
Loop invariants: analysis, classification, and

examples

Carlo A. Furia · Bertrand Meyer · Sergey Velder

Abstract

Software verification has emerged as a key concern for ensuring the
continued progress of information technology. Full verification generally
requires, as a crucial step, equipping each loop with a “loop invariant”.
Beyond their role in verification, loop invariants help program understand-
ing by providing fundamental insights into the nature of algorithms. In
practice, finding sound and useful invariants remains a challenge. For-
tunately, many invariants seem intuitively to exhibit a common flavor.
Understanding these fundamental invariant patterns could therefore pro-
vide help for understanding and verifying a large variety of programs.

We performed a systematic identification, validation, and classification
of loop invariants over a range of fundamental algorithms from diverse
areas of computer science. This article analyzes the patterns, as uncovered
in this study, governing how invariants are derived from postconditions;
it proposes a taxonomy of invariants according to these patterns, and
presents its application to the algorithms reviewed. The discussion also
shows the need for high-level specifications based on “domain theory”.
It describes how the invariants and the corresponding algorithms have
been mechanically verified using an automated program prover; the proof
source files are available. The contributions also include suggestions for
invariant inference and for model-based specification.

1

Contents

1 Introduction: inductive invariants 4
1.1 Loop invariants basics . 5
1.2 A constructive view . 7
1.3 A basic example . 8
1.4 Other kinds of invariant . 9

2 Expressing invariants: domain theory 11

3 Classifying invariants 15
3.1 Classification by role . 15
3.2 Classification by generalization technique 16

4 The invariants of important algorithms 17
4.1 Array searching . 18

4.1.1 Maximum: one-variable loop 18
4.1.2 Maximum: two-variable loop 19
4.1.3 Search in an unsorted array 19
4.1.4 Binary search . 20

4.2 Arithmetic algorithms . 23
4.2.1 Integer division . 24
4.2.2 Greatest common divisor (with division) 25
4.2.3 Exponentiation by successive squaring 26
4.2.4 Long integer addition . 27

4.3 Sorting . 29
4.3.1 Quick sort: partitioning 30
4.3.2 Selection sort . 31
4.3.3 Insertion sort . 34
4.3.4 Bubble sort (basic) . 37
4.3.5 Bubble sort (improved) 38
4.3.6 Comb sort . 40

4.4 Dynamic programming . 41
4.4.1 Unbounded knapsack problem with integer weights 41
4.4.2 Levenshtein distance . 45

4.5 Computational geometry: Rotating calipers 47
4.6 Algorithms on data structures . 49

4.6.1 List reversal . 51
4.6.2 Binary search trees . 52

4.7 Fixpoint algorithms: PageRank 55

5 Related work: Automatic invariant inference 57
5.1 Static methods . 58
5.2 Dynamic methods . 59

6 Lessons from the mechanical proofs 60

2

7 Conclusions and assessment 61

3

1 Introduction: inductive invariants

The problem of guaranteeing program correctness remains one of the central
challenges of software engineering, of considerable importance to the information
technology industry and to society at large, which increasingly depends, for
almost all of its processes, on correctly functioning programs. As defined by
Tony Hoare [32], the “Grand Challenge of Program Verification” mobilizes many
researchers and practitioners using a variety of techniques.

Some of these techniques, such as model checking [10] and abstract interpre-
tation [13], are directed at finding specific errors, such as the possible violation
of a safety property. An advantage of these techniques is that they work on
programs as they are, without imposing a significant extra annotation effort
on programmers. For full functional correctness—the task of proving that a
program satisfies a complete specification—the approach of choice remains, for
imperative programs, the Floyd-Hoare-Dijkstra style of axiomatic semantics.
In this approach, programs must be equipped with annotations in the form of
assertions. Every loop, in particular, must have a loop invariant.

Finding suitable loop invariants is a crucial and delicate step to verification.
Although some programmers may see invariant elicitation as a chore needed only
for formal verification, the concept is in fact widely useful, including for informal
development: the invariant gives fundamental information about a loop, showing
what it is trying to achieve and how it achieves it, to the point that (in some
people’s view at least) it is impossible to understand a loop without knowing
its invariant.

To explore and illustrate this view, we have investigated a body of repre-
sentative loop algorithms in several areas of computer science, to identify the
corresponding invariants, and found that they follow a set of standard patterns.
We set out to uncover, catalog, classify, and verify these patterns, and report
our findings in the present article.

Finding an invariant for a loop is traditionally the responsibility of a human:
either the person performing the verification, or the programmer writing the
loop in the first place (a better solution, when applicable, is the constructive
approach to programming advocated by Dijkstra and others [17, 26, 46]). More
recently, techniques have been developed for inferring invariants automatically,
or semi-automatically with some human help (we review them in Section 5). We
hope that the results reported here will be useful in both cases: for humans, to
help obtain the loop invariants of new or existing programs, a task that many
programmers still find challenging; and for invariant inference tools.

For all algorithms presented in the paper1, we wrote fully annotated im-
plementations and processed the result with the Boogie program verifier [43],
providing proofs of correctness. The Boogie implementations are available at:2

1With the exception of those in Sections 4.5 and 4.7, whose presentation is at a higher level
of abstraction, so that a complete formalization would have required complex axiomatization
of geometric and numerical properties beyond the focus of this paper.

2In the repository, the branch inv survey contains only the algorithms described in the
paper; see http://goo.gl/DsdrV for instruction on how to access it.

4

http://goo.gl/DsdrV

http://bitbucket.org/sechairethz/verified/

This verification result reinforces the confidence in the correctness of the algo-
rithms presented in the paper and their practical applicability.

The rest of this introductory section recalls the basic properties of invari-
ants. Section 2 introduces a style of expressing invariants based on “domain
theory”, which can often be useful for clarity and expressiveness. Section 3
presents two independent classifications of loop invariant clauses, according to
their role and syntactic similarity with respect to the postcondition. Section 4
presents 21 algorithms from various domains; for each algorithm, it presents
an implementation in pseudo-code annotated with complete specification and
loop invariants. Section 5 discusses some related techniques to infer invariants
or other specification elements automatically. Section 6 draws lessons from the
verification effort. Section 7 concludes.

1.1 Loop invariants basics

The loop invariants of the axiomatic approach go back to Floyd [20] and Hoare [30]
(see Hatcliff et al. [28] for a survey of notations for and variants of the fundamen-
tal idea). For this approach and for the present article, a loop invariant is not
just a quantity that remains unchanged throughout executions of the loop body
(a notion that has also been studied in the literature), but more specifically an
“inductive invariant”, of which the precise definition appears next. Program
verification also uses other kinds of invariant, notably class invariants [31, 47],
which the present discussion surveys only briefly in Section 1.4.

The notion of loop invariant is easy to express in the following loop syntax
taken from Eiffel:

1 from
2 Init
3 invariant
4 Inv
5 until
6 Exit
7 variant
8 Var
9 loop

10 Body
11 end

(the variant clause helps establish termination as discussed later). Init and
Body are each a compound (a list of instructions to be executed in sequence);
either or both can be empty, although Body normally will not. Exit and Inv
(the inductive invariant) are both Boolean expressions, that is to say, predicates
on the program state. The semantics of the loop is:

1. Execute Init .

2. Then, if Exit has value True, do nothing; if it has value False, execute
Body, and repeat step 2.

5

http://bitbucket.org/sechairethz/verified/

Another way of stating this informal specification is that the execution of the
loop body consists of the execution of Init followed by zero or more executions
of Body, stopping as soon as Exit becomes True.

There are many variations of the loop construct in imperative programming
languages: “while” forms which use a continuation condition rather than the
inverse exit condition; “do-until” forms that always execute the loop body at
least once, testing for the condition at the end rather than on entry; “for” or
“do” forms (“across” in Eiffel) which iterate over an integer interval or a data
structure. They can all be derived in a straightforward way from the above
basic form, on which we will rely throughout this article.

The invariant Inv plays no direct role in the informal semantics, but serves
to reason about the loop and its correctness. Inv is a correct invariant for the
loop if it satisfies the following conditions:

1. Every execution of Init , started in the state preceding the loop execution,
will yield a state in which Inv holds.

2. Every execution of Body, started in any state in which Inv holds and Exit
does not hold, will yield a state in which Inv holds again.

If these properties hold, then any terminating execution of the loop will yield
a state in which both Inv and Exit hold. This result is a consequence of the loop
semantics, which defines the loop execution as the execution of Init followed
by zero or more executions of Body, each performed in a state where Exit does
not hold. If Init ensures satisfaction of the invariant, and any one execution of
Body preserves it (it is enough to obtain this property for executions started in
a state not satisfying Exit), then Init followed by any number of executions of
Body will.

Formally, the following classic inference rule [31, 47] uses the invariant to
express the correctness requirement on any loop:

{P} Init {Inv}, {Inv ∧ ¬ Exit} Body {Inv}
{P} from Init until Exit loop Body end {Inv ∧Exit}

.

This is a partial correctness rule, useful only for loops that terminate. Proofs
of termination are in general handled separately through the introduction of
a loop variant: a value from a well-founded set, usually taken to be the set
of natural numbers, which decreases upon each iteration (again, it is enough to
show that it does so for initial states not satisfying Exit). Since in a well-founded
set all decreasing sequences are finite, the existence of a variant expression
implies termination. The rest of this discussion concentrates on the invariants; it
only considers terminating algorithms, of course, and includes the corresponding
variant clauses, but does not explain why the corresponding expression are
indeed loop variants (non-negative and decreasing). Invariants, however, also
feature in termination proofs, where they ensure that the variant ranges over a
well-founded set (or, equivalently, the values it takes are bounded from below).

If a loop is equipped with an invariant, proving its partial correctness means
establishing the two hypotheses in the above rules:

6

• {P} Init {Inv}, stating that the initialization ensures the invariant, is
called the initiation property.

• {Inv ∧ ¬ Exit} Body {Inv}, stating that the body preserves the invariant,
is called the consecution (or inductiveness) property.

1.2 A constructive view

We may look at the notion of loop invariant from the constructive perspective
of a programmer directing his or her program to reach a state satisfying a
certain desired property, the postcondition. In this view, program construction
is a form of problem-solving, and the various control structures are problem-
solving techniques [17, 46, 26, 48]; a loop solves a problem through successive
approximation.

Postcondition

Exit condition

Invariant

Previous state

Initialization

Body
Body

Body

Figure 1: The loop as a computation by approximation.

The idea of this solution, illustrated by Figure 1, is the following:

• Generalize the postcondition (the characterization of possible solutions)
into a broader condition: the invariant.

• As a result, the postcondition can be defined as the combination (“and”
in logic, intersection in the figure) of the invariant and another condition:
the exit condition.

• Find a way to reach the invariant from the previous state of the compu-
tation: the initialization.

7

• Find a way, given a state that satisfies the invariant, to get to another
state, still satisfying the invariant but closer, in some appropriate sense,
to the exit condition: the body.

For the solution to reach its goal after a finite number of steps we need a notion
of discrete “distance” to the exit condition. This is the loop variant.

The importance of the above presentation of the loop process is that it
highlights the nature of the invariant: it is a generalized form of the desired
postcondition, which in a special case (represented by the exit condition) will
give us that postcondition. This view of the invariant, as a particular way of
generalizing the desired goal of the loop computation, explains why the loop in-
variant is such an important property of loops; one can argue that understanding
a loop means understanding its invariant (in spite of the obvious observation
that many programmers write loops without ever formally learning the notion
of invariant, although we may claim that if they understand what they are doing
they are relying on some intuitive understanding of the invariant anyway, like
Molière’s Mr. Jourdain speaking in prose without knowing it).

The key results of this article can be described as generalization strategies
to obtain invariants from postconditions.

1.3 A basic example

To illustrate the above ideas, the 2300-year-old example of Euclid’s algorithm,
while very simple, is still a model of elegance. The postcondition of the algorithm
is

Result = gcd(a, b),

where the positive integers a and b are the input and gcd is the mathemati-
cal Greatest Common Divisor function. The generalization is to replace this
condition by

Result = x ∧ gcd(Result, x) = gcd(a, b) (1)

with a new variable x, taking advantage of the mathematical property that, for
every x,

gcd(x, x) = x. (2)

The second conjunct, a generalization of the postcondition, will serve as the
invariant; the first conjunct will serve as the exit condition. To obtain the loop
body we take advantage of another mathematical property: for every x > y,

gcd(x, y) = gcd(x− y, y), (3)

yielding the well-known algorithm in Figure 2. (As with any assertion, writing
clauses successively in the invariant is equivalent to a logical conjunction.) This
form of Euclid’s algorithm uses subtraction; another form, given in Section 4.2.2,
uses integer division.

We may use this example to illustrate some of the orthogonal categories in
the classification developed in the rest of this article:

8

1 from
2 Result := a ; x := b
3 invariant
4 Result >0
5 x >0
6 gcd (Result, x) = gcd (a, b)
7 until
8 Result = x
9 loop

10 if Result >x then
11 Result := Result − x
12 else −− Here x is strictly greater than Result
13 x := x − Result
14 end
15 variant
16 max (Result, x)
17 end

Figure 2: Greatest common divisor with substraction.

• The last clause of the invariant is an essential invariant, representing a
weakening of the postcondition. The first two clauses are a bounding
invariant, indicating that the state remains within certain general bound-
aries, and ensuring that the “essential” part is defined.

• The essential invariant is a conservation invariant, indicating that a cer-
tain quantity remains equal to its original value.

• The strategy that leads to this conservation invariant is uncoupling, which
replaces a property of one variable (Result), used in the postcondition,
by a property of two variables (Result and x), used in the invariant.

The proof of correctness follows directly from the mathematical property
stated: (2) establishes initiation, and (3) establishes consecution.

Section 4.2.2 shows how the same technique is applicable backward, to guess
likely loop invariants given an algorithm annotated with pre- and postcondition:
mutating the latter yields a suitable loop invariant.

1.4 Other kinds of invariant

Loop invariants are the focus of this article, but before we return to them it
is useful to list some other kinds of invariant encountered in software. (Yet
other invariants, which lie even further beyond the scope of this discussion, play
fundamental roles in fields such as physics; consider for example the invariance of
the speed of light under a Lorentz transformation, and of time under a Galilean
transformation.)

9

In object-oriented programming, a class invariant (also directly supported
by the Eiffel notation [18]) expresses a property of a class that:

• Every instance of the class possesses immediately after creation, and

• Every exported feature (operation) of the class preserves,

with the consequence that whenever such an object is accessible to the rest of the
software it satisfies the invariant, since the life of an object consists of creation
followed by any number of “qualified” calls x. f to exported features f by clients
of the class. The two properties listed are strikingly similar to initiation and
consecution for loop invariants, and the connection appears clearly if we model
the life of an object as a loop:

1 from
2 create x.make −− Written in some languages as x := new C()
3 invariant
4 CI −− The class invariant
5 until
6 “x is no longer needed”
7 loop
8 x. some feature of the class
9 end

Also useful are Lamport-style invariants [41] used to reason about concurrent
programs, which obviate the need for the “ghost variables” of the Owicki-Gries
method [50]). Like other invariants, a Lamport invariant is a predicate on the
program state; the difference is that the definition of the states involves not only
the values of the program’s variables but also the current point of the execution
of the program (“Program Counter” or PC) and, in the case of a concurrent
program, the collection of the PCs of all its concurrent processes. An example
of application is the answer to the following problem posed by Lamport [42].

Consider N processes numbered from 0 through N−1 in which each
process i executes

`i0 : x[i] := 1

`i1 : y[i] := x[(i− 1) mod N]

`i2 :

and stops, where each x[i] initially equals 0. (The reads and writes
of each x[i] are assumed to be atomic.) [. . .] The algorithm [. . .]
maintains an inductive invariant. Do you know what that invariant
is?

If we associate a proposition @(m, i) for m = 1, 2, 3 that holds precisely when
the execution of process i reaches location `im, an invariant for the algorithm

10

can be expressed as:

@(2, i) =⇒

@(0, (i− 1) mod N) ∧ y[i] = 0

∨
@(1, (i− 1) mod N) ∧ y[i] = 1

∨
@(2, (i− 1) mod N) ∧ y[i] = 1

 .

