
Modelchecking Correctness of Refactorings -

Some Experiments

H.-Christian Estler, Thomas Ruhroth, Heike Wehrheim1

Institut für Informatik
Universität Paderborn

33098 Paderborn, Germany

Abstract

Refactorings are changes made to programs, models or specifications with the intention of improving their
structure and thus making them clearer, more readable and re-usable. Refactorings are required to be
behaviour-preserving in that the external behaviour of the program/model/specification remains unchanged.
In this paper we show how a simple type of refactorings on object-oriented specifications (written in Object-
Z) can be formally shown to be behaviour-preserving using a modelchecker (SAL). The class of refactorings
treated covers those operating on a single method only.

Keywords: Refactoring, Object Z, Model Checking, SAL

1 Introduction

Refactoring is a technique which has long been used by programmers to improve the

structure of their code once it got unreadable. The Ph.D. thesis of Opdyke [16] and

even more the book of Fowler [11] made it popular, coined the term “Refactoring”

and started a systematic study of it. According to Fowler [11],

Refactoring is the process of changing a software system in such a way that it does

not alter the external behaviour of the code yet improves its internal structure.

Here, improvement of structure refers to object-oriented structuring (i.e. class hi-

erarchies) in as much as the same way as to modularisation of classical imperative

programs. Nowadays, refactoring is a technique which is not only applied on pro-

grams but also used in modelling, for instance for refactoring UML models [21,17]

or formal specifications [12,13]. For a survey on software refactoring see [15].

1 Email: {estler,thomas.ruhroth,wehrheim}@uni-paderborn.de

Electronic Notes in Theoretical Computer Science 187 (2007) 3–17

1571-0661/$ – see front matter © 2007 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.08.041

http://www.elsevier.com/locate/entcs

While “improving the structure” is a rather soft requirement and usually debat-

able (what is a “good” structure?), the sidecondition of not altering the external

behaviour is more precise. It should guarantee that users of the code or model, may

this be human beings or other software artefacts, can use the code after refactoring

as before. The change should remain transparent. For code, behaviour preservation

is usually checked by an extensive testing of the code after every refactoring.

In this paper, we are interested in refactorings on formal specifications. Large formal

(object-oriented) specifications can exhibit the same deficiencies with respect to

clarity and well-structuredness as programs. Hence refactoring can also be a help

in improving the structure of specifications (or in modifying the structure with a

view to a later implementation). Although there is no one-to-one correspondence

between concepts in programming languages and those in formal specifications,

similarities are (obviously) there and some of Fowler’s refactorings have their direct

counterparts in formal specifications.

The specification language we are interested in is Object-Z [18], an object-

oriented extension of the state-based formalism Z [22]. Refactorings of Object-Z

specifications have already been treated in [12,13,14]. In a formal setting the cri-

terion of behaviour preservation can be strictly defined: Refinement [6,5] (or even

equivalence, i.e. refinement in both directions) guarantees the desired degree of

substitutability. Thus data refinement (or more precisely, class refinement) is the

correctness criterion for the refactorings considered in [13,14]. While [13,14] de-

fines refactorings changing the object-oriented structure (e.g. the class hierarchy)

of specifications, here we will only treat refactorings operating on single methods

only (e.g. extracting methods, simplifying conditions, substituting algorithms). If

the change concerns just one method the condition of behaviour preservation boils

down to checking equivalence of the method definition before and after refactoring.

This trivially results in a refinement relationship between the class before and after

the refactoring.

In (Object-)Z, equivalence can be proven by applying the rules of predicate logic,

set theory and Z’s mathematical tool kit. However, such a proof is usually tedious

and often error-prone (though it can be made precise by the use of a theorem prover).

Here, we will instead employ a modelchecker (SAL [3]) for showing equivalence. Our

technique combines the ideas of [20,7] for modelchecking Z with SAL with those of

[19] on formulating refinement as a CTL modelchecking question. We have carried

out some experiments on using this type of equivalence checking as a correctness

proof for refactorings and here we report on the results.

The paper is structured as follows. We start with a small example of an Object-Z

class on which we illustrate four different refactorings of methods, and on which

we discuss our notion of behaviour preservation. Section 3 will then give a short

introduction into SAL and show how to check correctness of refactorings with SAL.

