curious how well I will do in this project.
(A) I am a bit afraid of being embarrassed by my performance in the project.
(C) I am determined to work very hard for the project.
(I) I enjoy doing the project, I would not need any gratification.
(A) Failing the project assignment would embarrass me.
(S) I believe everyone can succeed in doing the project.
(S) I believe I won’t succeed in the project assignment.
(C) If I succeed with the project, I will feel a little proud of my proficiency.
(A) If I think about the project, I am a bit worried.
(I) I would also work on a project like that in my free time.
(A) The requirements of the project work paralyze me.

(C): Challenge
(I): Interest
(S): Probability of success
(A): Anxiety

142

CHAPTER 7. THE DEVELOPMENT AND USE OF ORIGO: LESSONS
LEARNED 143

Chapter 7

The development and use of
Origo: Lessons learned

When building a framework to support construction of scalable distributed
platforms it is difficult to know where to start. The approach we took was
to identify use cases and take them as indicator on the more general require-
ments the framework should aim at fulfilling. While defining and refining
use cases, we carried out an analysis of the state of the art of development
platforms. The construction of a novel software development platform was
the practical goal driving the conceptual design of the Origo Core framework
and the Lookup library. The analysis of other development platforms permit-
ted to refine the found use cases and most importantly to identify platform
design and construction attributes that the framework should fulfill.

7.1 Private Alpha - Fall 2006
We believe that a platform can only become better, if it is used by its de-
velopers on a daily basis. After all developing our own open-source libraries
(e.g. EiffelMedia [101], EiffelStudio and many others) was the impulse for
the need of better software development platforms. We started out using
several applications to aid software construction in a loosely coupled fashion.

7.2 Private Beta - Spring 2007
After finishing the development of VamPeer and Origo Core, we were able to
start integrating all services and applications into the development platform.
To broaden the user community in a manageable way, the platform was used
in the Software Architecture course at ETH Zurich. The students registered

143

144
CHAPTER 7. THE DEVELOPMENT AND USE OF ORIGO: LESSONS

LEARNED

35 projects and all interested researchers were encouraged to move their
source code or publication repositories to Origo.

The development platform was running on two server machines that
shared responsibilities. One machine hosted project web pages API nodes
and databases of each of the projects, the other server hosted all source code
repositories, the overall Origo database and the download mirror for the
software releases. During the private beta phase we started using a separate
development server that would – upon commit of code – compile the entire
Origo platform and execute all unit- and regression tests on the newly com-
piled platform. This automation permits to identify problems early, before
releasing a new version to the life system.

The functionality of this version of the platform is listed below.

– Origo Core capable of running the use cases

– Web interface

– XML-RPC API

– Framework for generic search

– Configuration management using SVN

– File release platform using FTP

– Integration into development environment EiffelStudio

Many show-stopping issues were found during that time thanks to the
regular use of Origoby the beta testers.

7.3 Public Beta - Summer 2007
After successful use for an entire course and with a few dedicated beta testers,
we decided to open Origo to a bigger audience. The platform had new
features and was running on one additional machine; we were able to host
an offsite mirror for downloads and had implemented several more features:

– Second version of web interface

– More XML-RPC API calls available

– Integration into two new development environments: VisualStudio and
Eclipse

144

CHAPTER 7. THE DEVELOPMENT AND USE OF ORIGO: LESSONS
LEARNED 145

Figure 7.1: Registered Users

Publicizing Origo on the web took considerable effort and we had to
work our way up from little known news sites to more and more important
ones. On the 25th August a major German computer and IT news site [102]
published an article on Origo. From there on things went smoothly and we
did not have to make too much effort anymore to be written about. In the
week that followed we had to create and register a new Origo project almost
every couple of minutes. This overwhelming response has declined, but the
growth rate on all aspects of the platform is steady (see next Section for
details).

7.4 Metrics

Users: At the time of writing in December 2007 Origo has 1566 registered
users. The user base grows with approximately 220 new users per month.
On average 23 users are logged on to the platform using the web interface.

Projects: As of December 17th, 2007 - Origo hosts 628 projects out of
which 410 are closed-source. Among the hosted projects are many scien-
tific projects that are maintained by researchers just like many commercial
projects from all over the world.