Yet another kind of invariant occurs in the study of dynamical systems,
where an invariant is a region I ⊆ S of the state space S such that any trajectory
starting in I or entering it stays in I indefinitely in the future:

∀x ∈ I, ∀t ∈ T : Φ(t, x) ∈ I,

where T is the time domain and Φ : T × S → S is the evolution function. The
connection between dynamical system invariants and loop invariants is clear in
the constructive view (Section 1.2), and can be formally derived by modeling
programs as dynamical systems or using some other operational formalism [22].
The differential invariants introduced in the study of hybrid systems [54] are
also variations of the invariants defined by dynamical systems.

2 Expressing invariants: domain theory

To discuss and compare invariants we need to settle on the expressiveness of the
underlying invariant language: what do we accept as a loop invariant?

The question involves general assertions, not just invariants; more generally,
we must make sure that any convention for invariants is compatible with the
general scheme used for pre/post specification, since an invariant is a mutation
(possibly a weakening) of the postcondition.

The mathematical answer to the basic question is simple: an assertion other
than a routine postcondition, in particular a loop invariant, is a predicate on
the program state. For example, the assertion x > 0, where x is a program
variable, is the predicate that holds of all computation states in which the value
of that variable is positive. (Another view would consider it as the subset of the
state space containing all states that satisfy the condition; the two views are
equivalent since the predicate is the characteristic function of the subset, and
the subset is the inverse domain of “true” for the predicate.)

A routine postcondition is usually a predicate on two states, since the spec-
ification of a routine generally relates new values to original ones. For example,
an increment routine yields a state in which the counter’s value is one more
on exit than on entry. The old notation, available for postconditions in Eiffel
and other programming languages supporting contracts, reflects this need; for
example, a postcondition clause could read counter = old counter + 1. Other
notations, notably the Z specification language [60], have a notation for “new”
rather than “old”, as in counter’ = counter + 1 where the primed variable de-
notes the new value. Although invariants are directly related to postconditions,

11

we will be able in this discussion to avoid such notations and treat invariants as
one-state functions. (Technically, this is always possible by recording the entry
value as part of the state.)

Programming languages offer a mechanism directly representing predicates
on states: Boolean expressions. This construct can therefore be used—as in the
x > 0 example—to represent assertions; this is what assertion-aware program-
ming languages typically do, often extending it with special notations such as
old and support for quantifiers.

This basic language decision leaves open the question of the level of expres-
siveness of assertions. There are two possibilities:

• Allow assertions, in particular postconditions and loop invariants, to use
functions and predicates defined using some appropriate mechanism (of-
ten, the programming language’s function declaration construct) to ex-
press high-level properties based on a domain theory covering specifics of
the application area. We call this approach domain theory.3

• Disallow this possibility, requiring assertions always to be expressed in
terms of the constructs of the assertion language, without functions. We
call this approach atomic assertions.

The example of Euclid’s algorithm above, simple as it is, was already an
example of the domain-theory-based approach because of its use of a function
gcd in the invariant clause

gcd(Result, x) = gcd(a, b) (4)

corresponding to a weakening of the routine postcondition

Result = gcd(a, b).

It is possible to do without such a function by going back to the basic
definition of the greatest common denominator. In such an atomic-assertion
style, the postcondition would read

Result >0 (Alternatively, Result ≥ 1)
a \\ Result = 0 (Result divides a)
b \\ Result = 0 (Result divides b)
∀i ∈ N: (a \\i = 0)∧ (b \\i = 0) implies i≤Result (Result is the greatest of all

the numbers that satisfy the
preceding properties).

Expressing the invariant in the same style requires several more lines since the
definition of the greatest common divisor must be expanded for both sides of (4).

Even for such a simple example, the limitations of the atomic-assertion style
are clear: because it requires going back to basic logical constructs every time,
it does not scale.

3No relation with the study of partially ordered sets, also called domain theory [1].

12

Another example where we can contrast the two styles is any program that
computes the maximum of an array. In the atomic-assertion style, the postcon-
dition will be written

∀k ∈ Z: a.lower≤ k≤ a.upper implies a[k]≤Result (Every element between
bounds has a value smaller
than Result)

∃k ∈ Z: a.lower≤ k≤ a.upper ∧ a[k] = Result (Some element between
bounds has the value
Result).

This property is the definition of the maximum and hence needs to be writ-
ten somewhere. If we define a function “max” to capture this definition, the
specification becomes simply

Result = max(a).

The difference between the two styles becomes critical when we come to
the invariant of programs computing an array’s maximum. Two different algo-
rithms appear in Section 4.1. The first (Section 4.1.1) is the most straightfor-
ward; it moves an index i from a.lower + 1 to a.upper, updating Result if the
current value is higher than the current result (initialized to the first element
a [a.lower]). With a domain theory on arrays, the function max will be avail-
able as well as a notion of slice, where the slice a [i .. j] for integers i and j is
the array consisting of elements of a in the range [i, j]. Then the invariant is
simply

Result = max(a [a.lower .. i]),

which is ensured by initialization and, on exit when i = a.upper, yields the
postcondition Result = max(a) (based on the domain-theory property that
a [a.lower .. a.upper] = a). The atomic-assertion invariant would be a varia-
tion of the expanded postcondition:

∀k ∈ Z: a.lower≤ k≤ i implies a[k]≤Result
∃k ∈ Z: a.lower≤ k≤ i ∧ a[k] = Result.

Consider now a different algorithm for the same problem (Section 4.1.2),
which works by exploring the array from both ends, moving the left cursor i up
if the element at i is less than the element at j and otherwise moving the right
cursor j down. The atomic-assertion invariant can be written with an additional
level of quantification:

∃m :

(
∀k ∈ Z : a.lower ≤ k ≤ a.upper implies a[k] ≤ m
∃k ∈ Z : i ≤ k ≤ j and a[k] = m

)
. (5)

Alternatively, we can avoid quantifier alternation using the characterization
based on the complement property that the maximal element is not outside the
slice a[i .. j] :

∀k ∈ Z : a.lower ≤ k < i ∨ j < k ≤ a.upper =⇒ a[k] ≤ a[i] ∨ a[k] ≤ a[j] .
(6)

13

The form without quantifier alternation is more amenable to automated rea-
soning, but it has the disadvantage that it requires additional ingenuity and is
not a straightforward modification of the invariant for the one-way version of
the algorithm. More significantly for this paper’s point of view, both formu-
lations (5)–(6) give an appearance of complexity even though the invariant is
conceptually very simple, capturing in a nutshell the essence of the algorithm
(as noted earlier, one of the applications of a good invariant is that it enables
us to understand the core idea behind a loop):

max(a) = max(a[i..j]). (7)

In words: the maximum of the entire array is to be found in the slice that has
not been explored yet. On exit, where i = j, we are left with a one-element
slice, whose value (this is a small theorem of the corresponding domain theory)
is its maximum and hence the maximum of the whole array. The domain-theory
invariant makes the algorithm and its correctness immediately clear.

The domain-theory approach means that, before any attempt to reason
about an algorithm, we should develop an appropriate model of the underlying
domain, by defining appropriate concepts such as greatest common divisor for al-
gorithms on integers and slices and maximum for algorithms on arrays, establish-
ing the relevant theorems (for example that x > y=⇒ gcd(x, y) = gcd(x− y, y)
and that max(a[i..i]) = a[i]). These concepts and theorems need only be devel-
oped once for every application domain of interest, not anew for every program
over that domain. The programs can then use the corresponding functions in
their assertions, in particular in the loop invariants.

The domain-theory approach takes advantage of standard abstraction mech-
anism of mathematics. Its only practical disadvantage, for assertions embedded
in a programming language, is that the functions over a domain (such as gcd)
must come from some library and, if themselves written in the programming
language, must satisfy strict limitations; in particular they must be “pure”
functions defined without any reference to imperative constructs. This issue
only matters, however, for the practical embedding of invariants in programs;
it is not relevant to the conceptual discussion of invariants, independent of any
implementation concerns, which is the focus of this paper.

For the same reason, this paper does not explore—except for Section 6—the
often delicate trade-off between succinctness of expression and amenability to
automated reasoning. For example, the invariant (5) is concisely captured as
(7) in domain-theory form even if it uses quantifier alternation; the different for-
mulation (6) is not readily expressible in terms of slice and maximum functions,
but it may be easier to handle by automatic theorem provers since complexity
grows with quantifier alternation [51]. This paper’s focus is on developing and
understanding the essence of algorithms through loop invariants presented at
the right level of abstraction, largely independent of the requirements posed by
automated reasoning. Section 6, however, demonstrates that the domain-theory
approach is still practically applicable.

The remainder of this article relies, for each class of algorithms, on the
appropriate domain theory, whose components (functions and theorems) are

14

summarized at the beginning of the corresponding section. We will make no
further attempt at going back to the atomic-assertion style; the examples above
should suffice to show how much simplicity is gained through this policy.

3 Classifying invariants

Loop invariants and their constituent clauses can be classified along two dimen-
sions:

• By their role with respect to the postcondition (Section 3.1), leading us
to distinguish between “essential” and “bounding” invariant properties.

• By the transformation technique that yields the invariant from the post-
condition (Section 3.2). Here we have techniques such as uncoupling and
constant relaxation.

3.1 Classification by role

In the typical loop strategy described in Section 1.2, it is essential that succes-
sive iterations of the loop body remain in the convergence regions where the
generalized form of the postcondition is defined. The corresponding conditions
make up the bounding invariant ; the clauses describing the generalized post-
condition is the essential invariant. The bounding invariant for the greatest
common divisor algorithm consists of the clauses

Result > 0

x > 0.

The essential clause is

gcd(Result, x) = gcd(a, b),

yielding the postcondition when Result = x.
For the one-way maximum program, the bounding invariant is

a.lower ≤ i ≤ a.upper

and the essential invariant is

Result = max (a [a.lower .. i]),

yielding the postcondition when i = a.upper. Note that the essential invariant
would not be defined without the bounding invariant, since the slice a [1.. i]
would be undefined (if i >a.upper) or would be empty and have no maximum
(if i <a.lower).

For the two-way maximum program, the bounding invariant is

a.lower≤ i ≤ j ≤ a.upper

15

and the essential invariant is

max(a) = max(a[i..j]),

yielding the postcondition when i = j. Again, the essential invariant would not
be always defined without the bounding invariant.

The separation between bounding and essential invariants is often straight-
forward as in these examples. In case of doubt, the following observation will
help distinguish. The functions involved in the invariant (and often, those of
the postcondition) are often partial; for example:

• gcd(u, v) is only defined if u and v are both non-zero (and, since we con-
sider natural integers only in the example, positive).

• For an array a and an integer i, a[i] is only defined if i∈[a.lower .. a.upper],
and the slice a[i .. j] is non-empty only if [i .. j]⊆[a.lower ..a.upper].

• max(a) is only defined if the array a is not empty.

Since the essential clauses, obtained by postcondition generalization, use
gcd(Result, x) and (in the array algorithms) array elements and maxima, the
invariants must include the bounding clauses as well to ensure that these essen-
tial clauses are meaningful. A similar pattern applies to most of the invariants
studied later.

3.2 Classification by generalization technique

The essential invariant is a mutation (often, a weakening) of the loop’s postcon-
dition. The following mutation techniques are particularly common:

Constant relaxation: replace a constant n (more generally, an expression
which does not change during the execution of the algorithm) by a variable
i, and use i = n as part or all of the exit condition.

Constant relaxation is the technique used in the one-way array maximum com-
putation, where the constant is the upper bound of the array. The invariant gen-
eralizes the postcondition “Result is the maximum of the array up to a.lower”,
where a.lower is a constant, with “Result is the maximum up to i”. This con-
dition is trivial to establish initially for a non-empty array (take i to be a.lower),
easy to extend to an incremented i (take Result to be the greater of its previous
value and a[i]), and yields the postcondition when i reaches a.upper. As we
will see in Section 4.1.4, binary search differs from sequential search by applying
double constant relaxation, to both the lower and upper bounds of the array.

Uncoupling: replace a variable v (often Result) by two (for example Result
and x), using their equality as part or all of the exit condition.

Uncoupling is used in the greatest common divisor algorithm.

16

Term dropping: remove a subformula (typically a conjunct), which gives a
straightforward weakening.

Term dropping is used in the partitioning algorithm (Section 4.3.1).

Aging: replace a variable (more generally, an expression) by an expression that
represents the value the variable had at previous iterations of the loop.

Aging typically accommodates “off-by-one” discrepancies between when a vari-
able is evaluated in the invariant and when it is updated in the loop body.

Backward reasoning: compute the loop’s postcondition from another asser-
tion by backward substitution.

Backward reasoning can be useful for nested loops, where the inner loop’s post-
condition can be derived from the outer loop’s invariant.

4 The invariants of important algorithms

The following subsections include a presentation of several algorithms, their loop
invariants, and their connection with each algorithm’s postcondition. Table 1
lists the algorithms and their category. For more details about variants of
the algorithms and their implementation, we refer to standard textbooks on
algorithms [45, 12, 37].

Table 1: The algorithms presented in Section 4.
Algorithm Type Section

Maximum search (one variable) searching § 4.1.1
Maximum search (two variable) searching § 4.1.2
Sequential search in unsorted array searching § 4.1.3
Binary search searching § 4.1.4
Integer division arithmetic § 4.2.1
Greatest common divisor (with division) arithmetic § 4.2.2
Exponentiation (by squaring) arithmetic § 4.2.3
Long integer addition arithmetic § 4.2.4
Quick sort’s partitioning sorting § 4.3.1
Selection sort sorting § 4.3.2
Insertion sort sorting § 4.3.3
Bubble sort (basic) sorting § 4.3.4
Bubble sort (improved) sorting § 4.3.5
Comb sort sorting § 4.3.6
Knapsack with integer weights dynamic programming § 4.4.1
Levenstein distance dynamic programming § 4.4.2
Rotating calipers algorithm computational geometry § 4.5
List reversal data structures § 4.6.1
Binary search trees data structures § 4.6.2
PageRank algorithm fixpoint § 4.7

17

4.1 Array searching

Many algorithmic problems can be phrased as search over data structures—from
the simple arrays up to graphs and other sophisticated representations. This
section illustrates some of the basic algorithms operating on arrays.

4.1.1 Maximum: one-variable loop

The following routine max one way returns the maximum element of an un-
sorted array a of bounds a.lower and a.upper. The maximum is only defined for
a non-empty array, thus the precondition a.count ≥ 1. The postcondition can
be written

Result = max(a).

Writing it in slice form, as Result =max(a [a.lower..a.upper]) yields the
invariant by constant relaxation of either of the bounds. We choose the second
one, a.upper, yielding the essential invariant clause

Result = max(a [a.lower .. i]).

Figure 3 shows the resulting implementation of the algorithm.

1 max one way (a: ARRAY [T]): T
2 require
3 a.count ≥ 1 −− a.count is the number of elements of the array
4 local
5 i : INTEGER
6 do
7 from
8 i := a.lower ; Result := a [a.lower]
9 invariant

10 a.lower≤ i ≤ a.upper
11 Result = max (a [a.lower, i])
12 until
13 i = a.upper
14 loop
15 i := i + 1
16 if Result <a [i] then Result := a [i] end
17 variant
18 a.upper − i + 1
19 end
20 ensure
21 Result = max (a)
22 end

Figure 3: Maximum: one-variable loop.

Proving initiation is trivial. Consecution relies on the domain-theory prop-
erty that

max(a [1.. i+1]) = max(max(a [1.. i]), a [i + 1]).

18

4.1.2 Maximum: two-variable loop

The one-way maximum algorithm results from arbitrarily choosing to apply con-
stant relaxation to either a.lower or (as in the above version) a.upper. Guided
by a symmetry concern, we may choose double constant relaxation, yielding
another maximum algorithm max two way which traverses the array from both
ends. If i and j are the two relaxing variables, the loop body either increases i
or decreases j. When i = j, the loop has processed all of a, and hence i and j
indicate the maximum element.

The specification (precondition and postcondition) is the same as for the
previous algorithm. Figure 4 shows an implementation.