The last section concludes and discusses other type of refactorings, in particular

with respect to the notion of correctness needed for them.

H.-C. Estler et al. / Electronic Notes in Theoretical Computer Science 187 (2007) 3–174

2 Example Refactorings

Refactoring is a method for modifying software without changing its behaviour.

Using refactorings is common to software developers, but it is also useful to refactor

formal specifications. In the following we give an example Object-Z specification

and discuss some refactorings on it.

When applying refactorings to specification or programs, structural differences

between the refactorings can easily be seen. Some refactorings change methods in-

ternally and leave all other components of the class untouched. Other refactorings

change parts of the class hierarchy and leave classes outside their range unchanged.

A classification of refactorings might thus consider their scope as the main differen-

tiating criterion. We found four scopes on which refactorings operate:

• Method,

• class,

• class hierarchy,

• system.

This strict classification however cannot always be kept since there may be refac-

torings which are applied on methods but still neccessitate consequent changes on

the rest of the specification (e.g. renaming a method). Thus, method refactorings

can furthermore be divided into outer refactorings (with consequent changes on the

rest of the specification) and inner method refactorings. It is the latter which we

treat in this paper.

As a running example for our refactorings we use the specification of a sauna given

in Figure 1. The first part of the class is the visibility list. This list declares the

visible members of the class. All members listed in here are visible outside the

class (like public in Java), otherwise they are not visible outside the class (like

private/protected in Java). The state schema defines some variables and global

constraints on the variables. Following the state schema there is an initialisation

schema (here left open since it is of no particular importance for the refactorings)

and a number of operation schemas. We have two operations: updateControlLights

and heat . The method updateControlLights updates the control indicators for the

right temperature (clOk), temperature too hot (clHot) and temperature too cold

(clCold). If the current temperature differs from the target temperature for less

or equal than 2 degrees the temperature is considered to be in order, otherwise

the control indicators are set to ”too hot” or ”too cold”, respectively. If the sauna

is getting cold, it can be heated by the operation heat . Heating also changes the

currentHumidity.

Looking at the class Sauna we find that some method definitions (in particular

updateControlLights) are not easy to understand. We will next change them ac-

cording to some refactoring rules. Here, we apply three kinds of refactorings on

updateControlLights and one on heat . The names of the refactorings are chosen in

accordance with the naming in Fowler’s book.

H.-C. Estler et al. / Electronic Notes in Theoretical Computer Science 187 (2007) 3–17 5

Sauna

� (updateControlLights, heat , . . .)

targetTemp : Z

currentTemp : Z

clOk : B

clCold : B

clHot : B

currentHumidity : Z

70 ≤ targetTemp ≤ 100

targetTemp mod 5 = 0

60 ≤ currentTemp ≤ 100

0 ≤ currentHumidity ≤ 100

INIT

...

updateControlLights

Δ(clOk , clHot , clCold)

currentTemp − targetTemp < −2 ⇒

(clOk ′ = false ∧ clHot ′ = false ∧ clCold ′ = true)

currentTemp − targetTemp > 2 ⇒

(clOk ′ = false ∧ clHot ′ = true ∧ clCold ′ = false)

0 ≥ currentTemp − targetTemp ≥ −2 ⇒

(clOk ′ = true ∧ clHot ′ = false ∧ clCold ′ = false)

0 ≤ currentTemp − targetTemp ≤ 2 ⇒

(clOk ′ = true ∧ clHot ′ = false ∧ clCold ′ = false)

heat

Δ(currentHumidity, currentTemp)

currentTemp ≤ targetTemp + 2

currentTemp′ = currentTemp + 2

currentHumidity ′ = currentTemp′ div 5

...

Fig. 1. Sample class: Sauna

Introduce Explaining Variable

The first refactoring exploits the fact that the expression currentTemp −

targetTemp repeatedly occurs in the predicate of updateControlLights. We apply

the refactoring rule ”Introduce Explaining Variable” which – according to Fowler

[11] – is defined as follows: ”You have a complicated expression. Put the result of

H.-C. Estler et al. / Electronic Notes in Theoretical Computer Science 187 (2007) 3–176

the expression, or parts of the expression, in a temporary variable with a name that

explains the purpose.”

updateControlLightsIEV

Δ(clOk , clHot , clCold)

∃ diff : Z • diff = currentTemp − targetTemp ∧

diff < −2 ⇒

(clOk ′ = false ∧ clHot ′ = false ∧ clCold ′ = true) ∧

diff > 2 ⇒

(clOk ′ = false ∧ clHot ′ = true ∧ clCold ′ = false) ∧

0 ≤ diff ≤ 2 ⇒

(clOk ′ = true ∧ clHot ′ = false ∧ clCold ′ = false) ∧

0 ≥ diff ≥ −2 ⇒

(clOk ′ = true ∧ clHot ′ = false ∧ clCold ′ = false)

Here, we have introduced the new variable diff . The introduction of a new variable

is expressed via an existential quantifier.