Work items: An important measure of activity of all the hosted projects
are the work items that Origo manages. The biggest share have the code
commits - currently 15’757 commits have been made using Origo. The second
most popular action are wiki page edits - they are at 5’393. After that follow

145

146
CHAPTER 7. THE DEVELOPMENT AND USE OF ORIGO: LESSONS

LEARNED

the reported issues with 2’047, comments with 1’054, blogs with 237 and
finally the 107 software releases that Origo hosts.

Page accesses: We are using three different methods to collect data on
the life web sites of the Origo projects: User behavior on the pages is tracked
using Google Analytics as a remote data collection service and with AWStats
as a local tracking service. These two are combined with MRTS to track
bandwith usage all servers - most importantly the download machines. Since
launching the public beta of Origo, the project pages had over 60’000 visitors,
accounting to 320’000 hits - the platform is most popular in Europe and
Northern America and has server over 340GB of data.

Issues: The development of Origo continues and our active user base re-
ports issues regularly; currently we are 89 open issues out of 238 reported.

7.5 Monitoring and backup
To ensure quality of service, running an online platform for a growing user
community requires monitoring many different parts of the platform. As
Origo runs on a number of different machines that share responsibilities, we
decided to use an off site monitoring tool to track the entire host group.
The monitoring software is called Nagios [103] and Mirmon [104]. Miromon
tracks only the state of the enlisted download mirrors. Nagios monitors all
available services on the different hosts - notably that a host has a connection
to a gateway, that a login via SSh is possible, that there is a valid response
to a HTTP request and that and FTP login can be made. Nagios can be
extended to monitor arbitrary services and therefore correct function of the
Origo API is tested as well. Upon failure of any of these services, Nagios
sends out alerts to registered Origo developers that can consequently take
action and fix the problem.

Security updates on the machines are also sent to Origo administrators
and overall the availability so far has been at 99.987%; meaning that the only
downtime we had since start of the public availability of the platform was
due to restarting the machines after updating kernel images.

Origo hosts a database and a source code repository for every project.
Both the database and the repository are not easy to backup just by copying
the files elsewhere. The strategy we pursue is to dump both the databases
and repositories daily. These dumps are then locally backed up incrementally
every day. Additionally the entire contents of all projects and servers is
backed up daily to a centralized backup store at ETH Zurich.

146

CHAPTER 7. THE DEVELOPMENT AND USE OF ORIGO: LESSONS
LEARNED 147

7.6 Missing functionalities
The platform targets a light-weight development process. This is reflected
in the spartan user-interface support for project management. Currently
there is no notion of milestones and no possibility to manage calendars and
availability of developers. Users can track time and milestone completion
individually by keeping data on the wiki pages of a project but it is desirable
to continue development and to find easily manageable analogies that can be
leveraged in the user interface.

Besides the mentioned functionalities that are missing, the issue tracker of
the platform also contains feature request for several aspects of the platform
that bear room for improvement.

7.7 Not desirable functionalities
Among the functionalities that are not desirable is the inclusion of compi-
lation servers. Other development platforms offer compilation farms that
allow developers to build binaries of their software. Compilation farms allow
creating releases for foreign platforms; not every development team has ac-
cess to all platforms on which their software runs. In that case a team can
use compile servers to create releases for other platforms. The inclusion of
compile farms in a development platform poses considerable administrative
overhead in maintenance of the operating systems and the hardware. For
Origo, we decided to solve this need by offering an API that allows compile
servers to register with the platform. This way users can offer compilation
services to developers and the administrative overhead lies not with Origo.

147

148
CHAPTER 7. THE DEVELOPMENT AND USE OF ORIGO: LESSONS

LEARNED

148

CHAPTER 8. ORIGO: THE VISION 149

Chapter 8

Origo: The vision

8.1 The Impact

Recently, a wide range of services have emerged that support and enable soft-
ware development, deployment, collaboration and evolution. Each service,
however, requires learning curve. Users of a new service must familiarize
themselves with the API, create accounts for themselves, and determine how
best to integrate the new service into their current workflow. The complexity
of individual services and of manually integrating multiple services into a de-
velopment environment necessarily requires extensive time and effort. Each
development team is responsible for setting up such a system if it hopes to
provide robust support for its software artifacts and grow a user base that
facilitates use and extension of their software. If such development teams
and users are to make the most of emerging technologies, they must contin-
uously monitor new and emerging services as they become available. Such a
situation is simply untenable because it takes focus away from a teams main
task – the development and maintenance of its software.