1 max two way (a: ARRAY [T]): T
2 require
3 a.count ≥ 1
4 local
5 i , j : INTEGER
6 do
7 from
8 i := a.lower ; j := a.upper
9 invariant

10 a.lower≤ i ≤ j ≤ a.upper
11 max (a [i..j]) = max (a)
12 until
13 i = j
14 loop
15 if a [i] >a [j] then j := j − 1 else i := i + 1 end
16 variant
17 j − i
18 end
19 Result := a [i]
20 ensure
21 Result = max (a)
22 end

Figure 4: Maximum: two-variable loop.

It is again trivial to prove initiation. Consecution relies on the following two
domain-theory properties:

j > i ∧ a [i] ≥ a [j] =⇒ max(a [i .. j]) = max(a [i .. j − 1]) (8)

i < j ∧ a [j] ≥ a [i] =⇒ max(a [i .. j]) = max(a [i + 1.. j]). (9)

4.1.3 Search in an unsorted array

The following routine has sequential returns the position of an occurrence of
an element key in an array a or, if key does not appear, a special value. The
algorithm applies to any sequential structure but is shown here for arrays. For

19

simplicity, we assume that the lower bound a.lower of the array is 1, so that we
can choose 0 as the special value. Obviously this assumption is easy to remove
for generality: just replace 0, as a possible value for Result, by a.lower − 1.

The specification may use the domain-theory notation elements (a) to ex-
press the set of elements of an array a. A simple form of the postcondition is

Result 6= 0 ⇐⇒ key ∈ elements(a), (10)

which just records whether the key has been found. We will instead use a form
that also records where the element appears if present:

Result 6= 0 =⇒ key = a [Result] (11)

Result = 0 =⇒ key 6∈ elements (a), (12)

to which we can for clarity prepend the bounding clause

Result ∈ [0.. a.upper]

to make it explicit that the array access in (11) is defined when needed.
If in (12) we replace a by a [1.. a.upper], we obtain the loop invariant of

sequential search by constant relaxation: introducing a variable i to replace
either of the bounds 1 and a.upper. Choosing the latter yields the following
essential invariant:

Result ∈ [0, i]
Result 6= 0 =⇒ key = a [Result]
Result = 0 =⇒ key 6∈ elements (a [1.. i]) ,

leading to an algorithm that works on slices [1.. i] for increasing i, starting at
0 and with bounding invariant 0≤ i ≤ a.count, as shown in Figure 5.4

To avoid useless iterations the exit condition may be replaced by i = a.upper
∨Result >0.

To prove initiation, we note that initially Result is 0 and the slice a [1.. i]
is empty. Consecution follows from the domain-theory property that, for all
1 ≤ i <a.upper:

key ∈ elements(a [1.. i+1]) ⇐⇒ key ∈ elements(a [1.. i]) ∨ key = a [i+1].

4.1.4 Binary search

Binary search works on sorted arrays by iteratively halving a segment of the
array where the searched element may occur. The search terminates either
when the element is found or when the segment becomes empty, implying that
the element appears nowhere in the array.

As already remarked by Knuth many years ago [37, Vol. 3, Sec. 6.2.1]:

4Note that in this example it is OK for the array to be empty, so there is no precondition on
a.upper, although general properties of arrays imply thata.upper ≥ 0; the value 0 corresponds
to an empty array.

20

1 has sequential (a: ARRAY [T]; key: T): INTEGER
2 require
3 a.lower = 1 −− For convenience only, may be removed (see text).
4 local
5 i : INTEGER
6 do
7 from
8 i := 0 ; Result := 0
9 invariant

10 0≤ i ≤ a.count
11 Result ∈ [0, i]
12 Result 6= 0 =⇒ key = a [Result]
13 Result = 0 =⇒ key 6∈ elements (a [1..i])
14 until
15 i = a.upper
16 loop
17 i := i + 1
18 if a [i] = key then Result := i end
19 variant
20 a.upper − i + 1
21 end
22 ensure
23 Result ∈ [0, a.upper]
24 Result 6= 0 =⇒ key = a [Result]
25 Result = 0 =⇒ key 6∈ elements (a)
26 end

Figure 5: Search in an unsorted array.

Although the basic idea of binary search is comparatively straightfor-
ward, the details can be surprisingly tricky, and many programmers
have done it wrong the first few times they tried.

Reasoning carefully on the specification (at the domain-theory level) and the
resulting invariant helps avoid mistakes.

For the present discussion it is interesting that the postcondition is the same
as for sequential search (Section 4.1.3), so that we can see where the general-
ization strategy differs, taking advantage of the extra property that the array is
sorted.

The algorithm and implementation now have the precondition

sorted (a),

where the domain-theory predicate sorted (a), defined as

∀j ∈ [a.lower .. a.upper − 1] : a [j] ≤ a [j+1],

expresses that an array is sorted upwards. The domain theorem on which binary
search rests is that, for any value mid in [i .. j] (where i and j are valid indexes

21

of the array), and any value key of type T (the type of the array elements):

key ∈ elements(a[i .. j])⇐⇒

 key ≤ a[mid] ∧ key ∈ elements(a[i .. mid])
∨

key > a[mid] ∧ key ∈ elements(a[mid+1..j])

 .

(13)
This property leads to the key insight behind binary search, whose invariant
follows from the postcondition by variable introduction, mid serving as that
variable.

Formula (13) is not symmetric with respect to i and j ; a symmetric version
is possible, using in the second disjunct, “≥” rather than “>” and mid rather
than mid + 1. The form given in (13) has the advantage of using two mutually
exclusive conditions in the comparison of key to a [mid]. As a consequence,
we can limit ourselves to a value mid chosen in [i .. j − 1] (rather than [i .. j])
since the first disjunct does not involve j and the second disjunct cannot hold for
mid = j (the slice a [mid + 1..j] being then empty). All these observations and
choices have direct consequences on the program text, but are better handled
at the specification (theory) level.

We will start for simplicity with the version (10) of the postcondition that
only records presence or absence, repeated here for ease of reference:

Result 6= 0 ⇐⇒ key ∈ elements(a). (14)

Duplicating the right-hand side of (14), writing a in slice form a [1.. a.upper],
and applying constant relaxation twice, to the lower bound 1 and the upper
bound a.upper, yields the essential invariant:

key ∈ elements(a[i .. j]) ⇐⇒ key ∈ elements(a) (15)

with the bounding invariant

1 ≤ i ≤ mid + 1 ∧ 1≤mid≤ j≤ a.upper ∧ i≤ j ,

which combines the assumptions on mid necessary to apply (13)—also assumed
in (15)—and the additional knowledge that 1≤ i and j ≤ a.upper.

The attraction of this presentation is that:

• The two clauses key≤ a[mid] and key >a[mid] of (13) are easy-to-test
complementary conditions, suggesting a loop body that preserves the in-
variant by testing key against a [mid] and going left or right as a result
of the test.

• When i = j—the case that serves as exit condition—the left side of the
equivalence (15) reduces to key = a [i]; evaluating this expression tells us
whether key appeared at all in the entire array, the information we seek.
In addition, we can obtain the stronger postcondition, (11)–(12), which
gives Result its precise value, by simply assigning i to Result.

22

1 has binary (a: ARRAY [T]; key: T): INTEGER
2 require
3 a.lower = 1 −− For convenience, see comment about has sequential .
4 a.count >0
5 sorted (a)
6 local
7 i , j , mid: INTEGER
8 do
9 from

10 i:= 1; j := a.upper; mid := 1; Result := 0
11 invariant
12 1≤ i ≤ mid + 1 ∧ 1≤ mid≤ j ≤ a.upper ∧ i ≤ j
13 key ∈ elements (a[i.. j]) ⇐⇒ key ∈ elements (a)
14 until
15 i = j
16 loop
17 mid := ”A value in [i..j − 1]” −− In practice chosen as i+ (j − i)//2
18 if a [mid] <key then i := mid +1 else j := mid end
19 variant
20 j − i
21 end
22 if a [i] = key then Result := i end
23 ensure
24 0≤ Result≤n
25 Result 6= 0 =⇒ key = a [Result]
26 Result = 0 =⇒ key 6∈ elements (a)
27 end

Figure 6: Binary search.

This leads to the implementation in Figure 6.
To prove initiation, we note that initially mid is 1, so that mid ∈ [i..j] is true.

Consecution follows directly from (13).
For the expression assigned to mid in the loop, given in pseudocode as “A

value in [i .. j − 1]”, the implementation indeed chooses, for efficiency, the mid-
point of the interval [i .. j] , which may be written i + (j − i) // 2 where “//”
denotes integer division. In an implementation, this form is to be preferred to
the simpler (i + j) // 2, whose evaluation on a computer may produce an in-
teger overflow even when i, j, and their midpoint are all correctly representable
on the computer’s number system, but (because they are large) the sum i + j
is not [4]. In such a case the evaluation of j − i is instead safe.

4.2 Arithmetic algorithms

Efficient implementations of the elementary arithmetic operations known since
grade school require non-trivial algorithmic skills and feature interesting invari-
ants, as the examples in this section demonstrate.

23

4.2.1 Integer division

The algorithm for integer division by successive differences computes the integer
quotient q and the remainder r of two integers m and n. The postcondition reads

0 ≤ r < m

n = m · q + r.

The loop invariant consists of a bounding clause and an essential clause. The
latter is simply an element of the postcondition:

n = m · q + r.

The bounding clause weakens the other postcondition clause by keeping only its
first part:

0 ≤ r,

so that the dropped condition r < m becomes the exit condition. As a conse-
quence, r ≥ m holds in the loop body, and the assignment r := r − m maintains
the invariant property 0 ≤ r. It is straightforward to prove the implementation
in Figure 7 correct with respect to this specification.

1 divided diff (n, m: INTEGER): (q, r: INTEGER)
2 require
3 n ≥ 0
4 m >0
5 do
6 from
7 r := n; q := 0
8 invariant
9 0≤ r

10 n = m · q + r
11 until
12 r <m
13 loop
14 r := r − m
15 q := q + 1
16 variant r
17 end
18 ensure
19 0≤ r <m
20 n = m · q + r
21 end

Figure 7: Integer division.

24

4.2.2 Greatest common divisor (with division)

Euclid’s algorithm for the greatest common divisor offers another example where
clearly separating between the underlying mathematical theory and the imple-
mentation yields a concise and convincing correctness argument. Sections 1.3
and 2 previewed this example by using the form that repeatedly subtracts one
of the values from the other; here we will use the version that uses division.

The greatest common divisor gcd(a, b) is the greatest integer that divides
both a and b, defined by the following axioms, where a and b are nonnega-
tive integers such that at least one of them is positive (“\\” denotes integer
remainder):

a\\ gcd(a, b) = 0

b\\ gcd(a, b) = 0

∀d ∈ N : (a\\d = 0) ∧ (b\\d = 0) =⇒ d ≤ gcd(a, b).

From this definition follow several properties of the gcd function:

Commutativity: gcd(a, b) = gcd(b, a)

Zero divisor: gcd(a, 0) = a

Reduction: for b > 0, gcd(a, b) = gcd(a\\b, b)

The following property of the remainder operation is also useful:

Nonnegativity: for integers a ≥ 0 and b > 0: a\\b ≥ 0

From the obvious postcondition Result = gcd(a, b), we obtain the essential
invariant in three steps:

1. By backward reasoning, derive the loop’s postcondition x = gcd(a, b) from
the routine’s postcondition Result = gcd(a,b).

2. Using the zero divisor property, rewrite it as gcd(x, 0) = gcd(a, b).

3. Apply constant relaxation, introducing variable y to replace 0.

This gives the essential invariant gcd(x, y) = gcd(a, b) together with the bound-
ing invariants x > 0 and y ≥ 0. The corresponding implementation is shown in
Figure 8.5

Initiation is established trivially. Consecution follows from the reduction
property. Note that, unlike in the difference version (Section 1.3), we can arbi-
trarily decide always to divide x by y, rather than having to find out which of
the two numbers is greater; hence the commutativity of gcd is not used in this
proof.

5The variant is simply y, which is guaranteed to decrease at every iteration and can be
bounded from below by the property 0 ≤ x\\y < y.

25

1 gcd Euclid division (a, b: INTEGER): INTEGER
2 require
3 a >0
4 b ≥ 0
5 local
6 t , x, y: INTEGER
7 do
8 from
9 x := a

10 y := b
11 invariant
12 x >0
13 y ≥ 0
14 gcd (x, y) = gcd (a, b)
15 until
16 y = 0
17 loop
18 t := y
19 y := x \\ y
20 x := t
21 variant y end
22 Result := x
23 ensure
24 Result = gcd (a, b)
25 end

Figure 8: Greatest common divisor with division.

4.2.3 Exponentiation by successive squaring

Suppose we do not have a built-in power operator and wish to compute mn. We
may of course multiply m by itself n − 1 times, but a more efficient algorithm
squares m for all 1s values in the binary representation of n. In practice, there
is no need to compute this binary representation.

Given the postcondition
Result = mn,

we first rewrite it into the obviously equivalent form Result · 11 = mn. Then,
the invariant is obtained by double constant relaxation: the essential property

Result · xy = mn

is easy to obtain initially (by setting Result, x, and y to 1, m, and n), yields
the postcondition when y = 0, and can be maintained while progressing towards
this situation thanks to the domain-theory properties

x2z = (x2)2z/2 (16)

xz = x · xz−1. (17)

26

1 power binary (m, n: INTEGER): INTEGER
2 require
3 n ≥ 0
4 local
5 x, y: INTEGER
6 do
7 from
8 Result := 1
9 x := m

10 y := n
11 invariant
12 y ≥ 0
13 Result · xy = mn

14 until y = 0
15 loop
16 if y. is even then
17 x := x ∗ x
18 y := y // 2
19 else
20 Result := Result ∗ x
21 y := y − 1
22 end
23 variant y
24 end
25 ensure
26 Result = mn

27 end

Figure 9: Exponentiation by successive squaring.

Using only (17) would lead to the inefficient (n − 1)-multiplication algorithm,
but we may use (16) for even values of y = 2z. This leads to the algorithm in
Figure 9.

Proving initiation is trivial. Consecution is a direct application of the (16)
and (17) properties.

4.2.4 Long integer addition

The algorithm for long integer addition computes the sum of two integers a
and b given in any base as arrays of positional digits starting from the least
significant position. For example, the array sequence 〈3, 2, 0, 1〉 represents the
number 138 in base 5 as 3 · 50 + 2 · 51 + 0 · 52 + 1 · 53 = 138. For simplicity
of representation, in this algorithm we use arrays indexed by 0, so that we can
readily express the value encoded in base b by an array a as the sum:

a.count∑
k=0

a[k] · bk.

27

The postcondition of the long integer addition algorithm has two clauses.
One specifies that the pairwise sum of elements in a and b encodes the same
number as Result:

n−1∑
k=0

(a[k] + b[k]) · basek =

n∑
k=0

Result[k] · basek. (18)

Result may have one more digit than a or b; hence the different bound in the
two sums, where n denotes a’s and b’s length (normally written a.count and
b.count). The second postcondition clause is the consistency constraint that
Result is indeed a representation in base base:

has base (Result, base), (19)

where the predicate has base is defined by a quantification over the array’s
length:

has base (v, b) ⇐⇒ ∀k ∈ N : 0 ≤ k < v.count =⇒ 0 ≤ v[k] < b.

Both postcondition clauses appear mutated in the loop invariant. First, we
rewrite Result in slice form Result [0..n] in (18) and (19). The first essential
invariant clause follows by applying constant relaxation to (19), with the variable
expression i− 1 replacing constant n:

has base (Result [0..i − 1], base).

The decrement is required because the loop updates i at the end of each itera-
tion; it is a form of aging (see Section 3.2).

To get the other part of the essential invariant, we first highlight the last
term in the summation on the right-hand side of (18):

n−1∑
k=0

(a[k] + b[k]) · basek = Result[n] · basen +

n−1∑
k=0

Result[k] · basek.

We then introduce variables i and carry, replacing constants n and Result[n].
Variable i is the loop counter, also mentioned in the other invariant clause;
carry, as the name indicates, stores the remainder of each pairwise addition,
which will be carried over to the next digit.