Consolidate Condition by Function

An alternative way of refactoring the recurring expression is applying ”Consol-

idate Condition”. Instead of using an extra variable we use functions to express

the conditionals. Again according to Fowler: ”You have a sequence of conditional

tests with the same result. Combine them into a single conditional expression and

extract it.”

abs : Z → N

x < 0 ⇒ abs(x) = −x

x ≥ 0 ⇒ abs(x) = x

tempdiff : Z × Z �→ Z

∀n,m : Z • tempdiff (m,n) = m − n

updateControlLightsCCF

Δ(clOk , clHot , clCold)

tempdiff (currentTemp, targetTemp) < −2 ⇒

(clOk ′ = false ∧ clHot ′ = false ∧ clCold ′ = true)

tempdiff (currentTemp, targetTemp) > 2 ⇒

(clOk ′ = false ∧ clHot ′ = true ∧ clCold ′ = false)

abs(tempdiff (currentTemp, targetTemp)) ≤ 2 ⇒

(clOk ′ = true ∧ clHot ′ = false ∧ clCold ′ = false)

In this example we proceed by introducing two new functions (abs and tempdiff).

These are then used within the predicates.

H.-C. Estler et al. / Electronic Notes in Theoretical Computer Science 187 (2007) 3–17 7

Substitute Algorithm

All versions of updateControlLights used up to here are still long winded. The

next refactoring will change this. Instead of testing temperature range and ad-

justing all lights we define the temperature range for each light and adjust each

light separately. Thus updateControlLights is replaced by a completely new defini-

tion (updateControlLightsSA). This is an application of the refactoring ”Substitute

Algorithm”.

updateControlLightsSAe

Δ(clOk , clHot , clCold)

clCold ′ = currentTemp ≤ targetTemp − 2

clHot ′ = currentTemp ≥ targetTemp + 2

clOk ′ = 2 ≥ currentTemp − targetTemp ≥ −2

Extract Method

Last, we take a look at method heat . The method adjusts both currentTemp and

currentHumidity. This is now split into two new methods which are then combined

via sequential composition (a special case of the refactoring ”Extract Method”).

The Δ-lists are trimmed to fit only modified variables. Because the new operations

are not in the visibility list, they cannot be invoked directly from other classes.

Sauna
...

heatT

Δ(currentTemp)

currentTemp ≤ targetTemp + 2

currentTemp′ = currentTemp + 2

heatH

Δ(currentHumidity)

currentHumidity ′ = currentTemp div 5

heat =̂ heatT o

9 heatH

...

After having carried out these refactorings, we finally have to make sure that these

are all behaviour-preserving. For this we first have to define behaviour preservation

for inner method refactorings. Our intention was to get methods which are equiva-

lent to the old ones. As a consequence the refactored and the original class would

then be refinements of each other.

H.-C. Estler et al. / Electronic Notes in Theoretical Computer Science 187 (2007) 3–178

Let (State, Init , (Opi)i∈I) be the original class and (State, Init , (Opi)i∈I\{j}, Ôpj)

the refactored class with operation Opj changed to Ôpj . Method Opj is equivalent

to method Ôpj if the following two conditions hold:

(1)∀ State • preOpj ⇔ preÔpj

(2)∀ State,State ′ • Opj ⇔ Ôpj

Condition (1) is the analogon of the applicability rule of refinement and rule 2 the

correctness rule. Both need only be checked for refactored methods.

3 Checking Correctness

In this section we show how to assure that our refactorings given in the last section

are behaviour-preserving in the above defined sense. To this end we will translate our

Object-Z schemas into the SAL language and verify equivalence of methods using

SAL’s CTL model checker. Our following approaches of translation and verification

are based upon the ideas described in [19] and [20].