The Origo Core framework addresses this growing and important problem
by providing middleware to facilitate integration and abstraction of a wide
range of extant and novel software development services. Moreover, a devel-
opment platform built on top of Origo Core can be integrated directly into a
workflow (graphical IDE or configuration, build, and deployment scripts) so
that the complexities of code stewardship are hidden to a development team.

As a result of our proposed design and implementation goals, Origo has
the potential for broad impact since it can be used by any development team
– may they develop open-source or closed-source software – to simplify their
development and deployment processes. Moreover, Origo Core can be used to
integrate source, binary, and data repositories like the development platform

149

150 CHAPTER 8. ORIGO: THE VISION

that we have built with the framework demonstrates.Through simplification
and expedient use of a wide range of current and emerging technologies, Origo
and Origo Core help to enable publicity, sharing, extension, and longevity of
open- and closed-source software and tools.

At the time of writing, Origo is used by over 1566 users and hosts more
than 628 projects. The platform is used by universities and colleges from all
over the world as well as by commercial companies and private persons. The
platform supports novel teaching directions like integrating collaboration in
open-source projects into the curriculum and enables distributed teams from
all industries to collaborate in software projects.

8.2 Future work

Future work on Origo focuses on three main goals: Implementing explicit and
implicit creation and detection of development communities and to provide
specific communication platforms for them. The second goal is to improve
the display of projects; the current Listing of projects can take into account
activity measurement connected to work items, number of developers on a
project and web statistics. For users looking for a certain project on the
platform a ranking of the projects can improve the usability. Detecting simi-
larities among projects and suggesting them to users for consideration can be
a valuable information source within communities and we plan to offer that.
The third goal is to maintain and improve the running platform driven by
the reported issues - one popular demand we are considering is the inclusion
of a distributed configuration management service.

For the Origo Core framework we want to address some points of the
communication infrastructure: We mentioned that VamPeer is incomplete
and does not implement the full JXTA specification. Although the current
release can be used in Origo Core and in many others applications, it lacks
of some essential features that would tremendously improve the VamPeer
experience.

We should focus first on a rendezvous server implementation because we
then could eliminate the dependency to another JXTA implementation. This
task involves working into the rendezvous’ peer view protocol. While the ren-
dezvous adaptions are a bigger part, it also involves to enhance the discovery
service since this has to fulfill more tasks when the peer is a rendezvous
server. We have to maintain an SRDI for all rendezvous clients for example.

Another important issue is the endpoint router completion. It should
be able to resolve peer IDs also querying remotely for route advertisements.
Another yet unavailable router feature is to forward traffic for other peers

150

CHAPTER 8. ORIGO: THE VISION 151

residing behind a firewall.
JXTA is also known for its support to bypass firewalls. The HTTP trans-

port is surely an important contribution to this facility. Such a transport
would thus be nice to have.

In JXTA, we generally have secure communication by using TLS channels.
As there is no SSL/TLS library for Eiffel yet, it is not that easy to implement
the jxtatls transport to VamPeer. But wrapping the SSL C library could
lead to a TLS transport implementation. The last missing service we would
like to list here is the pipe service. Its idea is to support virtual channels to
one or multiple peers.

8.3 Conclusion
Origo bridges the gap between coding and publication in software develop-
ment projects. It brings together development teams and offers them an
information management platform that is easy to use and integrates thanks
to the API and the IDE plug-ins directly into the development process. Ac-
celerating the publication of software releases improves software quality. The
overview of work items of all projects facilitates working on multiple projects
and with different development teams simultaneously.

The open-source platform Origo allows hosting closed-source projects as
well. This makes the platform not only attractive and useful for the classic
distributed software development projects known – the open-source projects
– but also for all other groups of developers working collaboratively without
wanting to disclose their sources.

The Origo Core framework facilitates integration of various applications
and services into a one stop platform addressing knowledge management
and distribution needs of a given community in a scalable and extendible
way. The complexity of making use of extant tools and services for software
stewardship and of integrating them into a development workflow is addressed
by the framework an it has stood the test of reality and the ever growing
user base reassures this claim.