The domain property that the integer division by b of the sum of two b-base
digits v1, v2 is less than b (all variables are integer):

b > 0 ∧ v1, v2 ∈ [0..b− 1] =⇒ (v1 + v2)//b ∈ [0..b− 1]

suggests the bounding invariant clause 0≤ carry <base . Figure 10 shows the
resulting implementation, where the most significant digit is set after the loop
before terminating.

Initiation is trivial under the convention that an empty sum evaluates to
zero. Consecution easily follows from the domain-theoretic properties of the
operations in the loop body, and in particular from how the carry and the
current digit d are set in each iteration.

28

1 addition (a, b: ARRAY [INTEGER];
2 base : INTEGER): ARRAY [INTEGER]
3 require
4 base >0
5 a.count = b.count = n ≥ 1
6 has base (a, base) −− a is a valid encoding in base base
7 has base (b, base) −− b is a valid encoding in base base
8 a.lower = b.lower = 0 −− For simplicity of representation
9 local

10 i , d, carry : INTEGER
11 do
12 Result := {0}n+1 −− Initialize Result to an array of size n+ 1 with all 0s
13 carry := 0
14 from
15 i := 0
16 invariant

17
∑i−1

k=0(a[k] + b[k])·basek = carry·basei +
∑i−1

k=0Result[k]·basek

18 has base (Result [0..i−1], base)
19 0≤ carry <base
20 until
21 i = n
22 loop
23 d := a [i] + b [i] + carry
24 Result [i] := d \\ base
25 carry := d // base
26 i := i + 1
27 variant n − i end
28 Result [n] := carry
29 ensure

30
∑n−1

k=0 (a[k] + b[k])·basek =
∑n

k=0Result[k]·basek

31 has base (Result, base)
32 end

Figure 10: Long integer addition.

4.3 Sorting

A number of important algorithms sort an array based on pairwise comparisons
and swaps of elements.The following domain-theory notations will be useful for
arrays a and b:

• perm (a,b) expresses that the arrays are permutations of each other (their
elements are the same, each occurring the same number of times as in the
other array).

• sorted (a) expresses that the array elements appear in increasing order:
∀i ∈[a.lower..a.upper − 1]: a [i] ≤ a [i + 1].

29

The sorting algorithms considered sort an array in place, with the specifica-
tion:

sort (a: ARRAY [T])
require

a.lower = 1
a.count = n ≥ 1

ensure
perm (a, old a)
sorted (a)

The type T indicates a generic type that is totally ordered and provides the
comparison operators <, ≤, ≥, and >. The precondition that the array be
indexed from 1 and non-empty is a simplification that can be easily dropped;
we adopt it in this section as it focuses the presentation of the algorithms on
the interesting cases. For brevity, we also use n as an alias of a’s length a.count.

The notation a[i .. j]∼x, for an array slice a [i .. j] , a scalar value x, and a
comparison operator ∼ among <, ≤, ≥, and >, denotes that all elements in the
slice satisfy ∼ with respect to x: it is a shorthand for ∀k ∈ [i..j]: a[k] ∼ x.

4.3.1 Quick sort: partitioning

At the core of the well-known quick sort algorithm lies the partitioning proce-
dure, which includes loops with an interesting invariant; we analyze it in this
section.

The procedure rearranges the elements in an array a according to an arbi-
trary value pivot given as input: all elements in positions up to Result included
are no larger than pivot, and all elements in the other “high” portion (after posi-
tion Result) of the array are no smaller than pivot . Formally, the postcondition
is:

0 ≤ Result≤n

perm (a, old a)

a [1.. Result]≤ pivot

a [Result + 1..n] ≥ pivot .

In the special case where all elements in a are greater than or equal to pivot,
Result will be zero, corresponding to the “low” portion of the array being
empty.

Quick sort works by partitioning an array, and then recursively partitioning
each of the two portions of the partition. The choice of pivot at every recursive
call is crucial to guarantee a good performance of quick sort. Its correctness,
however, relies solely on the correctness of partition , not on the choice of pivot.
Hence the focus of this section is on partition alone.

The bulk of the loop invariant follows from the last three clauses of the
postcondition. perm (a, old a) appears unchanged in the essential invariant,
denoting the fact that the whole algorithm does not change a’s elements but

30

only rearranges them. The clauses comparing a’s slices to pivot determine the
rest of the essential invariant, once we modify them by introducing loop variables
low and high decoupling and relaxing “constant” Result:

perm (a, old a)

a [1.. low − 1]≤ pivot

a [high + 1..n] ≥ pivot .

The formula low = high—removed when decoupling—becomes the main loop’s
exit condition. Finally, a similar variable introduction applied twice to the
postcondition 0 ≤ Result≤n suggests the bounding invariant clause

1 ≤ low≤ high ≤ n .

The slice comparison a [1.. low − 1]≤ pivot also includes aging of variable
low. This makes the invariant clauses fully symmetric, and suggests a matching
implementation with two inner loops nested inside an overall outer loop. The
outer loop starts with low = 1 and high = n and terminates, with low = high,
when the whole array has been processed. The first inner loop increments low
until it points to an element that is larger than pivot, and hence is in the wrong
portion of the array. Symmetrically, the outer loop decrements high until it
points to an element smaller than pivot. After low and high are set by the inner
loops, the outer loop swaps the corresponding elements, thus making progress
towards partitioning the array. Figure 11 shows the resulting implementation.
The closing conditional in the main routine’s body ensures that Result points
to an element no greater than pivot; this is not enforced by the loop, whose
invariant leaves the value of a [low] unconstrained. In particular, in the special
case of all elements being no less than pivot, low and Result are set to zero
after the loop.

In the correctness proof, it is useful to discuss the cases a [low] < pivot and
a [low] ≥ pivot separately when proving consecution. In the former case, we
combine a [1.. low − 1]≤ pivot and a [low] < pivot to establish the backward
substitution a [1.. low] ≤ pivot. In the latter case, we combine low = high,
a [high + 1..n] ≥ pivot and a [low] ≥ pivot to establish the backward substi-
tution a [low ..n] ≥ pivot. The other details of the proof are straightforward.

4.3.2 Selection sort

Selection sort is a straightforward sorting algorithm based on a simple idea: to
sort an array, find the smallest element, put it in the first position, and repeat
recursively from the second position on. Pre- and postcondition are the usual
ones for sorting (see Section 4.3), and hence require no further comment.

The first postcondition clause perm (a, old a) is also an essential loop in-
variant:

perm (a, old a). (20)

31

If we introduce a variable i to iterate over the array, another essential invariant
clause is derived by writing a in slice form a [1.. n] and then by relaxing n into
i:

sorted (a [1.. i]) (21)

with the bounding clause

1 ≤ i ≤ n, (22)

1 partition (a: ARRAY [T]; pivot: T): INTEGER
2 require
3 a.lower = 1
4 a.count = n ≥ 1
5 local
6 low, high : INTEGER
7 do
8 from low := 1 ; high := n
9 invariant

10 1≤ low≤ high ≤ n
11 perm (a, old a)
12 a [1.. low − 1]≤ pivot
13 a [high + 1..n] ≥ pivot
14 until low = high
15 loop
16 from −− This loop increases low
17 invariant −− Same as outer loop
18 until low = high ∨ a[low] > pivot
19 loop low := low + 1 end
20 from −− This loop decreases high
21 invariant −− Same as outer loop
22 until low = high ∨ a[high] < pivot
23 loop high := high − 1 end
24 a.swap (low, high) −− Swap the elements in positions low and high
25 variant high − low end
26 if a [low] ≥ pivot then
27 low := low − 1
28 high := low
29 end
30 Result := low
31 ensure
32 0≤ Result≤n
33 perm (a, old a)
34 a [1.. Result]≤ pivot
35 a [Result + 1..n] ≥ pivot
36 end

Figure 11: Quick sort: partitioning.

32

which ensures that the sorted slice a [1.. i] is always non-empty. The final com-
ponent of the invariant is also an essential weakening of the postcondition, but is
less straightforward to derive by syntactic mutation. If we split a [1.. n] into the
concatenation a [1.. i − 1] ◦ a [i .. n], we notice that sorted (a [1.. i − 1] ◦ a [i .. n])
implies

∀k ∈ [i..n] : a [1.. i − 1]≤ a[k] (23)

as a special case. Formula (23) guarantees that the slice a[i .. n], which has not
been sorted yet, contains elements that are no smaller than any of those in the
sorted slice a [1.. i − 1].

The loop invariants (20)–(22) apply—possibly with minimal changes due
to inessential details in the implementation—for any sorting algorithm that
sorts an array sequentially, working its way from lower to upper indices. To
implement the behavior specific to selection sort, we introduce an inner loop
that finds the minimum element in the slice a [i .. n], which is not yet sorted.
To this end, it uses variables j and m: j scans the slice sequentially starting from
position i+1; m points to the minimum element found so far. Correspondingly,
the inner loop’s postcondition is a[m]≤ a[i .. n], which induces the essential
invariant clause

a [m] ≤ a [i .. j − 1] (24)

specific to the inner loop, by constant relaxation and aging. The outer loop’s
invariant (23) clearly also applies to the inner loop—which does not change i
or n—where it implies that the element in position m is an upper bound on all
elements already sorted:

a [1.. i − 1] ≤ a [m]. (25)

Also specific to the inner loop are more complex bounding invariants relating
the values of i, j, and m to the array bounds:

1 ≤ i < j ≤ n+ 1

i ≤ m < j.

The implementation in Figure 12 follows these invariants. The outer loop’s only
task is then to swap the “minimum” element pointed to by m with the lowest
available position pointed to by i.

The most interesting aspect of the correctness proof is proving consecution of
the outer loop’s invariant clause (21), and in particular that a[i] ≤ a[i + 1]. To
this end, notice that (24) guarantees that a [m] is the minimum of all elements
in positions from i to n; and (25) that it is an upper bound on the other elements
in positions from 1 to i − 1. In particular, a[m]≤ a[i+1] and a[i − 1]≤ a[m]
hold before the swap on line 30. After the swap, a[i] equals the previous value
of a[m], thus a[i − 1]≤ a[i] ≤ a[i + 1] holds as required. A similar reasoning
proves the inductiveness of the main loop’s other invariant clause (23).

33

1 selection sort (a: ARRAY [T])
2 require
3 a.lower = 1
4 a.count = n ≥ 1
5 local
6 i , j , m: INTEGER
7 do
8 from i := 1
9 invariant

10 1≤ i ≤ n
11 perm (a, old a)
12 sorted (a [1.. i])
13 ∀k ∈ [i..n]: a [1..i − 1]≤ a [k]
14 until
15 i = n
16 loop
17 from j := i + 1 ; m := i
18 invariant
19 1≤ i < j ≤ n + 1
20 i ≤ m <j
21 perm (a, old a)
22 sorted (a [1.. i])
23 a [1.. i − 1]≤ a [m]≤ a [i .. j − 1]
24 until
25 j = n + 1
26 loop
27 if a [j] <a [m] then m := j end
28 j := j + 1
29 variant n − i − j end
30 a.swap (i , m) −− Swap the elements in positions i and m
31 i := i + 1
32 variant n − i end
33 ensure
34 perm (a, old a)
35 sorted (a)
36 end

Figure 12: Selection sort.

4.3.3 Insertion sort

Insertion sort is another sub-optimal sorting algorithm that is, however, simple
to present and implement, and reasonably efficient on arrays of small size. As
the name suggests, insertion sort hinges on the idea of re-arranging elements in
an array by inserting them in their correct positions with respect to the sorting
order; insertion is done by shifting the elements to make room for insertion.
Pre- and postcondition are the usual ones for sorting (see Section 4.3 and the
comments in the previous subsections).

34

The main loop’s essential invariant is as in selection sort (Section 4.3.2) and
other similar algorithms, as it merely expresses the property that the sorting
has progressed up to position i and has not changed the array content:

sorted (a [1.. i]) (26)

perm (a, old a). (27)

This essential invariant goes together with the bounding clause 1 ≤ i ≤ n.
The main loop includes an inner loop, whose invariant captures the specific

strategy of insertion sort. The outer loop’s invariant (27) must be weakened,
because the inner loop overwrites a [i] while progressively shifting to the right
elements in the slice a [1.. j]. If a local variable v stores the value of a [i]
before entering the inner loop, we can weaken (27) as:

perm (a [1.. j] ◦ v ◦ a[j + 2..n], old a), (28)

where “◦” is the concatenation operator; that is, a’s element at position j+ 1 is
the current candidate for inserting v—the value temporarily removed. After the
inner loop terminates, the outer loop will put v back into the array at position
j + 1 (line 28 in Figure 13), thus restoring the stronger invariant (27) (and
establishing inductiveness for it).

The clause (26), crucial for the correctness argument, is also weakened in
the inner loop. First, we “age” i by replacing it with i − 1; this corresponds
to the fact that the outer loop increments i at the beginning, and will then
re-establish (26) only at the end of each iteration. Therefore, the inner loop can
only assume the weaker invariant:

sorted (a [1.. i − 1]) (29)

that is not invalidated by shifting (which only temporarily duplicates elements).
Shifting has, however, another effect: since the slice a[j + 1.. i] contains ele-
ments shifted up from the sorted portion, the slice a[j + 1.. i] is itself sorted,
thus the essential invariant:

sorted (a [j + 1.. i]) . (30)

We can derive the pair of invariants (29)–(30) from the inner loop’s post-
condition (26): write a [1.. i] as a [1.. i − 1] ◦ a[i .. i] ; weaken the formula
sorted (a [1.. i − 1] ◦ a[i .. i]) into the conjunction of sorted(a [1.. i − 1])
and sorted (a[i .. i]) ; replace one occurrence of constant i in the second con-
junct by a fresh variable j and age to derive sorted (a [j + 1.. i]) .

Finally, there is another essential invariant, specific to the inner loop. Since
the loop’s goal is to find a position, pointed to by j + 1, before i where v can
be inserted, its postcondition is:

v ≤ a [j + 1.. i] , (31)

which is also a suitable loop invariant, combined with a bounding clause that
constrains j and i:

0 ≤ j < i ≤ n. (32)

35

Overall, clauses (28)–(32) are the inner loop invariant; and Figure 13 shows the
matching implementation.

1 insertion sort (A: ARRAY [T])
2 require
3 a.lower = 1 ; a.count = n ≥ 1
4 local
5 i , j : INTEGER ; v : T
6 do
7 from i := 1
8 invariant
9 1≤ i ≤ n

10 perm (a, old a)
11 sorted (a [1.. i])
12 until i = n
13 loop
14 i := i + 1
15 v := a [i]
16 from j := i − 1
17 invariant
18 0≤ j < i ≤ n
19 perm (a [1.. j] ◦ v ◦ a[j + 2..n], old a)
20 sorted (a [1.. i − 1])
21 sorted (a [j + 1.. i])
22 v ≤ a [j + 1..i]
23 until j = 0 or a [j] ≤ v
24 loop
25 a [j + 1] := a [j]
26 j := j − 1
27 variant j − i end
28 a [j + 1] := v
29 variant n − i end
30 ensure
31 perm (a, old a)
32 sorted (a)
33 end

Figure 13: Insertion sort.

As usual for this kind of algorithms, the crux of the correctness argument
is proving that the outer loop’s essential invariant is inductive, based on the
inner loop’s. The formal proof uses the following informal argument. Formulas
(29) and (31) imply that inserting v at j + 1 does not break the sortedness of
the slice a [1.. j + 1]. Furthermore, (30) guarantees that the elements in the
“upper” slice a [j + 1.. i] are also sorted with a [j] ≤ a[j + 1]≤ a[j + 2].
(The detailed argument would discuss the cases j = 0, 0 < j < i − 1, and
j = i− 1.) In all, the whole slice a [1.. i] is sorted, as required by (26).