3.1 SAL

The Symbolic Analysis Laboratory (SAL) [3] is developed by the Formal Meth-

ods Program at SRI International. It is a framework combining different tools for

program analysis, theorem proving and model checking of state-transition systems.

Currently SAL provides four different model checkers, one of them for checking CTL

properties [9], a simulator and some other tools which all work on the same input

language, called SAL language.

The SAL language was developed as an intermediate language, serving as a tar-

get platform for translators of high-level languages like Java. Therefore it supports

a wide range of type definitions and expressions. Nevertheless, the SAL language

can also be used to describe transition systems in their own right. It is not that

different from languages used by verification tools like SMV, Murphi or SPIN. A

complete specification of the SAL Language can be found in the SAL Language

Manual [4]. At this point we introduce some of the basic constructs necessary to

understand the SAL encodings of our Z specifications.

Context

All SAL inputs like declarations, modules or theorems are grouped together in a

CONTEXT. We consider a translation for our sauna specification to illustrate the SAL

language structure.
sauna: CONTEXT =
BEGIN

Int: TYPE = [-100..100]; %our own integer type
Nat: TYPE = [0..100]; % our own natural type
neg(n: Nat) : Int = -n; %function to negate n

%not yet used in context
main: MODULE =
BEGIN
LOCAL targetTemp, currentTemp: Int

H.-C. Estler et al. / Electronic Notes in Theoretical Computer Science 187 (2007) 3–17 9

LOCAL clOk, clCold, clHot : BOOLEAN
LOCAL currentHumidity: Int
LOCAL Invar: BOOLEAN

DEFINITION
Invar = (70 <= targetTemp) AND (targetTemp <= 100) AND

(targetTemp MOD 5 = 0) AND
(60 <= currentTemp) AND (currentTemp <= 100) AND
(0 <= currentHumidity) AND (currentHumidity <= 100)

INITIALIZATION
[Invar

--> targetTemp IN {i: Int| TRUE};
currentTemp IN {i: Int| TRUE};
clCold IN {b: BOOLEAN| TRUE};
clHot IN {b: BOOLEAN| TRUE};
clOk IN {b: BOOLEAN| TRUE};
currentHumidity IN {i: Int| TRUE}

]
TRANSITION
[
updateCL:

(currentTemp - targetTemp < -2)
=> (clOk’ = FALSE AND clHot’ = FALSE AND clCold’ = TRUE) AND
(currentTemp - targetTemp > -2)
=> (clOk’ = FALSE AND clHot’ = TRUE AND clCold’ = FALSE) AND
(0 >= currentTemp - targetTemp) AND (currentTemp - targetTemp >= -2)
=> (clOk’ = TRUE AND clHot’ = FALSE AND clCold’ = FALSE) AND
(0 <= currentTemp - targetTemp) AND (currentTemp - targetTemp <= 2)
=> (clOk’ = TRUE AND clHot’ = FALSE AND clCold’ = FALSE) AND
Invar
--> clCold’ IN {b: BOOLEAN| TRUE};

clHot’ IN {b: BOOLEAN| TRUE};
clOk’ IN {b: BOOLEAN| TRUE}

[]
heat:

(currentTemp <= targetTemp + 2) AND
(currentTemp’ = currentTemp + 2) AND
(currentHumidity’ = currentTemp’ div 5) AND
Invar
--> currentTemp’ IN {i: Int| TRUE};

currentHumidity’ IN {i: Int| TRUE}
[]
ELSE -->
]
END;
END

Comments are preceeded by the % symbol and terminated by an end-of-line.

The SAL Language is case sensitive and reserved words like CONTEXT, BEGIN and

END are written in capital letters. In the following we explain the parts of our SAL

specification step by step.

Declaration

SAL supports built-in basic types like BOOLEAN, NATURAL, INTEGER or REAL. All

of them can be used with the infinite-bounded model checker of the SAL toolbox.

But as the CTL model checker works on finite types we have to declare our own

types by implementing them in the form <Name>: <Type>. To define a new type

we use the following construct <Name>: <Type>= <Expression>, which can also

be used to express functions. In our example we have defined our own natural and

integer types (Int, Nat) as well as a function to negate a natural number.