151

152 CHAPTER 8. ORIGO: THE VISION

152

BIBLIOGRAPHY 153

Bibliography

[1] Sourceforge. http://sourceforge.net.

[2] S. Oaks and L. Gong. Jxta in a Nutshell. O’Reilly & Associates, Inc.,
Reading, Massachusetts, 2002.

[3] Google Custom Search Engine. http://google.com/coop/cse.

[4] T.G. Bay, P. Eugster, and M. Oriol. Generic Component Lookup.
Lecture Notes in Computer Science, 4063:182–197, June 2006.

[5] VamPeer. http://vampeer.origo.ethz.ch.

[6] XML-RPC Internet Remote Procedure Call. http://www.xmlrpc.com/
spec.

[7] Antony Rowstron and Peter Druschel. Pastry: Scalable, Decentralized
Object Location, and Routing for Large-Scale Peer-to-Peer Systems.
Lecture Notes in Computer Science, 2218:329–??, 2001.

[8] Sun Microsystems. JINI Connection Technology, 1999.

[9] N. Carriero and D. Gelernter. Applications Experience with Linda.
ACM Sympos. on Parallel Programming, July 1985.

[10] Lindsay Bradford, Stephen Milliner, and Marlon Dumas. Experience
Using a Coordination-Based Architecture for Adaptive Web Content
Provision. In COORDINATION, pages 140–156. Springer, 2005.

[11] K. Lee, A. LaMarca, and C. Chambers. HydroJ: object-oriented pat-
tern matching for evolvable distributed systems. In OOPSLA ’03: Pro-
ceedings of the 18th annual ACM Conference on Object-Oriented Pro-
graming, Systems, Languages, and Applications, pages 205–223, 2003.

153

http://sourceforge.net
http://google.com/coop/cse
http://vampeer.origo.ethz.ch
http://www.xmlrpc.com/spec
http://www.xmlrpc.com/spec

154 BIBLIOGRAPHY

[12] M. Oriol and G. Di Marzo Serugendo. A Disconnected Service Archi-
tecture for Unanticipated Run-time Evo ion of Code. IEE Proceedings-
Software, Special Issue on Unanticipated Software Evolution, 151:95–
107, April 2004.

[13] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma,
and Jean-Bernard Stefani. The FRACTAL component model and its
support in Java. Softw, Pract. Exper, 36:1257–1284, 2006.

[14] S. Sadou, G. Koscielny, and H. Mili. Abstracting Services in a Het-
erogeneous Environment. In IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware 2001), pages 141–159.
Springer, 2001.

[15] Rajesh Krishna Balan, Maria Ebling, Paul Castro, and Archan Misra.
Matrix: Adaptive Middleware for Distributed Multiplayer Games. In
Middleware, pages 390–400. Springer, 2005.

[16] Object Management Group. The Common Object Request Broker Ar-
chitecture: Core Specification, Version 3.0.3. OMG, 2004.

[17] Simple Object Access Protocol. http://www.w3.org/TR/SOAP.

[18] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web
Services Description Language (WSDL) 1.1. http: // www. w3. org/
TR/ wsdl .

[19] Sourceforge Enterprise. http://sf.net/powerbar/sfee.

[20] GForge. http://gforge.org.

[21] BerliOS. http://www.berlios.de.

[22] Savannah. http://savannah.gnu.org.

[23] Savane. https://gna.org/projects/savane.

[24] LCG Savannah. https://savannah.cern.ch.

[25] Google Code. http://code.google.com.

[26] SourceFubar. http://www.sourcefubar.net.

[27] Codehouse. http://codehaus.org.

[28] Opensymphony. http://www.opensymphony.com.

154

http://www.w3.org/TR/SOAP
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://sf.net/powerbar/sfee
http://gforge.org
http://www.berlios.de
http://savannah.gnu.org
https://gna.org/projects/savane
https://savannah.cern.ch
http://code.google.com
http://www.sourcefubar.net
http://codehaus.org
http://www.opensymphony.com

BIBLIOGRAPHY 155

[29] Javanet. http://java.net.

[30] Tigris. http://www.tigris.org.

[31] PicoForge. https://picoforge.int-evry.fr/cgi-bin/twiki/
view/Picoforge/Web.