36

1 bubble sort basic (a: ARRAY [T])
2 require
3 a.lower = 1 ; a.count = n ≥ 1
4 local
5 swapped: BOOLEAN
6 i : INTEGER
7 do
8 from swapped := True
9 invariant

10 perm (a, old a)
11 ¬ swapped =⇒sorted (a)
12 until ¬ swapped
13 loop
14 swapped := False
15 from i := 1
16 invariant
17 1≤ i ≤ n
18 perm (a, old a)
19 ¬ swapped =⇒sorted (a [1.. i])
20 until i = n
21 loop
22 if a [i] >a [i + 1] then
23 a.swap (i , i + 1)−− Swap the elements in positions i and i+ 1
24 swapped := True
25 end
26 i := i + 1
27 variant n − i end
28 variant |inversions (a) |
29 end
30 ensure
31 perm (a, old a)
32 sorted (a)
33 end

Figure 14: Bubble sort (basic version).

4.3.4 Bubble sort (basic)

As a sorting method, bubble sort is known not for its performance but for its
simplicity [37, Vol. 3, Sec. 5.2.2]. It relies on the notion of inversion: a pair of
elements that are not ordered, that is, such that the first is greater than the
second. The straightforward observation that an array is sorted if and only if it
has no inversions suggests to sort an array by iteratively removing all inversions.
Let us present invariants that match such a high-level strategy, deriving them
from the postcondition (which is the same as the other sorting algorithms of
this section).

The postcondition perm (a, old a) that a’s elements be not changed is also

37

an invariant of the two nested loops used in bubble sort. The other postcondition
sorted (a) is instead weakened, but in a way different than in other sorting
algorithms seen before. We introduce a Boolean flag swapped, which records if
there is some inversion that has been removed by swapping a pair of elements.
When swapped is false after a complete scan of the array a, no inversions have
been found, and hence a is sorted. Therefore, we use ¬ swapped as exit condition
of the main loop, and the weakened postcondition

¬ swapped =⇒sorted (a) (33)

as its essential loop invariant.
The inner loop performs a scan of the input array that compares all pairs

of adjacent elements and swaps them when they are inverted. Since the scan
proceeds linearly from the first element to the last one, we get an essential
invariant for the inner loop by replacing n by i in (33) written in slice form:

¬ swapped =⇒sorted (a [1.. i]) . (34)

The usual bounding invariant 1≤ i ≤ n and the outer loop’s invariant clause
perm (a, old a) complete the inner loop invariant.

The implementation is now straightforward to write as in Figure 14. The
inner loop, in particular, sets swapped to True whenever it finds some inversion
while scanning. This signals that more scans are needed before the array is
certainly sorted.

Verifying the correctness of the annotated program in Figure 14 is easy,
because the essential loop invariants (33) and (34) are trivially true in all itera-
tions where swapped is set to True. On the other hand, this style of specification
makes the termination argument more involved: the outer loop’s variant (line 28
in Figure 14) must explicitly refer to the number of inversions left in a, which
are decreased by complete executions of the inner loop.

4.3.5 Bubble sort (improved)

The inner loop in the basic version of bubble sort—presented in Section 4.3.4—
always performs a complete scan of the n-element array a. This is often redun-
dant, because swapping adjacent inverted elements guarantees that the largest
misplaced element is sorted after each iteration. Namely, the largest element
reaches the rightmost position after the first iteration, the second-largest one
reaches the penultimate position after the second iteration, and so on. This
section describes an implementation of bubble sort that takes advantage of this
observation to improve the running time.

The improved version still uses two nested loops. The outer loop’s essential
invariant has two clauses:

sorted (a [i .. n]) (35)

is a weakening of the postcondition that encodes the knowledge that the “upper”
part of array a is sorted, and

i <n =⇒ a [1.. i] ≤ a[i + 1] (36)

38

specifies that the elements in the unsorted slice a [1.. i] are no larger than the
first “sorted” element a[i + 1]. The expression a [1.. i] ≤ a[i + 1] is a mutation
(constant relaxation and aging) of a [1.. n] ≤ a[n], which is, in turn, a domain
property following from the postcondition. Variable i is now used in the outer
loop to mark the portion still to be sorted; correspondingly, (36) is well-defined
only when i <n, and the bounding invariant clause 1 ≤ i ≤ n is also part of the
outer loop’s specification.

1 bubble sort improved (a: ARRAY [T])
2 require
3 a.lower = 1 ; a.count = n ≥ 1
4 local
5 i , j : INTEGER
6 do
7 from i := n
8 invariant
9 1≤ i ≤ n

10 perm (a, old a)
11 sorted (a [i .. n])
12 i <n =⇒ a[1..i]≤ a[i + 1]
13 until i = 1
14 loop
15 from j := 1
16 invariant
17 1≤ i ≤ n
18 1≤ j ≤ i
19 perm (a, old a)
20 sorted (a [i .. n])
21 i <n =⇒ a[1..i]≤ a[i + 1]
22 a [1.. j] ≤ a[j]
23 until j = i
24 loop
25 if a [j] >a [j + 1] then a.swap (j, j + 1) end
26 j := j + 1
27 variant i − j
28 end
29 i := i − 1
30 variant i
31 end
32 ensure
33 perm (a, old a)
34 sorted (a)
35 end

Figure 15: Bubble sort (improved version).

39

Continuing with the same logic, the inner loop’s postcondition:

a [1.. i] ≤ a[i] (37)

states that the largest element in the slice a [1.. i] has been moved to the highest
position. Constant relaxation, replacing i (not changed by the inner loop) with
a fresh variable j, yields a new essential component of the inner loop’s invariant:

a [1.. j] ≤ a[j] . (38)

The outer loop’s invariant and the bounding clause 1≤ j ≤ i complete the spec-
ification of the inner loop. Figure 15 displays the corresponding implementation.

The correctness proof follows standard strategies. In particular, the inner
loop’s postcondition (37)—i.e., the inner loop’s invariant when j = i—implies
a[i − 1]≤ a[i] as a special case. This fact combines with the other clause (36)
to establish the inductiveness of the main loop’s essential clause:

sorted (a[i .. n]).

Finally, proving termination is trivial for this program because each loop has
an associated iteration variable that is unconditionally incremented or decre-
mented.

4.3.6 Comb sort

In an attempt to improve performance in critical cases, comb sort generalizes
bubble sort based on the observation that small elements initially stored in the
right-most portion of an array require a large number of iterations to be sorted.
This happens because bubble sort swaps adjacent elements; hence it takes n
scans of an array of size n just to bring the smallest element from the right-most
nth position to the first one, where it belongs. Comb sort adds the flexibility of
swapping non-adjacent elements, thus allowing for a faster movement of small
elements from right to left. A sequence of non-adjacent equally-spaced elements
also conveys the image of a comb’s teeth, hence the name “comb sort”.

Let us make this intuition rigorous and generalize the loop invariants, and the
implementation, of the basic bubble sort algorithm described in Section 4.3.4.
Comb sort is also based on swapping elements, therefore the—now well-known—
invariant perm (a, old a) also applies to its two nested loops. To adapt the other
loop invariant (33), we need a generalization of the predicate sorted that fits
the behavior of comb sort. Predicate gap sorted (a, d), defined as:

gap sorted(a, d) ⇐⇒ ∀k ∈ [a.lower .. a.upper − d] : a [k] ≤ a [k + d]

holds for arrays a such that the subsequence of d-spaced elements is sorted.
Notice that, for d = 1, gap sorted reduces to sorted:

gap sorted (a, 1) ⇐⇒ sorted (a).

40

This fact will be used to prove the postcondition from the loop invariant upon
termination.

With this new piece of domain theory, we can easily generalize the essential
and bounding invariants of Figure 14 to comb sort. The outer loop considers
decreasing gaps; if variable gap stores the current value, the bounding invariant

1 ≤ gap ≤ n

defines its variability range. Precisely, the main loop starts with with gap = n
and terminates with gap = 1, satisfying the essential invariant:

¬ swapped =⇒gap sorted (a, gap). (39)

The correctness of comb sort does not depend on how gap is decreased, as long
as it eventually reaches 1; if gap is initialized to 1, comb sort behaves exactly as
bubble sort. In practice, it is customary to divide gap by some chosen parameter
c at every iteration of the main loop.

Let us now consider the inner loop, which compares and swaps the sub-
sequence of d-spaced elements. The bubble sort invariant (34) generalizes to:

¬ swapped =⇒gap sorted (a [1.. i − 1 + gap], gap) (40)

and its matching bounding invariant is:

1 ≤ i < i+ gap ≤ n+ 1

so that when i = n+ 1 + gap the inner loop terminates and (40) is equivalent to
(39). This invariant follows from constant relaxation and aging; the substituted
expression i − 1 + gap is more involved, to accommodate how i is used and
updated in the inner loop, but is otherwise semantically straightforward.

The complete implementation is shown in Figure 16. The correctness argu-
ment is exactly as for bubble sort in Section 4.3.4, but exploits the properties
of the generalized predicate gap sorted instead of the simpler sorted.

4.4 Dynamic programming

Dynamic programming is an algorithmic technique used to compute functions
that have a natural recursive definition. Dynamic programming algorithms
construct solutions iteratively and store the intermediate results, so that the
solution to larger instances can reuse the previously computed solutions for
smaller instances. This section presents a few examples of problems that lend
themselves to dynamic programming solutions.

4.4.1 Unbounded knapsack problem with integer weights

We have an unlimited collection of items of n different types. An item of type
k, for k = 1, . . . , n, has weight w[k] and value v[k]. The unbounded knapsack

41

1 comb sort (a: ARRAY [T])
2 require
3 a.lower = 1 ; a.count = n ≥ 1
4 local
5 swapped: BOOLEAN
6 i , gap: INTEGER
7 do
8 from swapped := True ; gap := n
9 invariant

10 1≤ gap≤ n
11 perm (a, old a)
12 ¬ swapped =⇒ gap sorted (a, gap)
13 until
14 ¬ swapped and gap = 1
15 loop
16 gap := max (1, gap //c)
17 −− c > 1 is a parameter whose value does not affect correctness
18 swapped := False
19 from i := 1
20 invariant
21 1≤ gap≤ n
22 1≤ i < i + gap≤n + 1
23 perm (a, old a)
24 ¬ swapped =⇒ gap sorted (a [1..i − 1 + gap], gap)
25 until
26 i + gap = n + 1
27 loop
28 if a [i] >a[i + gap] then
29 a.swap (i , i + gap)
30 swapped := True
31 end
32 i := i + 1
33 variant n + 1 − gap − i end
34 variant |inversions (a) | end
35 ensure
36 perm (a, old a)
37 sorted (a)
38 end

Figure 16: Comb sort.

problem asks what is the maximum overall value that one can carry in a knap-
sack whose weight limit is a given weight. The attribute “unbounded” refers to
the fact that we can pick as many object of any type as we want: the only limit
is given by the input value of weight, and by the constraint that we cannot store
fractions of an item—either we pick it or we don’t.

Any vector s of n nonnegative integers defines a selection of items, whose

42

overall weight is given by the scalar product:

s · w =
∑

1≤k≤n

s[k]w[k]

and whose overall value is similarly given by the scalar product s · v. Using
this notation, we introduce the domain-theoretical function max knapsack which
defines the solution of the knapsack problem given a weight limit b and items
of n types with weight and value given by the vectors w and v:

max knapsack (b, v, w, n) = κ⇐⇒

 ∃s ∈ Nn : s · w ≤ b ∧ s · v = κ
∧

∀t ∈ Nn : t · w ≤ b =⇒ t · v ≤ κ

 ,

that is, the largest value achievable with the given limit. Whenever weights
w, values v, and number n of item types are clear from the context, we will
abbreviate max knapsack (b, v, w, n) by just K(b).

The unbounded knapsack problem is NP-complete [24, 36]. It is, however,
weakly NP-complete [51], and in fact it has a nice solution with pseudo-polyno-
mial complexity based on a recurrence relation, which suggests a straightforward
dynamic programming algorithm. The recurrence relation defines the value of
K(b) based on the values K(b′) for b′ < b.

The base case is for b = 0. If we assume, without loss of generality, that no
item has null weight, it is clear that we cannot store anything in the knapsack
without adding some weight, and hence the maximum value attainable with a
weight limit zero is also zero: K(0) = 0. Let now b be a generic weight limit
greater than zero. To determine the value of K(b), we make a series of attempts
as follows. First, we select some item of type k, such that w[k] ≤ b. Then, we
recursively consider the best selection of items for a weight limit of b − w[k];
and we set up a new selection by adding one item of type k to it. The new
configuration has weight no greater than b− w[k] + w[k] = b and value

v[k] +K(b− w[k]),

which is, by inductive hypothesis, the largest achievable by adding an element of
type k. Correspondingly, the recurrence relation defines K(b) as the maximum
among all values achievable by adding an object of some type:

K(b) =

{
0 b = 0

max
{
v[k] +K(b− w[k])

∣∣ k ∈ [1..n] and 0 ≤ w[k] ≤ b
}

b > 0.

(41)
The dynamic programming solution to the knapsack problem presented in

this section computes the recursive definition (41) for increasing values of b.
It inputs arrays v and w (storing the values and weights of all elements), the
number n of element types, and the weight bound weight. The precondition
requires that weight be nonnegative, that all element weights w be positive, and

43

that the arrays v and w be indexed from 1 to n:

weight ≥ 0

w > 0

v. lower = w.lower = 1

v.upper = w.upper = n .

The last two clauses are merely for notational convenience and could be dropped.
The postcondition states that the routine returns the value K(weight) or, with
more precise notation:

Result = max knapsack (weight, v, w, n).

The main loop starts with b = 0 and continues with unit increments until
b = weight; each iteration stores the value of K(b) in the local array m, so that
m [weight] will contain the final result upon termination. Correspondingly, the
main loop’s essential invariant follows by constant relaxation:

• Variable m [weight] replaces constant Result, thus connecting m to the
returned result.

• The range of variables [1.. b] replaces constant weight, thus expressing the
loop’s incremental progress.

The loop invariant is thus:

∀y ∈ [0..b] : m[y] = max knapsack(y, v, w, n), (42)

which goes together with the bounding clause

0 ≤ b ≤ weight

that qualifies b’s variability domain. With a slight abuse of notation, we con-
cisely write (42), and similar expressions, as:

m[0..b] = max knapsack([0..b], v, w, n). (43)

The inner loop computes the maximum of definition (41) iteratively, for
all element types j, where 1 ≤ j ≤ n. To derive its essential invariant, we
first consider its postcondition (similarly as the analysis of selection sort in
Section 4.3.2). Since the inner loop terminates at the end of the outer loop’s
body, the inner’s postcondition is the outer’s invariant (43). Let us rewrite it
by highlighting the value m[b] computed in the latest iteration:

m[0..b− 1] = max knapsack ([0..b− 1], v, w, n) (44)

m[b] = best value (b, v, w, n, n). (45)

Function best value is part of the domain theory for knapsack, and it expresses
the “best” value that can be achieved given a weight limit of b, j ≤ n element

44

types, and assuming that the values K(b′) for lower weight limits b′ < b are
known:

best value (b, v, w, j, n) = max
{
v[k]+K(b−w[k])

∣∣ k ∈ [1..j] and 0 ≤ w[k] ≤ b
}
.

If we substitute variable j for constant n in (45), expressing the fact that the
inner loop tries one element type at a time, we get the inner loop essential
invariant:

m[0..b− 1] = max knapsack ([0..b− 1], v, w, n)

m[b] = best value (b, v, w, j,m).

The obvious bounding invariants 0 ≤ b ≤ weight and 0≤ j ≤ n complete the
inner loop’s specification. Figure 17 shows the corresponding implementation.

The correctness proof reverses the construction we highlighted following the
usual patterns seen in this section. In particular, notice that:

• When j = n the inner loop terminates, thus establishing (44) and (45).

• (44) and (45) imply (43) because the recursive definition (41) for some b
only depends on the previous values for b′ < b, and (44) guarantees that
m stores those values.