Module

A Module basically describes a state-transition system. It consists of variables

which can be INPUT, LOCAL, GLOBAL or OUTPUT. Invariants are described in the

DEFINITION section, initial values are declared in the INITIALIZATION part and

H.-C. Estler et al. / Electronic Notes in Theoretical Computer Science 187 (2007) 3–1710

the transition functions are marked by the keyword TRANSITION.

For a single transition function we always use a Guarded Command that consists of

a Guard and an Assignment.

Guard −− > Assignment

SAL nondeterministically chooses values for the variables given in the assignments

if the conditions defined by the guard are fullfilled. Let us consider the following

example:

currentTemp < 60

--> currentTemp’ = currentTemp + 1

This guarded command is nothing more than just an if..then expression. We can

retype it as

currentTemp’ = IF (currentTemp < 60) THEN currentTemp + 1.

Much more interesting are constructs like

58 <= currentTemp’ AND

currentTemp’ <= 62

--> currentTemp’ IN {i: Int| TRUE}

If a transition with such an command is executed we get 5 successor states with

values for currentTemp between 58 and 62. Hence guarded commands are much

more powerful constructs than just simple if..then expressions. As described in [20]

we use them as an universal method to encode predicates of Z schemas into SAL.

Finally, attention should be paid to the last guarded command ELSE --> in

our example. To receive correct results from the modelchecker it is necessary that

the transition relation is total such that a module cannot deadlock. This special

guard evaluates to true iff all other guards evaluate to false and leaves the states

unchanged.

Formulas

The properties to be checked on a SAL specification have to be written in the-

orems below the module they refer to. For example, th1: THEOREM main |-

AG(EX(clOk = TRUE)); defines a theorem named th1 that states the following

property (given in CTL [9]): on all execution paths every state has a next state

where clOk is true.

3.2 Model checking refactorings using SAL

G. Smith and J. Derrick have shown how to verify data refinements of Z specifactions

using the SAL model checker and a CTL encoding of the simulation rules [19].

Our refactorings of Object-Z specifications only work on simple methods, not on

the object-oriented structure, therefore we can reuse this technique for checking

equivalence of methods.

H.-C. Estler et al. / Electronic Notes in Theoretical Computer Science 187 (2007) 3–17 11

As defined in the last section we need to prove an applicability and a cor-

rectness condition. Basically, this means that we have to verify that our orig-

inal sauna specification S = (State, Init , (Opi)i∈I) and the specification Ŝ =

(State, Init , (Opi)i∈I\{j}, Ôpj) with the refactored operation Ôpj act exactly the

same way.

A symbolic model checker like the sal-wmc builds up a symbolic representation

of a Kripke structure that represents all reachable states. A intuitive idea may be to

prove if the structures of S and Ŝ are identically and leads us to same-valued states

given an arbitrary sequence of operations, respectively. But since model checkers

are not designed to compare different structures we need to combine S and Ŝ into

a single system and define this combined system in such a way that we can actually

verify applicability and correctness. The following technique is essentially based on

[19].

The starting point is the SAL specification of our original class. In a first step

we have to solve the problem that CTL does not allow propositions referring to

operations. Therefore we augment State : Exp by a variable ev . Furthermore we

augment every operation Opi by ev ′ = Opi so that ev gives us unique information

which operation led to the actual state. To ensure that the transition relation is

total we introduce another operation Choose which is always enabled and chooses

a new state (Choose replaces the ELSE --> guard).

Next, we additionally extend our system by a copy of State : Exp: Ŝtate (since

we need to compare the effect of the old method with that of the new). For every

variable x in State : Exp we declare a new variable x̂ . The refactored operation Ôpj

is now added to the specification, it sets ev ′ = Ôpi and is modified as to work on

x̂ and x̂ ′ instead of x and x ′. Furthermore, for our comparison we need to be able

to relate the copy of the state variables with the original version. To this end, we

define a relation R
State,

̂State
relating all x ’s with their x̂ ’s. R can be seen as some

kind of retrieve relation and constitutes the identity between State : Exp and Ŝtate .