[32] Seul. http://www.seul.org.

[33] OpenOffice. http://www.openoffice.org.

[34] Apache. http://www.apache.org.

[35] Kernel Archives. http://www.kernel.org.

[36] Mozilla Foundation. http://www.mozilla.org.

[37] K Desktop Environment. http://www.kde.org.

[38] Drupal. http://www.drupal.org.

[39] Gnome Foundation. http://www.gnome.org.

[40] Mono Project. http://www.mono-project.com.

[41] MediaWiki. http://www.mediawiki.org.

[42] Launchpad. http://www.launchpad.net.

[43] B. Luthiger. Software-Entwicklung and der ETH Zurich, Internal re-
port. August 2007.

[44] Wikipedia Service Oriented Architectures. http://en.wikipedia.
org/wiki/Service-oriented_architecture.

[45] Collanos. http://www.collanos.com.

[46] Eiffel. http://www.eiffel.com.

[47] Wikipedia Message passing. http://en.wikipedia.org/wiki/
Message_passing.

[48] J. Postel. Transmission Control Protocol. RFC 793. September 1981.

[49] POSIX.1-90 System Application Program Interface (API) [C Lan-
guage]. Information technologyÑPortable Operating System Interface
(POSIX). IEEE Computer Society Press, 1109 Spring Street, Suite
300, Silver Spring, MD 20910, 1990.

155

http://java.net
http://www.tigris.org
https://picoforge.int-evry.fr/cgi-bin/twiki/view/Picoforge/Web
https://picoforge.int-evry.fr/cgi-bin/twiki/view/Picoforge/Web
http://www.seul.org
http://www.openoffice.org
http://www.apache.org
http://www.kernel.org
http://www.mozilla.org
http://www.kde.org
http://www.drupal.org
http://www.gnome.org
http://www.mono-project.com
http://www.mediawiki.org
http://www.launchpad.net
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://www.collanos.com
http://www.eiffel.com
http://en.wikipedia.org/wiki/Message_passing
http://en.wikipedia.org/wiki/Message_passing

156 BIBLIOGRAPHY

[50] Goanna. http://goanna.origo.ethz.ch.

[51] Lighthttpd. http://www.lighttpd.net.

[52] fastCGI. http://www.fastcgi.com.

[53] EiffelStore. http://www.eiffel.com.

[54] MySQL.

[55] ODBC. http://en.wikipedia.org/wiki/Open_Database_
Connectivity.

[56] Subversion source control system. http://subversion.tigris.org.

[57] J. Postel. Simple Mail Transport Protocol. RFC 821. August 1982.

[58] EiffelNet. http://www.eiffel.com.

[59] Manpage for KILL.

[60] Start-Stop-daemon man page.

[61] Valgrind. http://www.valgrind.org.

[62] Valgrind Converter. http://eiffelroom.com/tool/valgrind_
converter.

[63] KCachegrind. http://kcachegrind.sf.net.

[64] Dejan S. Milojicic, Vana Kalogeraki, and Rajan Lukose. Peer-to-Peer
Computing. http://www.hpl.hp.com/personal/Dejan_Milojicic/
p2p_o.pdf, July 2002. HP Laboratories, Palo Alto, HPL-2002-57.

[65] JXTA JSE Platform. http://platform.jxta.org.

[66] JXTA v2.0 Protocols Specification. http://spec.jxta.org/nonav/
v1.0/docbook/JXTAProtocols.html.

[67] Bernard Traversat, Mohamed Abdelaziz, and Mike Duigou. Project
JXTA 2.0 Super-Peer Virtual Network. http://www.jxta.org/
project/www/docs/JXTA2.0protocols1.pdf, May 2003. Sun Mi-
crosystems, Inc.

[68] Brendon J. Wilson. JXTA. New Riders, Indianapolis, IN, USA,
first edition, June 2002. http://www.brendonwilson.com/projects/
jxta-book/.