4.4.2 Levenshtein distance

The Levenshtein distance of two sequences s and t is the minimum number of
elementary edit operations (deletion, addition, or substitution of one element in
either sequence) necessary to turn s into t. The distance has a natural recursive
definition:

distance(s, t) =

0 m = n = 0

m m > 0, n = 0

n n > 0,m = 0

distance
(
s[1..m− 1], t[1..n− 1]

)
m > 0, n > 0, s[m] = t[n]

1 + min

 distance(s[1..m− 1], t),

distance(s, t[1..n− 1]),

distance(s[1..m− 1], t[1..n− 1])

 m > 0, n > 0, s[m] 6= t[n],

where m and n, respectively, denote s’s and t’s length (written s .count and
t .count when s and t are arrays). The first three cases of the definition are
trivial and correspond to when s, t, or both are empty: the only way to get
a non-empty string from an empty one is by adding all the former’s elements.
If s and t are both non-empty and their last elements coincide, then the same
number of operations as for the shorter sequences s[1..m − 1] and t[1..n − 1]
(which omit the last elements) are needed. Finally, if s’s and t’s last elements
differ, there are three options: (1) delete s[m] and then edit s[1..m − 1] into
t; (2) edit s into t[1..n − 1] and then add t[n] to the result; (3) substitute t[n]
for s[m] and then edit the rest s[1..m − 1] into t[1..n − 1]. Whichever of the

45

1 knapsack (v, w: ARRAY [INTEGER]; n, weight: INTEGER): INTEGER
2 require
3 weight ≥ 0
4 w >0
5 v. lower = w.lower = 1
6 v.upper = w.upper = n
7 local
8 b, j : INTEGER
9 m: ARRAY [INTEGER]

10 do
11 from b := 0 ; m [0] := 0
12 invariant
13 0≤ b ≤ weight
14 m [0..b] = max knapsack ([0..b], v, w, n)
15 until b = weight
16 loop
17 b := b + 1
18 from j := 0 ; m [b] := m [b − 1]
19 invariant
20 0≤ b ≤ weight
21 0≤ j ≤ n
22 m [0..b − 1] = max knapsack ([0..b − 1], v, w, n)
23 m [b] = best value (b, v, w, j , n)
24 until j = n
25 loop
26 j := j + 1
27 if w [j] ≤ b and m [b] <v [j] + m [b − w [j]] then
28 m [b] := v [j] + m [b − w [j]]
29 end
30 variant n − j end
31 variant weight − b end
32 Result := m [weight]
33 ensure
34 Result = max knapsack (weight, v, w, n)
35 end

Figure 17: Unbounded knapsack problem with integer weights.

options (1), (2), and (3) leads to the minimal number of edit operations is the
Levenshtein distance.

It is natural to use a dynamic programming algorithm to compute the Lev-
enshtein distance according to its recursive definition. The overall specification,
implementation, and the corresponding proofs, are along the same lines as the
knapsack problem of Section 4.4.1; therefore, we briefly present only the most
important details. The postcondition is simply

Result = distance (s, t).

46

The implementation incrementally builds a bidimensional matrix d of dis-
tances such that the element d[i, j] stores the Levenshtein distance of the se-
quences s[1..i] and t[1..j]. Correspondingly, there are two nested loops: the
outer loop iterates over rows of d, and the inner loop iterates over each col-
umn of d. Their essential invariants express, through quantification, the partial
progress achieved after each iteration:

∀h ∈ [0..i− 1],∀k ∈ [0..n] : d[h, k] = distance(s[1..h], t[1..k])

∀h ∈ [0..i− 1],∀k ∈ [0..j − 1] : d[h, k] = distance(s[1..h], t[1..k]).

The standard bounding invariants on the loop variables i and j complete the
specification.

Figure 18 shows the implementation, which uses the compact across nota-
tion for loops, similar to “for” loops in other languages. The syntax

across [a ..b] invariant I as k loop B end

is simply a shorthand for:

from k := a invariant I until k = b + 1 loop B ; k := k + 1 end

For brevity, Figure 18 omits the obvious loop invariants of the initialization
loops at lines 11 and 12.

4.5 Computational geometry: Rotating calipers

The diameter of a polygon is its maximum width, that is the maximum dis-
tance between any pair of its points. For a convex polygon, it is clear that a
pair of vertices determine the diameter (such as vertices p3 and p7 in Figure 19).
Shamos showed [59] that it is not necessary to check all O(n2) pairs of vertices:
his algorithm, described later, runs in time O(n). The correctness of the algo-
rithm rests on the notions of lines of support and antipodal points. A line of
support is analogue to a tangent: a line of support of a convex polygon p is a
line that intersects p such that the interior of p lies entirely to one side of the
line. An antipodal pair is then any pair of p’s vertices that lie on two parallel
lines of support. It is a geometric property that an antipodal pair determines
the diameter of any polygon p, and that a convex polygon with n vertices has
O(n) antipodal pairs. Figure 19(a), for example, shows two parallel lines of
support that identify the antipodal pair (p1, p5).

Shamos’s algorithms efficiently enumerates all antipodal pairs by rotating
two lines of support while maintaining them parallel. After a complete rotation
around the polygon, they have touched all antipodal pairs, and hence the al-
gorithm can terminate. Observing that two parallel support lines resemble the
two jaws of a caliper, Toussaint [62] suggested the name “rotating calipers” to
describe Shamos’s technique.

A presentation of the rotating calipers algorithm and a proof of its correct-
ness with the same level of detail as the algorithms in the previous sections
would require the development of a complex domain theory for geometric en-
tities, and of the corresponding implementation primitives. Such a level of

47

1 Levenshtein distance (s , t : ARRAY [T]): INTEGER
2 require
3 s . lower = t.lower = 1
4 s .count = m
5 t .count = n
6 local
7 i , j : INTEGER
8 d: ARRAY [INTEGER, INTEGER]
9 do

10 d := {0}m+1 × {0}n+1

11 across [1..m] as i loop d [i ,0] := i end
12 across [1..n] as j loop d [0, j] := j end
13

14 across [1..m] as i
15 invariant
16 1≤ i ≤ m + 1
17 ∀h ∈ [0..i− 1], ∀k ∈ [0..m]: d [h, k] = distance (s [1..h], t [1..k])
18 loop
19 across [1..n] as j
20 invariant
21 1≤ i ≤ m + 1
22 1≤ j ≤ n + 1
23 ∀h ∈ [0..i− 1],∀k ∈ [0..j − 1]: d [h, k] = distance (s [1..h], t [1..k])
24 loop
25 if s [i] = t [j] then
26 d [i , j] := d [i − 1, j − 1]
27 else
28 d [i , j] := 1 + min (d [i − 1, j − 1], d [i, j − 1], d [i − 1, j])
29 end
30 end
31 end
32 Result := d [m, n]
33 ensure
34 Result = distance (s, t)
35 end

Figure 18: Levenshtein distance.

detail is beyond the scope of this paper; instead, we outline the essential traits
of the specification and give a description of the algorithm in pseudo-code in
Figure 20.6

The algorithm inputs a list p of at least three points such that it represents
a convex polygon (precondition on line 3) and returns the value of the polygon’s

6The algorithm in Figure 20 is slightly simplified, as it does not deal explicitly with the
special case where a line initially coincides with an edge: then, the minimum angle is zero,
and hence the next vertex not on the line should be considered. This problem can be avoided
by adjusting the initialization to avoid that a line coincides with an edge.

48

p1

p2

p3

p4
p5

p6

p7

jaw a

jaw b

angle a

angle b

(a) Initial jaw configuration: antipo-
dal pair (p1, p5).

p1

p2

p3

p4
p5

p6

p7

jaw a

jaw b

(b) Jaws after one iteration: antipodal
pair (p2, p5).

Figure 19: The rotating calipers algorithm illustrated.

diameter (postcondition on line 41).
It starts by adjusting the two parallel support lines on the two vertices with

the maximum difference in y coordinate, such as p1 and p5 in Figure 19(a).
Then, it enters a loop that computes the angle between each line and the next
vertex on the polygon, and rotates both jaws by the minimum of such angles.
At each iteration, it compares the distance between the new antipodal pair and
the currently stored maximum (in Result), and updates the latter if necessary.
In the example of Figure 19(a), jaw a determines the smallest angle, and hence
both jaws are rotated by angle a in Figure 19(b). Such an informal descrip-
tion suggests the obvious bounding invariants that the two jaws are maintained
parallel (line 18), Result varies between some initial value and the final value
diameter (p) (line 19), and the total rotation of the calipers is between zero and
180+180 (line 20). The essential invariant is, however, harder to state formally,
because it involves a subset of the antipodal pairs reached by the calipers. A
semi-formal presentation is:

Result = max

|p1, p2|
∣∣∣∣ p1, p2 ∈ p ∧

reached (p1, total rotation) ∧
reached (p2, total rotation)

whose intended meaning is that Result stores the maximum distance between
all points p1, p2 among p’s vertices that can be reached with a rotation of up to
total rotation degrees from the initial calipers’ horizontal positions.

4.6 Algorithms on data structures

Many data structures are designed around specific operations, which can be
performed efficiently by virtue of the characterizing properties of the structures.
This section presents linked lists and binary search trees and algorithms for some
of such operations. The presentation of their invariants clarifies the connection
between data-structure properties and the algorithms’ correct design.

49

1 diameter calipers (p: LIST [POINT]): INTEGER
2 require
3 p.count ≥ 3 ; p. is convex
4 local
5 jaw a, jaw b: VECTOR −− Jaws of the caliper
6 n a, n b: NATURAL −− Pointers to vertices of the polygon
7 angle a , angle b : REAL −− Angle measures
8 do
9 n a := “Index, in p, of the vertex with the minimum y coordinate”

10 n b := “Index, in p, of the vertex with the maximum y coordinate”
11

12 jaw a := “Horizontal direction from p[n a] pointing towards negative”
13 jaw b := “Horizontal direction from p[n b] pointing towards positive”
14 from
15 total rotation := 0
16 Result := |p[n a] − p[n b]| −− Distance between pair of vertices
17 invariant
18 parallel (jaw a, jaw b) −− Jaws are parallel
19 0 <Result≤ diameter (p) −− Result increases until diameter(p)
20 0≤ total rotation <360
21 until total rotation ≥ 180 −− All antipodal pairs considered
22 loop
23 angle a := “Angle between p[n a] and the next vertex in p ”
24 angle b := “Angle between p[n b] and the next vertex in p ”
25 if angle a < angle b then
26 −− Rotate jaw a to coincide with the edge p[n a]—p[n a].next
27 jaw a := jaw a + angle a
28 −− Rotate jaw b by the same amount
29 jaw b := jaw b + angle a
30 −− Next current point n a
31 n a := “Index of vertex following p[n a]”
32 −− Update total rotation
33 total rotation := total rotation + angle a
34 else
35 −− As in the then branch with a’s and b’s roles reversed
36 end
37 −− Update maximum distance between antipodal points
38 Result := max (|p[n a] − p[n b]|, Result)
39 variant 180 − total rotation end
40 ensure
41 Result = diameter (p)
42 end

Figure 20: Diameter of a polygon with rotating calipers.

50

4.6.1 List reversal

Consider a list of elements of generic type G implemented as a linked list: each
element’s attribute next stores a reference to the next element in the list; and
the last elements’s next attribute is Void. This section discusses the classic
algorithm that reverses a linked list iteratively.

We introduce a specification that abstracts some implementation details by
means of a suitable domain theory. If list is a variable of type LIST [G]—that
is, a reference to the first element—we lift the semantics of list in assertions
to denote the sequence of elements found by following the chain of references
until Void. This interpretation defines finite sequences only if list ’s reference
sequence is acyclic, which we write acyclic (list). Thus, the precondition of
routine reverse is simply

acyclic (list),

where list is the input linked list.
For a sequence s = s1 s2 . . . sn of elements of length n ≥ 0, its reversal

rev (s) is inductively defined as:

rev(s) =

{
ε n = 0

rev(s2 . . . sn) ◦ s1 n > 0 ,
(46)

where ε denotes the empty sequence and “◦” is the concatenation operator.
With this notation, reverse’s postcondition is:

list = rev (old list)

with the matching property that list is still acyclic.

list temp

· · ·

Void

reversed

· · ·

Void

(a) Before executing the loop body.

reversed temp list

· · ·

Void

· · ·

Void

(b) After executing the loop body: new links are in red.

Figure 21: One iteration of the loop in routine reverse.

51

The domain theory for lists makes it possible to derive the loop invariant
with the usual techniques. Let us introduce a local variable reversed, which will
store the iteratively constructed reversed list. More precisely, every iteration
of the loop removes one element from the beginning of list and moves it to
the beginning of reversed, until all elements have been moved. When the loop
terminates:

• list points to an empty list;

• reversed points to the reversal of old list .

Therefore, the routine concludes by assigning reversed to overwrite list . Back-
ward substitution yields the loop’s postcondition from the routine’s:

reversed = rev (old list). (47)

Using (46) for empty lists, we can equivalently write (47) as:

rev(list) ◦ reversed = rev (old list), (48)

which is the essential loop invariant, whereas list = Void is the exit condi-
tion. The other component of the loop invariant is the constraint that list and
reversed be acyclic, also by mutation of the postcondition.

Figure 22 shows the standard implementation. Figure 21 pictures instead
a graphical representation of reverse’s behavior: Figure 21(a) shows the state
of the lists in the middle of the computation, and Figure 21(b) shows how the
state changes after one iteration, in a way that the invariant is preserved.

The correctness proof relies on some straightforward properties of the rev
and ◦ functions. Initiation follows from the property that s◦ε = s. Consecution
relies on the definition (46) for n > 0, so that:

rev (list .next) ◦ list . first = rev (list).

Proving the preservation of acyclicity relies on the two properties:

acyclic(s1 s2 . . . sn) =⇒ acyclic(s2 . . . sn)

|s1| = 1 ∧ acyclic(r) =⇒ acyclic(s1 ◦ r).

4.6.2 Binary search trees

Each node in a binary tree has at most two children, conventionally called left
and right. Binary search trees are a special kind of binary trees whose nodes
store values from some totally ordered domain T and are arranged reflecting the
relative order of their values; namely, if t is a binary search tree and n ∈ t is one
of its nodes with value v, all nodes in n’s left subtree store values less than or
equal to v, and all nodes in n’s right subtree store values greater than or equal
to v. We express this characterizing property using domain-theory notation as:

s ∈ t [n. left] =⇒ s .value ≤ n.value
s ∈ t [n. right] =⇒ s .value ≥ n.value ,

(49)

52

1 reverse (list : LIST [G])
2 require
3 acyclic (list)
4 local
5 reversed , temp: LIST [G]
6 do
7 from reversed := Void
8 invariant
9 rev (list) ◦ reversed = rev (old list)

10 acyclic (list)
11 acyclic (reversed)
12 until list = Void
13 loop
14 temp := list .next
15 list .next := reversed
16 reversed := list
17 list := temp
18 variant list .count end
19 list := reversed
20 ensure
21 list = rev (old list)
22 acyclic (list)
23 end

Figure 22: Reversal of a linked list.

where t [n] denotes t’s subtree rooted at node n. This property underpins the
correctness of algorithms for operations such as searching, inserting, and re-
moving nodes in binary search trees that run in time linear in a tree’s height ;
for trees whose nodes are properly balanced, the height is logarithmic in the
number of nodes, and hence the operations can be performed efficiently. We
now illustrate two of these algorithms with their invariants.

Consider searching for a node with value key in a binary search tree t. If
t .values denotes the set of values stored in t, the specification of this operation
consists of the postcondition

key ∈ t .values =⇒ Result ∈ t ∧ key = Result.value (50)

key 6∈ t .values =⇒ Result = Void , (51)

where Void is returned if no node has value key. For simplicity, we only consider
non-empty trees—handling the special case of an empty tree is straightforward.

We can obtain the essential invariant by weakening both conjuncts in (50)
based on two immediate properties of trees. First, Result ∈ t implies Result 6=Void,
because no valid node is Void. Second, a node’s value belongs to the set of val-
ues of the subtree rooted at the node:

n.value ∈ t [n]. values

53

for n ∈ t. Thus, the following formula is a weakening of (50):

key ∈ t .values =⇒ Result 6=Void ∧ key ∈ t [Result].values , (52)

which works as essential loop invariant for binary-search-tree search.
Search works by moving Result to the left or right subtree—according to

(49)—until a value key is found or the subtree to be explored is empty. This cor-
responds to the disjunctive exit condition Result = Void ∨Result.value = key
and to the bounding invariant Result 6=Void =⇒ Result∈ t: we are within
the tree until we hit Void. Figure 23 shows the corresponding implementation.