Finally, we fix the initialisation of this combined system: it is set to any possible

state where R
State,

̂State
is true. We ignore consciously any presetting claimed by

Init in the Object-Z specification as the set of states where Init is true is a subset

of the set of states where R is true. On this SAL specification the following two

CTL formulae can be used for checking equivalence of old and new method:

applicability check:

EX (ev = Opj) ⇔ EX (ev = Ôpj)

correctness check:

AX (ev = Opj ⇒ EX (ev = Ôpj ∧ R
State,

̂State
))

∧

AX (ev = Ôpj ⇒ EX (ev = Opj ∧ R
State,

̂State
))

H.-C. Estler et al. / Electronic Notes in Theoretical Computer Science 187 (2007) 3–1712

The first formula states that the old operation can be executed in a state if and only

if the new operation can be executed in the corresponding copy of the state. The

two formulae for correctness state that whenever the old method has been executed

thereby modifying the state, an execution of the new method is also possible leading

to an equivalent (under R) state, and vice versa with old and new reversed. We get

two formulae here (instead of one for refinement), since we want equivalence and

not only an implication. Since we now know how to verify our refactorings we will

take a closer look at their translation into the SAL language.

3.2.1 Introduce Explaining Variable

Our first refactoring introduces the new variable diff.

updateControlLightsIEV

Δ(clOk , clHot , clCold)

∃ diff : Z • diff = currentTemp − targetTemp

diff < −toleranceTemp ⇒

(clOk ′ = false ∧ clHot ′ = false ∧ clCold ′ = true)
...

The SAL Language supports the quantifier ∃ and ∀ so the translation of this method

is straightforward. We solely have to consider that the scope of the quantifier covers

the whole predicate. This is ensured by bracketing the whole expression.

updateControlLightsIEV:

(EXISTS(diff: Int): diff = currentTemp_N - targetTemp_N AND

((diff <= neg(toleranceTemp_N))

=> (clOk_N’ = FALSE AND clHot_N’ = FALSE AND clCold_N’ = TRUE)) AND

((diff >= toleranceTemp_N)

=> (clOk_N’ = FALSE AND clHot_N’ = TRUE AND clCold_N’ = FALSE)) AND

((0 <= diff) AND (diff <= toleranceTemp_N)

=> (clOk_N’ = TRUE AND clHot_N’ = FALSE AND clCold_N’ = FALSE)) AND

((0 >= diff) AND (diff >= neg(toleranceTemp_N))

=> (clOk_N’ = TRUE AND clHot_N’ = FALSE AND clCold_N’ = FALSE)) AND

(ev’ = clUpdateNew))

--> clCold_N’ IN {b: BOOLEAN| TRUE};

clHot_N’ IN {b: BOOLEAN| TRUE};

clOk_N’ IN {b: BOOLEAN| TRUE};

ev’ IN {ev: EVENT| TRUE}

When we take this specification and use the above scheme for validating equivalence

of old and new method, SAL returns a positive answer. Thus this refactoring is

behaviour-preserving.

3.2.2 Consolidate Condition by Function

We have defined two new functions, tempdiff and abs, to simplify our specifiation.

H.-C. Estler et al. / Electronic Notes in Theoretical Computer Science 187 (2007) 3–17 13

abs : Z → N

x < 0 ⇒ abs(x) = −x

x ≥ 0 ⇒ abs(x) = x

tempdiff : Z × Z �→ Z

∀n,m : Z • tempdiff (m,n) = m − n

In the beginning we have already seen that functions can be implemented inside a

context. The translations turn out to be as follows:

abs(i: Int) : NATURAL = IF i < 0 THEN -i ELSE i ENDIF;

tempdiff(n: Int, m: Int) : Int = n - m;

By now these functions can be used in the method to update the controllights.

updateControlLightsCCF:

((tempdiff(currentTemp_N, targetTemp_N) <= neg(toleranceTemp_N))

=> (clOk_N’ = FALSE AND clHot_N’ = FALSE AND clCold_N’ = TRUE)) AND

...

Again, SAL’s answer to the equivalence check is positive.

3.2.3 Substitute Algorithm

Next, we try to validate equality between updateControlLights and its refactoring

updateControlLightsSAe. In this case the verification fails and SAL tells us that

our correctness theorem is invalid. Regarding a counter-example created by the

model checker we find that updateControlLightsSAe allows more than one light to

be turned on which was not possible before. Thus old and new method are in

fact not equivalent. We consequently have to correct our refactoring and replace

updateControlLightSAe in our module by the translation of updateControlLightSAo

and this time succeed in proving equivalence.

updateControlLightsSAo

Δ(clOk , clHot , clCold)

clCold ′ = currentTemp < targetTemp − 2

clHot ′ = currentTemp > targetTemp + 2

clOk ′ = 2 ≥ currentTemp − targetTemp ≥ −2

Even if this is only a small example and the failure might have been found on

closer inspection it demonstrates that model checking is an effective way to debug

refactorings.