156

http://goanna.origo.ethz.ch
http://www.lighttpd.net
http://www.fastcgi.com
http://www.eiffel.com
http://en.wikipedia.org/wiki/Open_Database_Connectivity
http://en.wikipedia.org/wiki/Open_Database_Connectivity
http://subversion.tigris.org
http://www.eiffel.com
http://www.valgrind.org
http://eiffelroom.com/tool/valgrind_converter
http://eiffelroom.com/tool/valgrind_converter
http://kcachegrind.sf.net
http://www.hpl.hp.com/personal/Dejan_Milojicic/p2p_o.pdf
http://www.hpl.hp.com/personal/Dejan_Milojicic/p2p_o.pdf
http://platform.jxta.org
http://spec.jxta.org/nonav/v1.0/docbook/JXTAProtocols.html
http://spec.jxta.org/nonav/v1.0/docbook/JXTAProtocols.html
http://www.jxta.org/project/www/docs/JXTA2.0protocols1.pdf
http://www.jxta.org/project/www/docs/JXTA2.0protocols1.pdf
http://www.brendonwilson.com/projects/jxta-book/
http://www.brendonwilson.com/projects/jxta-book/

BIBLIOGRAPHY 157

[69] Daniel Brookshier, Darren Govoni, Navaneeth Krishnan, and Juan Car-
los Soto. JXTA: Java P2P Programming. Sams, Indianapolis, IN, USA,
first edition, March 2002.

[70] R. Moats. URN Syntax. RFC 2141 (Proposed Standard), May 1997.

[71] ISO (International Organization for Standardization). 9834-8:2004
Procedures for the operation of OSI Registration Authorities: Gener-
ation and registration of Universally Unique Identifiers (UUIDs) and
their use as ASN.1 Object Identifier components. ITU-T Recommen-
dation X.667, September 2004.

[72] P. Leach, M. Mealling, and R. Salz. A Universally Unique IDentifier
(UUID) URN Namespace. RFC 4122 (Proposed Standard), July 2005.

[73] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions
(MIME) Part Two: Media Types. RFC 2046 (Draft Standard), Novem-
ber 1996. Updated by RFCs 2646, 3798.

[74] M. Murata, S. St. Laurent, and D. Kohn. XML Media Types. RFC
3023 (Proposed Standard), January 2001.

[75] Project JXTA. SRDI: JXTA Shared Resource Distributed Index Design
Plan. http://platform.jxta.org/java/srdi.html, January 2006.

[76] Gobo. http://gobosoft.com.

[77] G. Blair and J.-B. Stefani. Open Distributed Processing and Multime-
dia. Addison-Wesley, December 1997.

[78] A. ShaikhAli, O.F. Rana, R. Al-Ali, and D.W. Walker. Uddie: An
extended registry for web services. In SAINT-W ’03: Proceedings
of the 2003 Symposium on Applications and the Internet Workshops
(SAINT’03 Workshops), page 85, 2003.

[79] K. Pauls and T.G Bay. Reuse Frequency as Metric for Dependency
Resolver Selection. In Component Deployment: Third International
Working Conference, CD 2005, volume 3798, pages 164–176, 2005.

[80] P. Eugster and S. Baehni. Abstracting Remote Object Interaction in
a Peer-to-Peer Environment. Concurrency & Computation: Practice
and Experience, 17(7-8), June 2005.

[81] P. Eugster and R. Guerraoui. Distributed Programming with Typed
Events. IEEE Software, 2(21):56–64, March 2004.

157

http://platform.jxta.org/java/srdi.html
http://gobosoft.com

158 BIBLIOGRAPHY

[82] M. Oriol and M. Hicks. Tagged Sets: A Secure and Transparent Co-
ordination Medium. In 7th Int. Conf. on Coordination Models and
Languages, April 2005.

[83] C. Bryce, M. Oriol, and J. Vitek. A Coordination Model for Agents
Based on Secure Spaces. In 3rd Int. Conf. on Coordination Models and
Languages, pages 4–20, April 1999.

[84] P. Gregono and M. Sakkinen. Copying and Comparing: Problems and
Solutions. In 14th European Conference on Object-Oriented Program-
ming (ECOOP 2000), pages 226–250, June 2000.

[85] T.G. Bay, P. Eugster, and M. Oriol. A First Order Model of Component
Lookup. Technical report, Swiss Federal Institute of Technology in
Zurich (ETHZ), 2006.

[86] P. Eugster and R. Guerraoui. Probabilistic Multicast. In 3rd IEEE
International Conference on Dependable Systems and Networks (DSN
2002), pages 313–323, June 2002.