1 has bst (t : BS TREE [T]; key: T): NODE
2 require
3 t . root 6=Void −− nonempty tree
4 do
5 from Result := t.root
6 invariant
7 Result 6=Void =⇒ Result ∈ t
8 key ∈ t.values =⇒ Result 6=Void ∧ key ∈ t[Result].values
9 until Result = Void ∨ key = Result.value

10 loop
11 if key <Result.value then
12 Result := Result.left
13 else
14 Result := Result.right
15 end
16 end
17 ensure
18 key ∈ t.values =⇒ Result ∈ t ∧ key = Result.value
19 key 6∈ t.values =⇒ Result = Void
20 end

Figure 23: Search in a binary search tree.

Initiation follows from the precondition and from the identity t [t . root] = t.
Consecution relies on the following domain property, which in turn follows from
(49):

n ∈ t ∧ v ∈ t [n]. values ∧ v < n.value =⇒ n. left 6=Void ∧ v ∈ t [n. left]. values

n ∈ t ∧ v ∈ t [n]. values ∧ v > n.value =⇒ n. right 6=Void ∧ v ∈ t [n. right]. values .

The ordering property (49) entails that the leftmost node in a (non-empty)
tree t—that is the first node without left child reached by always going left from
the root—stores the minimum of all node values. This property, expressible
using the domain-theory function leftmost as:

min(t .values) = leftmost(t).value , (53)

54

leads to an algorithm to determine the node with minimum value in a binary
search tree, whose postcondition is thus:

Result = leftmost(t) (54)

Result.value = min(t .values) . (55)

The algorithm only has to establish (54), which then implies (55) combined with
the property (53). In fact, the algorithm is oblivious of (49) and operates solely
based on structural properties of binary trees; (55) follows as an afterthought.

Duplicating the right-hand side of (54), writing t in the equivalent form
t [t . root] , and applying constant relaxation to t . root yields the essential invari-
ant

leftmost(t [Result]) = leftmost(t) (56)

with the bounding invariant Result∈ t that we remain inside the tree t. These
invariants capture the procedure informally highlighted above: walk down the
left children until you reach the leftmost node. The corresponding implementa-
tion is in Figure 24.

1 min bst (t : BS TREE [T]): NODE
2 require
3 t . root 6=Void −− nonempty tree
4 do
5 from Result := t.root
6 invariant
7 Result ∈ t
8 leftmost (t [Result]) = leftmost (t)
9 until Result.left = Void

10 loop
11 Result := Result.left
12 end
13 ensure
14 Result = leftmost (t)
15 Result.value = min (t.values)
16 end

Figure 24: Minimum in a binary search tree.

Initiation follows by trivial identities. Consecution relies on a structural
property of the leftmost node in any binary tree:

n ∈ t ∧ n. left 6=Void =⇒ n. left ∈ t ∧ leftmost(t [n]) = leftmost(t [n. left]).

4.7 Fixpoint algorithms: PageRank

PageRank is a measure of the popularity of nodes in a network, used by the
Google Internet search engine. The basic idea is that the PageRank score of a

55

node is higher the more nodes link to it (multiple links from the same page or
self-links are ignored). More precisely, the PageRank score is the probability
that a random visit on the graph (with uniform probability on the outgoing
links) reaches it at some point in time. The score also takes into account a
dampening factor, which limits the number of consecutive links followed in a
random visit. If the graph is modeled by an adjacency matrix (modified to
take into account multiple and self-links, and to make sure that there are no
sink nodes without outgoing edges), the PageRank scores are the entries of the
dominant eigenvector of the matrix.

In our presentation, the algorithm does not deal directly with the adjacency
matrix but inputs information about the graph through arguments reaching and
outbound. The former is an array of sets of nodes: reaching [k] denotes the set
of nodes that directly link to node k. The other argument outbound [k] denotes
instead the number of outbound links (to different nodes) originating in node
k. The Result is a vector of n real numbers, encoded as an array, where n is
the number of nodes. If eigenvector denotes the dominant eigenvector (also of
length n) of the adjacency matrix (defined implicitly), the postcondition states
that the algorithm computes the dominant eigenvector to within precision ε
(another input):

|eigenvector −Result| < ε . (57)

That is, Result [k] is the rank of node k to within overall precision ε.
The algorithm computes the PageRank score iteratively: it starts assuming

a uniform probability on the n nodes, and then it updates it until convergence
to a fixpoint. Before every iteration, the algorithm saves the previous values of
Result as old rank, so that it can evaluate the progress made after the iteration
by comparing the sum diff of all pairwise absolute differences, one for each node,
between the scores saved in old rank and the newly computed scores available in
Result. Correspondingly, the main loop’s essential invariant is postcondition
(57) with diff substituted for ε. diff gets smaller with every iteration of the
main loop, until it becomes less than ε, the main loop terminates, and the
postcondition holds. The connection between the main loop invariants and the
postcondition is thus straightforward.

Figure 25 shows an implementation of this algorithm. The two across loops
nested within the main loop update the PageRank scores in Result. Every
iteration of the outer across loop updates the value of Result [i] for node i as:

(1− dampening)

n
+ dampening ·

∑
j

old rank[j]

outbound[j]
. (58)

The inner loop computes the sum in (58) for j ranging over the set reaching [i]
of nodes that directly reach i. The invariants of the across loops express the
progress in the computation of (58); we do not write them down explicitly as
they are not particularly insightful from the perspective of connecting postcon-
ditions and loop invariants.

56

1 page rank (dampening, ε: REAL; reaching: ARRAY [SET [INTEGER]];
2 outbound: ARRAY [INTEGER]): ARRAY [REAL]
3 require
4 0 <dampening <1
5 ε >0
6 reaching .count = outbound.count = n >0
7 local
8 diff : REAL
9 old rank : ARRAY [REAL]

10 link to : SET [INTEGER]
11 do
12 old rank := {1/n}n −− Initialized with n elements all equal to 1/n
13 from diff := 1
14 invariant
15 | eigenvector − Result | <diff
16 until diff <ε
17 loop
18 diff := 0
19 across [1..n] as i loop
20 Result [i] := 0
21 link to := reaching [i]
22 across [1.. link to .count] as j loop
23 Result [i] := Result [i] + old rank [j] / outbound [j]
24 end
25 Result [i] := dampening ∗ Result [i] + (1 − dampening)/n
26 diff := diff + |Result [i] − old rank [i]|
27 end
28 old rank := Result −− Copy values of Result into old rank
29 variant 1 + diff − ε
30 end
31 ensure
32 | eigenvector − Result | < ε
33 end

Figure 25: PageRank fixpoint algorithm.

5 Related work: Automatic invariant inference

The amount of research work on the automated inference of invariants is sub-
stantial and spread over more than three decades; this reflects the cardinal role
that invariants play in the formal analysis and verification of programs. This sec-
tion outlines a few fundamental approaches that emerged, without any pretense
of being exhaustive. A natural classification of the methods to infer invariants is
between static and dynamic. Static methods (Section 5.1) use only the program
text, whereas dynamic methods (Section 5.2) summarize the properties of many
program executions with different inputs.

57

Program construction In the introductory sections, we already mentioned
classical formal methods for program construction [17, 26, 46, 48] on which this
survey paper is based. In particular, the connection between a loop’s postcon-
dition and its invariant buttresses the classic methods of program construction;
this survey paper has demonstrated it on a variety of examples. In previous
work [23], we developed gin-pink, a tool that practically exploits the connection
between postconditions and invariants. Given a program annotated with post-
conditions, gin-pink systematically generates mutations based on the heuristics
of Section 3.2, and then uses the Boogie program verifier [43] to check which
mutations are correct invariants. The gin-pink approach borrows ideas from
both static and dynamic methods for invariant inference: it is only based on
the program text (and specification) as the former, but it generates “candidate”
invariants to be checked—like dynamic methods do.

Reasoning about domain theories To bridge the gap between the levels
of abstraction of domain theories and of their underlying atomic assertions (see
Section 2), one needs to reason about first- or even higher-logic formulas often
involving interpreted theories such as arithmetic. The research in this area of
automated theorem proving is huge; interested readers are referred to the many
reference publications on the topic [56, 8, 6, 39].

5.1 Static methods

Historically, the earliest methods for invariant inference where static as in the
pioneering work of Karr [35]. Abstract interpretation and the constraint-based
approach are the two most widespread frameworks for static invariant infer-
ence (see also Bradley and Manna [?]Chap. 12]BM07-book). Jhala and Ma-
jumdar [34] provide an overview of the most important static techniques and
discuss how they are applied in combination with different problems of program
verification.

Abstract interpretation is a symbolic execution of programs over abstract
domains that over-approximates the semantics of loop iteration. Since the sem-
inal work by Cousot and Cousot [13], the technique has been updated and ex-
tended to deal with features of modern programming languages such as object-
orientation and heap memory-management (e.g., Logozzo [44] and Chang and
Leino [9]). One of the main successes of abstract interpretation has been the de-
velopment of sound but incomplete tools [3] that can verify the absence of simple
and common programming errors such as division by zero or void dereferencing.

Constraint-based techniques rely on sophisticated decision procedures over
non-trivial mathematical domains (such as polynomials or convex polyhedra)
to represent concisely the semantics of loops with respect to certain template
properties.

Static methods are sound and often complete with respect to the class of
invariants that they can infer. Soundness and completeness are achieved by
leveraging the decidability of the underlying mathematical domains they rep-
resent; this implies that the extension of these techniques to new classes of

58

properties is often limited by undecidability. State-of-the-art static techniques
can infer invariants in the form of mathematical domains such as linear inequal-
ities [14, 11], polynomials [58, 57], restricted properties of arrays [7, 5, 29], and
linear arithmetic with uninterpreted functions [2].

Following Section 3.1, the loop invariants that static techniques can easily
infer are often a form of “bounding” invariant. This suggests that the special-
ized static techniques for loop invariant inference discussed in this section, and
the idea of deriving the loop invariant from the postcondition, demonstrated in
the rest of the paper, can be fruitfully combined: the former can easily pro-
vide bounding loop invariants, whereas the latter can suggest the “essential”
components that directly connect to the postcondition.

To our knowledge, there are only a few approaches to static invariant infer-
ence that take advantage of existing annotations [52, 33, 16, 40, 38]. Janota [33]
relies on user-provided assertions nested within loop bodies and tries to check
whether they hold as invariants of the loop. The approach has been evaluated
only on a limited number of straightforward examples. De Caso et al. [16] briefly
discuss deriving the invariant of a “for” loop from its postcondition, within a
framework for reasoning about programs written in a specialized programming
language. Lahiri et al. [40] also leverage specifications to derive intermediate
assertions, but focusing on lower-level and type-like properties of pointers. On
the other hand, Păsăreanu and Visser [52] derive candidate invariants from
postconditions within a framework for symbolic execution and model-checking.

Finally, Kovács and Voronkov [38] derive complex loop invariants by first en-
coding the loop semantics as recurring relations and then instructing a rewrite-
based theorem prover to try to remove the dependency on the iterator variables
in the relations. This approach exploits heuristics that, while do not guarantee
completeness, are practically effective to derive automatically loop invariants
with complex quantification—a scenario that is beyond the capabilities of most
other methods.

5.2 Dynamic methods

Only in the last decade have dynamic techniques been applied to invariant infer-
ence. The Daikon approach of Ernst et al. [19] showed that dynamic inference is
practical and sprung much derivative work (e.g., Perkings and Ernst [53], Csall-
ner et al. [15], Polikarpova et al. [55], Ghezzi et al. [25], Wei et al. [63], Nguyen
et al. [49], and many others). In a nutshell, the dynamic approach consists in
testing a large number of candidate properties against several program runs; the
properties that are not violated in any of the runs are retained as “likely” invari-
ants. This implies that the inference is not sound but only an “educated guess”:
dynamic invariant inference is to static inference what testing is to program
proofs. Nonetheless, just like testing is quite effective and useful in practice,
dynamic invariant inference can work well if properly implemented. With the
latest improvements [64], dynamic invariant inference can attain soundness of
over 99% for the “guessed” invariants.

Among the numerous attempts to improve the effectiveness and flexibility of

59

dynamic inference, Gupta and Heidepriem [27] suggest to improve the quality
of inferred contracts by using different test suites (based on code coverage and
invariant coverage), and by retaining only the contracts that are inferred with
both techniques. Fraser and Zeller [21] simplify and improve test cases based
on mining recurring usage patterns in code bases; the simplified tests are easier
to understand and focus on common usage. Other approaches to improve the
quality of inferred contracts combine static and dynamic techniques [15, 61, 64].

To date, dynamic invariant inference has been mostly used to infer pre-
and postconditions or intermediate assertions, whereas it has been only rarely
applied [49] to loop invariant inference. This is probably because dynamic tech-
niques require a sufficiently varied collection of test cases, and this is more
difficult to achieve for loops—especially if they manipulate complex data struc-
tures.

6 Lessons from the mechanical proofs

Our verified Boogie implementations of the algorithms mirror the presentation
in Section 4, as they introduce the predicates, functions, and properties of the
domain theory that are directly used in the specification and in the correctness
proofs. The technology of automatic theorem proving is, however, still in active
development, and faces in any case insurmountable theoretical limits of unde-
cidability. As a consequence, in a few cases we had to introduce explicitly some
intermediate domain properties that were, in principle, logical consequences of
other definitions, but that the prover could not derive without suggestion. Sim-
ilarly, in other cases we had to guide the proof by writing down explicitly some
of the intermediate steps in a form acceptable to the verifier.

A lesson of this effort is that the syntactic form in which definitions and
properties of the domain theory are expressed may influence the amount of
additional annotations required for proof automation. The case of the sorting
algorithms in Section 4.3 is instructive. All rely on the definition of predicate
sorted as:

∀i ∈ [a.lower .. a.upper − 1]: a [i] ≤ a [i + 1], (59)

which compares adjacent elements in positions i and i + 1. Since bubble sort
rearranges elements in an array also by swapping adjacent elements, proving
it in Boogie was straightforward, since the prover could figure out how to
apply definition (59) to discharge the various verification conditions—which
also feature comparisons of adjacent elements. Selection sort and insertion
sort required substantially more guidance in the form of additional domain
theory properties and detailing of intermediate verification steps, since their
logic does not operate directly on adjacent elements, and hence their ver-
ification conditions are syntactically dissimilar to (59). Changing the defi-
nition of sorted into something that relates non-adjacent elements—such as
∀i, j : a.lower ≤ i ≤ j ≤ a.upper =⇒ a[i] ≤ a[j]—is not sufficient to bridge the
semantic gap between sortedness and other predicates: the logic of selection sort
and insertion sort remains more complex to reason about than that of bubble

60

sort. On the contrary, comb sort was as easy as bubble sort, because it relies
on a generalization of sorted that directly matches its logic (see Section 4.3.6).

A similar experience occurred for the two dynamic programming algorithms
of Section 4.4. While the implementation of Levenshtein distance closely mirrors
the recursive definition of distance (Section 4.4.2) in computing the minimum,
the relation between specification and implementation is less straightforward for
the knapsack problem (Section 4.4.1), which correspondingly required a more
complicated axiomatization for the proof in Boogie.

7 Conclusions and assessment

The concept of loop invariant is, as this review has attempted to show, one of
the foundational ideas of software construction. We have seen many examples of
the richness and diversity of practical loop invariants, and how they illuminate
important algorithms from many different areas of computer science. We hope
that these examples establish the claim, made at the start of the article, that
the invariant is the key to every loop: to devise a new loop so that it is cor-
rect requires summoning the proper invariant; to understand an existing loop
requires understanding its invariant.

Invariants belong to a number of categories, for which this discussion has
established a classification which we hope readers will find widely applicable,
and useful in understanding the loop invariants of algorithms in their own fields.
The classification is surprisingly simple; perhaps other researchers will find new
criteria that have eluded us.

Descriptions of algorithms in articles and textbooks has increasingly, in re-
cent years, included loop invariants, at least informally; we hope that the present
discussion will help reinforce this trend and increase the awareness—not only in
the research community but also among software practitioners—of the centrality
of loop invariants in programming.