3.2.4 Split Method

Finally, we take a look at the splitting of heat . SAL does not supply us with an

operator equal to sequential schema composition. Hence we have to find another way

of translating it. Keeping in mind the general idea of automating the translation

between Z and SAL it makes sense to apply the definition of the composition.

According to [22] the composition of two schemas S and T can be described as

H.-C. Estler et al. / Electronic Notes in Theoretical Computer Science 187 (2007) 3–1714

follows:

S o

9
T = ∃ State ′′ • S [State ′′/State ′] ∧ T [State ′′/State]

Using this definition we can encode the refactoring and verify the equivalence.

It may appear irritating that we consolidate the two methods which we have

split during the refactoring. Nevertheless we must not forget that this is only an

effect of the translation between Z and SAL. Imagine a tool that creates correct

SAL code for any Object-Z specification it will reveal us any failure in an inner

method refactoring.

4 Discussion and conclusion

In this paper we investigated the use of a modelchecker for proving behaviour-

preservation of refactorings. The class of refactorings we looked at were those chang-

ing a single method only. Besides clearing up the specification of methods these

refactorings are also often the prerequisite for larger refactorings, for instance Pull

Up Method or Introduce Inheritance which can only be applied when methods

of different classes are known to be equivalent. In general, an automatic check of

behaviour-preservation of refactorings is thus a useful tool.

Since we were dealing with single methods, and looked at refactorings improving

their internal structure only, the question of what behaviour preservation formally

means was easy to answer: behaviour preservation was method equivalence (or

data refinement in both directions). However, this does not hold for all of Fowler’s

refactorings. In fact, a large number of refactorings can immediately be seen not

to be standard refinements when looking at a single class in isolation. This does

for instance apply to all refactorings changing the parameters of methods (which

could be found to be a kind of IO-refinement [1]), refactorings splitting methods

into a number of others (a non-atomic refinement [8]) or refactorings adding new

methods (behavioural subtyping [10]). Unlike the simple method equivalence we

studied here, these refactorings have an influence on other classes: the interface of

the class changes and as a consequence all other classes using these methods have to

be changed as well. A check for behaviour preservation might thus have to involve

larger parts of a specification; what is to be checked then is a class refinement,

taking one specific class of an Object-Z specification as ”main” class and showing

equivalence and/or refinement for this class. In the future, we intend to study these

type of refactorings and the way of checking their correctness.

As a tool for modelchecking method equivalence we had chosen SAL here. SAL

offered itself as a tool since a translation of Z to SAL has recently been given. The

choice of using a modelchecker (instead of a theorem prover) for equivalence checking

was motivated by the desire to get an automatic correctness check. This, however,

limits the applicability of the technique to specifications with finite (and moreover

usually small) data domains. Besides these standard restrictions for model checking,

we encountered some problems specific to our application. During refactoring, it is

common to use methods within other methods. SAL does, however, not allow the

use of transition names inside definitions of other transitions. Thus, most of the time

H.-C. Estler et al. / Electronic Notes in Theoretical Computer Science 187 (2007) 3–17 15

these definitions have to be expanded during the translation to SAL and thereby

the refactoring is lost. This also applies to some refactorings changing data types:

different Z types might be mapped on the same SAL types and thus a refactoring

might already disappear during the translation.

As future work we also intend to make some experiments with using Alloy for

checking behaviour-preservation of refactorings. Alloy is closer to Z than SAL and

might thus open new possibilities for checking equivalence. Bolton [2] uses Alloy

for verifying refinements, her work could be taken as the starting point for checking

equivalence.

Acknowledgement

We thank Graeme Smith and John Derrick for supplying us with SAL libraries for

Z’s mathematical tool kit. This work was partially funded by the German Research

Council DFG under grant WE 2290/6-1.

References

[1] E. A. Boiten and J. Derrick. IO-refinement in Z. In A. Evans, D. J. Duke, and T. Clark,
editors, 3rd BCS-FACS Northern Formal Methods Workshop. Springer-Verlag, September 1998.
http://www.ewic.org.uk/.