[87] PEAR Package XML_RPC. http://pear.php.net/package/XML_
RPC.

[88] GeSHi - Generic Syntax Highlighter. http://qbnz.com/highlighter.

[89] Google Analytics. http://www.google.com/analytics.

[90] Google Custom Search Engine. http://www.google.com/coop/cse.

[91] PEAR Package Text_Wiki. http://pear.php.net/package/Text_
Wiki.

[92] PEAR Package Text_Diff. http://pear.php.net/package/Text_
Diff.

[93] Bertrand Meyer. The outside-in method of teaching introductory pro-
gramming. In Manfred Broy and Alexandre V. Zamulin, editors, Er-
shov Memorial Conference, volume 2890 of Lecture Notes in Computer
Science, pages 66–78. Springer, 2003.

[94] Keith J. O’Hara and Jennifer S. Kay. Open source software and com-
puter science education. J. Comput. Small Coll., 18(3):1–7, 2003.

158

http://pear.php.net/package/XML_RPC
http://pear.php.net/package/XML_RPC
http://qbnz.com/highlighter
http://www.google.com/analytics
http://www.google.com/coop/cse
http://pear.php.net/package/Text_Wiki
http://pear.php.net/package/Text_Wiki
http://pear.php.net/package/Text_Diff
http://pear.php.net/package/Text_Diff

BIBLIOGRAPHY 159

[95] Marty J. Wolf, Kevin Bowyer, Don Gotterbarn, and Keith Miller. Open
source software: intellectual challenges to the status quo. In SIGCSE
’02: Proceedings of the 33rd SIGCSE technical symposium on Computer
science education, pages 317–318, New York, NY, USA, 2002. ACM
Press.

[96] Eric Allen, Robert Cartwright, and Charles Reis. Production program-
ming in the classroom. In SIGCSE ’03: Proceedings of the 34th SIGCSE
technical symposium on Computer science education, pages 89–93, New
York, NY, USA, 2003. ACM Press.

[97] Christopher P. Fuhrman. Appreciation of software design concerns via
open-source tools and projects. In 10th Workshop on Pedagogies and
Tools for the Teaching and Learning of Object Oriented Concepts, at
20th European Conference on Object Oriented Programming (ECOOP),
Nantes, FR, July 2006.

[98] David Carrington and Soon-Kyeong Kim. Teaching software design
with open source software. Frontiers in Education, 3(33):S1C– 9–14,
November 2003.

[99] Falko Rheinberg, Regina Vollmeyer, and Bruce D. Burns. QCM: A
questionnaire to assess current motivation in learning situations. Di-
agnostica, 47:57–66, 2001.

[100] Paul R. Pintrich. A motivational science perspective on the role of
student motivation in learning and teaching contexts. Journal of Edu-
cational Psychology, 95(4):667–686, 2003.

[101] EiffelMedia. http://eiffelmedia.origo.ethz.ch.

[102] Heise article on Origo. http://www.heise.de/newsticker/meldung/
94910.

[103] Nagios. http://www.nagios.org.

[104] Mirmon. http://people.cs.uu.nl/henkp/mirmon.

159

http://eiffelmedia.origo.ethz.ch
http://www.heise.de/newsticker/meldung/94910
http://www.heise.de/newsticker/meldung/94910
http://www.nagios.org
http://people.cs.uu.nl/henkp/mirmon

	Acknowledgments
	Abstract
	Zusammenfassung
	1 Origo: An overview
	1.1 Using Origo
	1.1.1 Projects and people
	1.1.2 Basic features

	1.2 Architecture
	1.2.1 Back-end
	1.2.2 Scalability
	1.2.3 Extendibility
	1.2.4 Language independence
	1.2.5 Novel user features

	1.3 Related Work
	1.3.1 Development platforms
	1.3.2 Middleware architectures

	2 The need for better support for distributed development
	2.1 Ad-hoc composition versus platform
	2.1.1 Arguments for ad-hoc composition of development tools
	2.1.2 The case for an integrated platform approach

	2.2 Challenges of frameworks for service and application composition
	2.3 State-of-the-art software development platforms
	2.3.1 Features of existing software development platforms

