
Alloy as a refactoring checker?

H.-Christian Estler, Heike Wehrheim

Universität Paderborn

Refine 2008 - International Refinement Workshop

Introduction

Motivation

“As a program is evolved its complexity increases unless work is
done to maintain or reduce it.” M. M. Lehman

Estler, Wehrheim (UPB) Alloy as a refactoring checker? Refine 2008 1 / 18

Introduction

Motivation

Refactorings are systematic changes to improve the structure of a
program, e.g.

I Simplify operations
I Improve reusability
I Increase readability

Used for programs but also models or specifications

Important: refactorings must preserve the external observable
behavior

Estler, Wehrheim (UPB) Alloy as a refactoring checker? Refine 2008 2 / 18

Introduction

Motivation

How to check behavior-preservation?
I Usual approach: testing
I Use template pairs (describing before and after state)
I Use an automatic verification tool

Subject of our work
I Can the Alloy Analyzer be used to verify behavior-preservation of

refactorings for Z specifications?

Estler, Wehrheim (UPB) Alloy as a refactoring checker? Refine 2008 3 / 18

Introduction

Overview

1 Translating a Z specification into the Alloy language

2 Defining behavior-preservation for refactorings in Z

3 Applying the Alloy Analyzer for verification

Estler, Wehrheim (UPB) Alloy as a refactoring checker? Refine 2008 4 / 18

Translating Z into Alloy

What is Alloy?

Alloy = Alloy language + Alloy Analyzer

developed by the Software Design Group at MIT

Alloy language
I Declarative specification language (based on first order logic)
I Strongly inspired by Z

Alloy Analyzer
I SAT based constraint solver
I Automatic simulation and analysis of Alloy models
I A model finder: tries to find a model for a formula

Estler, Wehrheim (UPB) Alloy as a refactoring checker? Refine 2008 5 / 18

Translating Z into Alloy

Example of a translation

sig ELEMENT {}

sig Set {
elements: set ELEMENT

}

pred Add Elem[s, s’: Set,
e in: ELEMENT]{

e in not in s.elements
s’.elements = s.elements + e in

}

/∗ run a simulation ∗/
run {} for 3

[ELEMENT]

Set

elements : P ELEMENT

Add Elem

∆Set

e? : ELEMENT

e? 6∈ Set

elements ′ = elements ∪ {e?}

Estler, Wehrheim (UPB) Alloy as a refactoring checker? Refine 2008 6 / 18

Translating Z into Alloy

Structure of an Alloy model

sig ELEMENT {}

sig Set {
elements: set ELEMENT

}

pred Add Elem[s, s’: Set,
e in: ELEMENT]{

e in not in s.elements
s’.elements = s.elements + e in

}

/∗ run a simulation ∗/
run {} for 3

Signatures define the
state space

Model consists of atoms
and relations

Set

Element0 Element1 Element2

Estler, Wehrheim (UPB) Alloy as a refactoring checker? Refine 2008 7 / 18

Translating Z into Alloy

Structure of an Alloy model

sig ELEMENT {}

sig Set {
elements: set ELEMENT

}

pred Add Elem[s, s’: Set,
e in: ELEMENT]{

e in not in s.elements
s’.elements = s.elements + e in

}

/∗ run a simulation ∗/
run {} for 3

Signatures define the
state space

Model consists of atoms
and relations

Set

Element0 Element1 Element2

elements elements

Estler, Wehrheim (UPB) Alloy as a refactoring checker? Refine 2008 7 / 18

Translating Z into Alloy

Structure of an Alloy model

sig ELEMENT {}

sig Set {
elements: set ELEMENT

}

pred Add Elem[s, s’: Set,
e in: ELEMENT]{

e in not in s.elements
s’.elements = s.elements + e in

}

/∗ run a simulation ∗/
run Add Elem for 3

Z operations are
translated to predicates

Set0
(Add_Elem_s)

Element0
Element1

(Add_Elem_e_in)

elements elements

Set1
(Add_Elem_s')

elements

Estler, Wehrheim (UPB) Alloy as a refactoring checker? Refine 2008 8 / 18

Translating Z into Alloy

Checking properties of an Alloy model

Use assertions to check properties of a model, e.g.

/∗ Assertion: there are no empty sets ∗/
assert EmptySet { all s: Set | #s.elements > 0 }

check EmptySet for 3 but 2 Set

Alloy Analyzer examines every possible instance

Set0

Element0 Element1 Element2

elements elementsSet

Set1

elements
Set

Element

Set

Element0 Element1

elements

Instance 0 Instance 1 Instance 2 Instance n

Estler, Wehrheim (UPB) Alloy as a refactoring checker? Refine 2008 9 / 18

Translating Z into Alloy

Checking properties of an Alloy model

Use assertions to check properties of a model, e.g.

/∗ Assertion: there are no empty sets ∗/
assert EmptySet { all s: Set | #s.elements > 0 }

check EmptySet for 3 but 2 Set

Alloy Analyzer examines every possible instance

Set0

Element0 Element1 Element2

elements elementsSet

Set1

elements
Set

Element

Set

Element0 Element1

elements

Instance 0 Instance 1 Instance 2 Instance n

Set

Estler, Wehrheim (UPB) Alloy as a refactoring checker? Refine 2008 9 / 18

Refactorings in Z

How to check refactorings?