[2] C. Bolton. Using the Alloy Analyzer to verify data refinement in Z. In Refine 2005, Electronic Notes
in Theoretical Computer Science, 2005.

[3] L. de Mouro, S. Owre, H. Rue, J. Rushby, N. Shankar, M. Sorea, and A. Tiwari. Sal 2. In R. Alur
and D. Peled, editors, International Conference on Computer Aided Verification (CAV 2004), number
3114 in LNCS, pages 496–500. Springer-Verlag, 2004.

[4] L. de Mouro, S. Owre, and N. Shankar. The SAL language manual, 2003.

[5] W.-P. de Roever and K. Engelhardt. Data Refinement: Model-Oriented Proof Methods and their
Comparison. CUP, 1998.

[6] J. Derrick and E. A. Boiten. Refinement in Z and Object-Z. Springer-Verlag, 2001.

[7] J. Derrick, S. North, and T. Simons. Issues in implementing a model checker for Z. In ICFEM 2006,
LNCS. Springer, 2006. to appear.

[8] J. Derrick and H. Wehrheim. Using coupled simulations in non-atomic refinement. In ZB 2003: Formal
Specification and Development in Z and B, number 2651 in LNCS, pages 127–147. Springer, 2003.

[9] E.A. Emerson and E.M. Clarke. Using branching time temporal logic to synthesize synchronisation
skeletons. Science of Computer Programming, 2(3):241–266, 1982.

[10] C. Fischer and H. Wehrheim. Behavioural subtyping relations for object-oriented formalisms. In T. Rus,
editor, AMAST 2000: International Conference on Algebraic Methodology And Software Technology,
number 1816, pages 469–483. Springer, 2000.

[11] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison Wesley, 2004.

[12] T. McComb. Refactoring Object-Z Specifications. In Fundamental Approaches to Software
Engineering (FASE’04), Lecture Notes in Computer Science, pages 69 – 83. Springer, 2004.

[13] T. McComb and G. Smith. Architectural Design in Object-Z. In Australian Software Engineering
Conference (ASWEC’04), pages 77 – 86. IEEE Computer Society Press, 2004.

[14] T. McComb and G. Smith. Refactoring object-oriented specifications: A process for deriving designs.
Technical Report SSE-2006-01, School of Information Technology and Electrical Engineering, University
of Queensland, Australia, May 2006.

H.-C. Estler et al. / Electronic Notes in Theoretical Computer Science 187 (2007) 3–1716

[15] T. Mens and T. Tourwé. A Survey of Software Refactoring. IEEE Transactions on Software
Engineering, 30(2), 2004.

[16] W.F. Opdyke. Refactoring: A Program Restructuring Aid in Designing Object-Oriented Application
Frameworks. PhD thesis, University of Illinois at Urbana champaign, 1992.

[17] J. Philipps and B. Rumpe. Refactoring of Programs and Specifications, pages 281–297. Kluwer
Academic Publishers, 2003.

[18] G. Smith. The Object-Z Specification Language. Kluwer Academic Publisher, 2000.

[19] G. Smith and J. Derrick. Verifying data refinements using a model checker. Formal Aspects of
Computing, 2006. To appear.

[20] G. Smith and L. Wildman. Model checking Z specifications using SAL. In International Conference
of B and Z Users (ZB 2005), volume 3455 of Lecture Notes in Computer Science, pages 85–103.
Springer-Verlag, 2005.

[21] Gerson Sunyé, Damien Pollet, Yves Le Traon, and Jean-Marc Jézéquel. Refactoring UML models. In
Martin Gogolla and Cris Kobryn, editors, UML 2001 - The Unified Modeling Language. Modeling
Languages, Concepts, and Tools. 4th International Conference, Toronto, Canada, October 2001,
Proceedings, volume 2185 of LNCS, pages 134–148. Springer, 2001.

[22] J. C. P. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof. Prentice Hall, 1996.

H.-C. Estler et al. / Electronic Notes in Theoretical Computer Science 187 (2007) 3–17 17

	Introduction
	Example Refactorings
	Checking Correctness
	SAL
	Model checking refactorings using SAL

	Discussion and conclusion
	Acknowledgement
	References