Informal invariants are good, but being able to express them formally is
even better. Reaching this goal and, more generally, continuing to make invari-
ants ever more mainstream in software development requires convenient, clear
and expressive notations for expressing loop invariants and other program as-
sertions. One of the contributions of this article will be, we hope, to establish
the practicality of domain-theory-based invariants, which express properties at
a high level of abstraction, and their superiority over approaches that always
revert to the lowest level (suggesting a possible slogan: “Quantifiers considered
harmful”).

Methodological injunctions are necessary, but the history of software practice
shows that they only succeed when supported by effective tools. Many program-
mers still find it hard to come up with invariants, and this survey shows that
they have some justifications: even though the basic idea is often clear, coming
up with a sound and complete invariant is an arduous task. Progress in invari-
ant inference, both theoretical and on the engineering side, remains essential.
There is already, as noted, considerable work on this topic, often aimed at infer-

61

ring more general invariant properties than the inductive loop invariants of the
present discussion; but much remains to be done to bring the tools to a level
where they can be integrated in a standard development environment and rou-
tinely suggest invariants, conveniently and correctly, whenever a programmer
writes a loop. The work mentioned in Section 5 is a step in this direction.

Another major lessons for us from preparing this survey (and reflecting on
how different it is from what could have been written on the same topic 30,
20, 10 or even 5 years ago) came from our success in running essentially all the
examples through formal, mechanized proofs. Verification tools such as Boogie,
while still a work in progress, have now reached a level of quality and practicality
that enables them to provide resounding guarantees for work that, in the past,
would have remained subject to human errors.

We hope that others will continue this work, both on the conceptual side—
by providing further insights into the concept of loop invariant—and on the
practical side—by extending the concept to its counterpart for data (i.e., the
class invariant) and by broadening our exploration and classification effort to
many other important algorithms of computer science.

Acknowledgments This work is clearly based on the insights of Robert
Floyd, C.A.R. Hoare and Edsger Dijkstra in introducing and developing the
notion of loop invariant. The mechanized proofs were made possible by Rus-
tan Leino’s Boogie tool, a significant advance in turning axiomatic semantics
into a practically usable technique. We are grateful to our former and present
ETH colleagues Bernd Schoeller, Nadia Polikarpova, and Julian Tschannen for
pioneering the use of Boogie in our environment.

References

[1] Samson Abramsky and Achim Jung. Domain theory. In S. Abramsky, D. M.
Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Computer
Science III. Oxford University Press, 1994.

[2] Dirk Beyer, Thomas A. Henzinger, Rupak Majumdar, and Andrey Ry-
balchenko. Invariant synthesis for combined theories. In Byron Cook and
Andreas Podelski, editors, Proceedings of the 8th International Confer-
ence on Verification, Model Checking, and Abstract Interpretation (VM-
CAI’07), volume 4349 of Lecture Notes in Computer Science, pages 378–
394. Springer, 2007.

[3] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. A static
analyzer for large safety-critical software. In Proceedings of the 2003 ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI’03), pages 196–207. ACM, 2003.

62

[4] Joshua Bloch. Extra, extra – read all about it: Nearly all binary searches
and mergesorts are broken. http://googleresearch.blogspot.ch/2006/
06/extra-extra-read-all-about-it-nearly.html, 2006.

[5] Marius Bozga, Peter Habermehl, Radu Iosif, Filip Konečný, and Tomáš Vo-
jnar. Automatic verification of integer array programs. In Ahmed Bouajjani
and Oded Maler, editors, Proceedings of the 21st International Conference
on Computer Aided Verification (CAV’09), volume 5643 of Lecture Notes
in Computer Science, pages 157–172. Springer, 2009.

[6] Aaron R. Bradley and Zohar Manna. The Calculus of Computation.
Springer, 2007.

[7] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s decid-
able about arrays? In E. Allen Emerson and Kedar S. Namjoshi, edi-
tors, Proceedings of the 7th International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI’06), volume 3855 of Lecture
Notes in Computer Science, pages 427–442. Springer, 2006.

[8] Bruno Buchberger. Mathematical theory exploration. In Automated Rea-
soning, Third International Joint Conference (IJCAR), volume 4130 of
Lecture Notes in Computer Science, pages 1–2. Springer, 2006.

[9] Bor-Yuh Evan Chang and K. Rustan M. Leino. Abstract interpretation
with alien expressions and heap structures. In Radhia Cousot, editor,
Proceedings of the 6th International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI’05), volume 3385 of Lecture
Notes in Computer Science, pages 147–163. Springer, 2005.

[10] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.
MIT Press, 1999.

[11] Michael Colón, Sriram Sankaranarayanan, and Henny Sipma. Linear invari-
ant generation using non-linear constraint solving. In Jr. Warren A. Hunt
and Fabio Somenzi, editors, Proceedings of the 15th International Con-
ference on Computer Aided Verification(CAV’03), volume 2725 of Lecture
Notes in Computer Science, pages 420–432. Springer, 2003.

[12] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press, 3rd edition, 2009.

[13] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or approxi-
mation of fixpoints. In Proceedings of the 4th Annual ACM Symposium on
Principles of Programming Languages (POPL’77), pages 238–252, 1977.

[14] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear re-
straints among variables of a program. In Proceedings of the 5th Annual
ACM Symposium on Principles of Programming Languages (POPL’78),
pages 84–96, 1978.

63

http://googleresearch.blogspot.ch/2006/06/extra-extra-read-all-about-it-nearly.html
http://googleresearch.blogspot.ch/2006/06/extra-extra-read-all-about-it-nearly.html

[15] Christoph Csallner, Nikolai Tillman, and Yannis Smaragdakis. DySy: dy-
namic symbolic execution for invariant inference. In Wilhelm Schäfer,
Matthew B. Dwyer, and Volker Gruhn, editors, Proceedings of the 30th
International Conference on Software Engineering (ICSE’08), pages 281–
290. ACM, 2008.

[16] Guido de Caso, Diego Garbervetsky, and Daniel Goŕın. Reducing the num-
ber of annotations in a verification-oriented imperative language. In Pro-
ceedings of Automatic Program Verification, 2009.

[17] Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[18] Standard ECMA-367. Eiffel: Analysis, design and programming language,
2006.

[19] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin.
Dynamically discovering likely program invariants to support program evo-
lution. IEEE Transactions of Software Engineering, 27(2):99–123, 2001.

[20] Robert W. Floyd. Assigning meanings to programs. In J. T. Schwartz, ed-
itor, Mathematical Aspects of Computer Science, volume 19 of Proceedings
of Symposia in Applied Mathematics, pages 19–32. American Mathematical
Society, 1967.

[21] Gordon Fraser and Andreas Zeller. Exploiting common object usage in
test case generation. In IEEE Fourth International Conference on Soft-
ware Testing, Verification and Validation (ICST’11), pages 80–89. IEEE
Computer Society, 2011.

[22] Carlo A. Furia, Dino Mandrioli, Angelo Morzenti, and Matteo Rossi. Mod-
eling Time in Computing. Monographs in Theoretical Computer Science.
An EATCS series. Springer, 2012.

[23] Carlo A. Furia and Bertrand Meyer. Inferring loop invariants using post-
conditions. In Andreas Blass, Nachum Dershowitz, and Wolfgang Reisig,
editors, Fields of Logic and Computation: Essays Dedicated to Yuri Gure-
vich on the Occasion of His 70th Birthday, volume 6300 of Lecture Notes
in Computer Science, pages 277–300. Springer, August 2010.

[24] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. Freeman, 1979.

[25] Carlo Ghezzi, Andrea Mocci, and Mattia Monga. Synthesizing intensional
behavior models by graph transformation. In Proceedings of the 31st Inter-
national Conference on Software Engineering (ICSE’09), pages 430–440.
IEEE, 2009.

[26] David Gries. The science of programming. Springer-Verlag, 1981.

64

[27] Neelam Gupta and Zachary V. Heidepriem. A new structural coverage
criterion for dynamic detection of program invariants. In 18th IEEE Inter-
national Conference on Automated Software Engineering (ASE’03), pages
49–59. IEEE Computer Society, 2003.

[28] John Hatcliff, Gary T. Leavens, K. Rustan M. Leino, Peter Müller, and
Matthew J. Parkinson. Behavioral interface specification languages. ACM
Comput. Surv., 44(3):16, 2012.

[29] Thomas A. Henzinger, Thibaud Hottelier, Laura Kovács, and Andrei
Voronkov. Invariant and type inference for matrices. In Proceedings of
the 11th International Conference on Verification, Model Checking, and
Abstract Interpretation (VMCAI’10), Lecture Notes in Computer Science.
Springer, 2010.

[30] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12(10):576–580, 1969.

[31] C. A. R. Hoare. Proof of correctness of data representations. Acta Inf.,
1:271–281, 1972.

[32] C. A. R. Hoare. The verifying compiler: A grand challenge for computing
research. Journal of the ACM, 50(1):63–69, 2003.

[33] Mikoláš Janota. Assertion-based loop invariant generation. In Proceedings
of the 1st International Workshop on Invariant Generation (WING’07),
2007.

[34] Ranjit Jhala and Rupak Majumdar. Software model checking. ACM Com-
puting Surveys, 41(4), 2009.

[35] Michael Karr. Affine relationships among variables of a program. Acta
Informatica, 6:133–151, 1976.

[36] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems.
Springer, 2004.

[37] Donald E. Knuth. The Art of Computer Programming (volumes 1–4A).
Addison-Wesley, 2011. First edition: 1968–1973.

[38] Laura Kovács and Andrei Voronkov. Finding loop invariants for programs
over arrays using a theorem prover. In Marsha Chechik and Martin Wirsing,
editors, Proceedings of the 12th International Conference on Fundamental
Approaches to Software Engineering (FASE’09), volume 5503 of Lecture
Notes in Computer Science, pages 470–485. Springer, 2009.

[39] Daniel Kroening and Ofer Strichman. Decision Procedures: An Algorithmic
Point of View. Monographs in Theoretical Computer Science. An EATCS
series. Springer, 2008.

65

[40] Shuvendu K. Lahiri, Shaz Qadeer, Juan P. Galeotti, Jan W. Voung, and
Thomas Wies. Intra-module inference. In Ahmed Bouajjani and Oded
Maler, editors, Proceedings of the 21st International Conference on Com-
puter Aided Verification (CAV’09), volume 5643 of Lecture Notes in Com-
puter Science, pages 493–508. Springer, 2009.

[41] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE
Transactions on Software Engineering, 3(2):125–143, 1977.

[42] Leslie Lamport. Teaching concurrency. SIGACT News, 40(1):58–62, 2009.

[43] K. Rustan M. Leino. This is Boogie 2. (Manuscript KRML 178) http:

//research.microsoft.com/en-us/projects/boogie/, June 2008.

[44] Francesco Logozzo. Automatic inference of class invariants. In Bernhard
Steffen and Giorgio Levi, editors, Proceedings of the 5th International Con-
ference on Verification, Model Checking, and Abstract Interpretation (VM-
CAI’04), volume 2937 of Lecture Notes in Computer Science, pages 211–
222. Springer, 2004.

[45] Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures: The
Basic Toolbox. Springer, 2008.

[46] Bertrand Meyer. A basis for the constructive approach to programming.
In Simon H. Lavington, editor, Proceedings of IFIP Congress 1980, pages
293–298, 1980.

[47] Bertrand Meyer. Object-oriented software construction. Prentice Hall, 2nd
edition, 1997. First Ed.: 1988.

[48] Carroll Morgan. Programming from Specifications. Prentice Hall, 2nd edi-
tion, 1994.

[49] ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest.
Using dynamic analysis to discover polynomial and array invariants. In
34th International Conference on Software Engineering (ICSE’12), pages
683–693. IEEE, 2012.

[50] Susan Owicki and David Gries. An axiomatic proof technique for parallel
programs. Acta Informatica, 6:319–340, 1976.

[51] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley,
1993.

[52] Corina S. Păsăreanu and Willem Visser. Verification of Java programs
using symbolic execution and invariant generation. In Proceedings of the
11th International SPIN Workshop on Model Checking Software, volume
2989 of Lecture Notes in Computer Science, pages 164–181. Springer, 2004.

66

http://research.microsoft.com/en-us/projects/boogie/
http://research.microsoft.com/en-us/projects/boogie/

[53] Jeff H. Perkings and Michael D. Ernst. Efficient incremental algo-
rithms for dynamic detection of likely invariants. In Richard N. Tay-
lor and Matthew B. Dwyer, editors, Proceedings of the 12th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering
(SIGSOFT’04/FSE-12), pages 23–32. ACM, 2004.

[54] André Platzer. Differential-algebraic dynamic logic for differential-algebraic
programs. J. Log. Comput., 20(1):309–352, 2010.

[55] Nadia Polikarpova, Ilinca Ciupa, and Bertrand Meyer. A comparative study
of programmer-written and automatically inferred contracts. In Proceedings
of the ACM/SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA’09), pages 93–104, 2009.

[56] Alan Robinson and Andrei Voronkov, editors. Handbook of Automated
Reasoning. Elsevier, 2001.

[57] Enric Rodŕıguez-Carbonell and Deepak Kapur. Generating all polynomial
invariants in simple loops. Journal of Symbolic Computation, 42(4):443–
476, 2007.

[58] Sriram Sankaranarayanan, Henny Sipma, and Zohar Manna. Non-linear
loop invariant generation using Gröbner bases. In Neil D. Jones and Xavier
Leroy, editors, Proceedings of the 31st ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL’04), pages 318–329.
ACM, 2004.

[59] Michael I. Shamos. Computational geometry. PhD thesis, Yale University,
1978. http://goo.gl/XiXNl.

[60] J. Michael Spivey. Z Notation – a reference manual. Prentice Hall Inter-
national Series in Computer Science. Prentice Hall, 2nd edition, 1992.

[61] Nikolai Tillmann, Feng Chen, and Wolfram Schulte. Discovering likely
method specifications. In 8th International Conference on Formal Engi-
neering Methods (ICFEM’06), volume 4260 of Lecture Notes in Computer
Science, pages 717–736, 2006.

[62] Godfried T. Toussaint. Solving geometric problems with the rotating
calipers. In Proceedings of IEEE MELECON 1983, Athens, Greece, 1983.
http://goo.gl/nnnc4.

[63] Yi Wei, Carlo A. Furia, Nikolay Kazmin, and Bertrand Meyer. Inferring
better contracts. In Richard N. Taylor, Harald Gall, and Nenad Medvi-
dović, editors, Proceedings of the 33rd International Conference on Soft-
ware Engineering (ICSE’11), pages 191–200. ACM, May 2011.

[64] Yi Wei, Hannes Roth, Carlo A. Furia, Yu Pei, Alexander Horton, Michael
Steindorfer, Martin Nordio, and Bertrand Meyer. Stateful testing: Finding

67

http://goo.gl/XiXNl
http://goo.gl/nnnc4

more errors in code and contracts. In Perry Alexander, Corina Pasare-
anu, and John Hosking, editors, Proceedings of the 26th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE’11), pages
440–443. ACM, November 2011.

68

	Introduction: inductive invariants
	Loop invariants basics
	A constructive view
	A basic example
	Other kinds of invariant

	Expressing invariants: domain theory
	Classifying invariants
	Classification by role
	Classification by generalization technique

	The invariants of important algorithms
	Array searching
	Maximum: one-variable loop
	Maximum: two-variable loop
	Search in an unsorted array
	Binary search

	Arithmetic algorithms
	Integer division
	Greatest common divisor (with division)
	Exponentiation by successive squaring
	Long integer addition

	Sorting
	Quick sort: partitioning
	Selection sort
	Insertion sort
	Bubble sort (basic)
	Bubble sort (improved)
	Comb sort

	Dynamic programming
	Unbounded knapsack problem with integer weights
	Levenshtein distance

	Computational geometry: Rotating calipers
	Algorithms on data structures
	List reversal
	Binary search trees

	Fixpoint algorithms: PageRank

	Related work: Automatic invariant inference
	Static methods
	Dynamic methods

	Lessons from the mechanical proofs
	Conclusions and assessment