Remember: refactorings must not change the external behavior
(behavior-preservation)

Refinement guarantees substitutability
I But might be irreversible

Therefore, use refinement in “both directions”

Definition

Tow specifications A and C are behavior-preserving, iff A v C and C v A.

Estler, Wehrheim (UPB) Alloy as a refactoring checker? Refine 2008 10 / 18

Refactorings in Z

Checking Refinement using downward simulation

1 Init:
∀CState ′ • CInit ⇒ ∃AState ′ • AInit ∧ R ′

2 Applicability :
∀AState; CState • R ⇒ (pre COpi ⇔ pre AOpi)

3 Correctness:
∀AState; CState; CState ′ • R ∧ COpi ⇒

∃AState ′ • R ′ ∧ AOpi

Estler, Wehrheim (UPB) Alloy as a refactoring checker? Refine 2008 11 / 18

Refactorings in Z

Translate conditions into Alloy assertions

Alloy allows direct translation, e.g.

Correctness:
∀AState; CState; CState ′ • R ∧ COpi ⇒

∃AState ′ • R ′ ∧ AOpi

assert Correct {
all a: AState, c,c’: CState| R[a,c] and COp i =>

{some a’: AState| R[a’,c’] and AOp i}
}

But, verification will fail due to the use of ∃ in the consequence of an
implication

Estler, Wehrheim (UPB) Alloy as a refactoring checker? Refine 2008 12 / 18

Refactorings in Z

Translate conditions into Alloy assertions

Alloy allows direct translation, e.g.

Correctness:
∀AState; CState; CState ′ • R ∧ COpi ⇒

∃AState ′ • R ′ ∧ AOpi

assert Correct {
all a: AState, c,c’: CState| R[a,c] and COp i =>

{some a’: AState| R[a’,c’] and AOp i}
}

But, verification will fail due to the use of ∃ in the consequence of an
implication

Estler, Wehrheim (UPB) Alloy as a refactoring checker? Refine 2008 12 / 18

Applying the Alloy Analyzer

Problem with existential quantification

assert Closed {
all s0, s1: Set | some s2: Set |
s2.elements = s0.elements + s1.

elements
}

some s0, s1: Set | all s2: Set |
not s2.elements = s0.elements +

s1.elements

Analyzer negates assertion

Tries to find model for the
negation

Problem: actual instance
of the model can be too
small

Set0
(Closed_s0)

Element0 Element1

elements

Set1
(Closed_s1)

elements

Estler, Wehrheim (UPB) Alloy as a refactoring checker? Refine 2008 13 / 18

Applying the Alloy Analyzer

Problem with existential quantification

assert Closed {
all s0, s1: Set | some s2: Set |
s2.elements = s0.elements + s1.

elements
}

some s0, s1: Set | all s2: Set |
not s2.elements = s0.elements +

s1.elements

Analyzer negates assertion

Tries to find model for the
negation

Problem: actual instance
of the model can be too
small

Set0
(Closed_s0)

Element0 Element1

elements

Set1
(Closed_s1)

elements

Estler, Wehrheim (UPB) Alloy as a refactoring checker? Refine 2008 13 / 18

Applying the Alloy Analyzer

Solutions to this problem?

Constrain the model to fully populate the state space (generator
axiom).

fact {
some s: Set| no s.elements
all s: Set, e: ELEMENT| some s’:Set|

s’.elements = s.elements + e }

Set0

Element0 Element1

Set1 Set2 Set3

Analysis becomes intractable as scope explodes
I To analyze n ELEMENT we need 2n Set

Instead: try to omit existential quantifier

Estler, Wehrheim (UPB) Alloy as a refactoring checker? Refine 2008 14 / 18

Applying the Alloy Analyzer

Simplifying the refinement conditions

A lot of refactorings do not change the state space

Thus, representation relation R is the identity

Given that R is total and bijective:
A vDS C and C vDS A iff

1 Init:
∀AState ′,CState ′ • R ′ ⇒ (CInit ⇔ AInit)

2 Correctness:
∀AState; AState ′; CState; CState ′ • R ∧ R ′ ⇒ (AOpi ⇔ COpi)

Estler, Wehrheim (UPB) Alloy as a refactoring checker? Refine 2008 15 / 18

Applying the Alloy Analyzer

Checking refactorings using the Alloy Analyzer

Using the simplified conditions, we successfully checked refactorings

I Inline Method
I Substitute Algorithm
I Extract Method
I Rename
I Consolidate Conditional Expression

Estler, Wehrheim (UPB) Alloy as a refactoring checker? Refine 2008 16 / 18

Conclusion

Results

Translation from Z into Alloy is mostly straight forward
I Typical problems: integers, infinite data types, schema operators

Use of existential quantifier is problematic
I Found workaround to this problem when checking refactorings

Open questions:
I Does assumption of a total bijective representation relation prohibits

the checking of practically relevant refactorings?
I Compare performance of Alloy Analyzer with other verification tools.

Estler, Wehrheim (UPB) Alloy as a refactoring checker? Refine 2008 17 / 18

Thank you for your attention!

	Introduction
	Translating Z into Alloy
	Refactorings in Z
	Applying the Alloy Analyzer
	Conclusion
	The End