	2.4 Software development at ETH Zurich
	2.5 Positioning Origo

	3 Architecture of Origo
	3.1 Requirements on the architecture
	3.2 Framework
	3.2.1 Nodes
	3.2.2 Communication
	3.2.3 Using the Origo Core framework
	3.2.4 Design principles
	3.2.5 Origo instances
	3.2.6 Dependencies

	3.3 Front-end
	3.4 Back-end
	3.4.1 API node
	3.4.2 Build node
	3.4.3 Storage node
	3.4.4 Configuration node
	3.4.5 Use cases
	3.4.6 Authentication and autorization
	3.4.7 Deployment init scripts

	3.5 Performance
	3.5.1 Profiling with Valgrind
	3.5.2 Performance estimation

	4 Communication Infrastructure
	4.1 P2P systems
	4.2 Criteria for choosing a P2P framework
	4.3 JXTA Concepts
	4.3.1 Peer groups
	4.3.2 World Peer Group
	4.3.3 Net Peer Group
	4.3.4 IDs
	4.3.5 UUID format
	4.3.6 Advertisements
	4.3.7 Peer Advertisement
	4.3.8 Peer Group Advertisement

	4.4 JXTA services
	4.4.1 Discovery service

	4.5 JXTA's P2P infrastructure and peer roles
	4.6 VamPeer Design
	4.6.1 Module structure
	4.6.2 Peer group modules
	4.6.3 Defining a peer group
	4.6.4 Services
	4.6.5 Module choice
	4.6.6 Service layers
	4.6.7 Address rewriting
	4.6.8 Rendezvous propagation

	4.7 Implementation
	4.7.1 Dependencies
	4.7.2 Socket extensions
	4.7.3 XML documents
	4.7.4 Using UUID for JXTA IDs
	4.7.5 Threads

	4.8 Advertisement store
	4.8.1 Persistent store
	4.8.2 LRU cache

	4.9 Shared creators
	4.10 Using VamPeer
	4.11 Platform starting
	4.11.1 Private peer groups

	4.12 Using Services
	4.12.1 Endpoint service
	4.12.2 TCP this is the last candidate. next esc will revert to uncompleted text. ransport module
	4.12.3 Rendezvous service
	4.12.4 Resolver service
	4.12.5 Discovery service

	4.13 Writing a P2P application
	4.14 Examples
	4.14.1 Rendezvous propagation
	4.14.2 Discovery
	4.14.3 JXTA JSE rendezvous server

	5 Search mechanisms
	5.1 Lookup model
	5.2 Examples
	5.3 A note on values and types
	5.4 Matching model
	5.4.1 Matching modules
	5.4.2 Specifications
	5.4.3 Qualified specifications
	5.4.4 Templates
	5.4.5 Matching
	5.4.6 Component selection

	5.5 Illustration
	5.5.1 Unique identifiers
	5.5.2 Regular expressions
	5.5.3 Load balancing
	5.5.4 Compliance to an interface
	5.5.5 Secure linking

	5.6 Implementation
	5.6.1 Using the library

	5.7 Conclusions

	6 Using Origo
	6.1 Design
	6.1.1 Work items
	6.1.2 Drupal sites
	6.1.3 Scalability

	6.2 Drupal modules
	6.2.1 Origo Auth: authentication and auhorization

	6.3 Origo-Home
	6.4 Issue tracker
	6.5 Developer pages
	6.6 Existing modules
	6.7 Work item implementation
	6.7.1 Issue work item
	6.7.2 Release work item
	6.7.3 Commit work item
	6.7.4 Wiki work item
	6.7.5 Blog work item
	6.7.6 Access Control
	6.7.7 Notification
	6.7.8 Work item retrieval

	6.8 Teaching
	6.8.1 Open-source projects in programming courses
	6.8.2 Evaluation of motivation
	6.8.3 Complementary items
	6.8.4 Conclusions and future work

	7 The development and use of Origo: Lessons learned
	7.1 Private Alpha - Fall 2006
	7.2 Private Beta - Spring 2007
	7.3 Public Beta - Summer 2007
	7.4 Metrics
	7.5 Monitoring and backup
	7.6 Missing functionalities
	7.7 Not desirable functionalities

	8 Origo: The vision
	8.1 The Impact
	8.2 Future work
	8.3 Conclusion

