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Abstract

We investigate the satisfiability problem for metric temporal logic
(MTL) with both past and future operators over linear discrete bi-infinite
time models — where time is unbounded both in the future and in the
past — isomorphic to the integer numbers. We provide a technique to
reduce satisfiability over the integers to satisfiability over the well-known
mono-infinite time model of natural numbers, and we show how to im-
plement the technique through an automata-theoretic approach. We also
prove that MTL satisfiability over the integers is EXPSPACE-complete,
hence the given algorithm is optimal in the worst case.
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Tomorrow, and tomorrow, and tomorrow
Creeps in this petty pace from day to day
To the last syllable of recorded time;
And all our yesterdays have lighted fools
The way to dusty death.

W. Shakespeare, Macbeth (Act 5 Scene 5)

1 Introduction

Temporal logic has become a very widespread notation for the formal speci-
fication of systems, temporal properties, and requirements. Its popularity is
significantly due to the fact that it provides highly effective conceptual tools
to model, specify, and reason about systems [Eme90], and it is amenable to
fully automated verification techniques, the most notable being model-checking
[CGP00].

In temporal logic frameworks it is customary to model time as infinite in the
future and finite in the past, i.e., with an origin; in other words, time is mono-
infinite. On the contrary, models where time is infinite both in the future and
in the past — i.e., it is bi-infinite [PP04] — have been routinely neglected. The
reasons for this strong preference are mainly historical, as it has been pointed
out by various authors [Eme90, Koy92, PMS07]. Namely, temporal logic has
been originally introduced for the purpose of reasoning about the behavior of
“ongoing concurrent programs” [Eme90, Sec. 3.1], [Pnu77], hence a model of
time with an origin is appropriate since “computation begins at an initial state”
[Eme90].

However, there are various motivations in favor of the adoption of bi-infinite
time models [PMS07] as well, and they go beyond the obvious theoretical inter-
est.

The first of such reasons has to do with the usage of temporal logics with
operators that reference to the past — as well as the future — of the current
instant, i.e., the instant at which the operator is evaluated. If past is bounded,
we may have to deal with past operators referring to instants that are before
the origin of time: this gives rise to so-called border effects [CPPS98, MMG92].
For instance, consider yesterday operator Y of LTL-with-past: Yp evaluates to
true at some instant t if and only if its argument p holds at the previous instant
t−1. Then, consider formula Yalarm which models an alarm being raised at the
previous instant. If we evaluate the formula at the origin, the reference to the
“previous” instant of time is moot as there is no such instant, and whether the
evaluation should default to true or to false depends on the role the formula plays
in the whole specification. A possible solution to these problems is to introduce
two variants of every past operator, one defaulting to true and the other to false
[CPPS98]; however, this is often complicated and cumbersome, especially in
practical applications. On the contrary, the adoption of bi-infinite time gets rid
of such border effects single-handedly, in a very uniform and natural manner,
because there are simply no “inaccessible” instants of time.

The second main motivation for considering bi-infinite time models [PMS07]
is derived from a reason for adopting mono-infinite time models: the fact that
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ongoing non-terminating processes are considered. Similarly, when modeling
processes that are “time invariant” (i.e., whose behavior does not depend on
absolute time values) and where initialization can be abstracted away, a time
model which is infinite both in the past and in the future is the most natural
and terse assumption.

Contribution. This paper investigates temporal logic over bi-infinite discrete-
time models. More precisely, we consider a linear-time model which is isomor-
phic to the integer numbers. Correspondingly, Metric Temporal Logic (MTL)
with past operators [AH93, Koy90] is taken as temporal logic notation. It will be
clear that, over the adopted discrete-time model, MTL boils down to LTL (with
past operators) with a succinct encoding of constants in formulas. Hence, our
results will be easily stateable in terms of LTL as well. The main contributions
are as follows. First, we present a general technique to reduce the satisfiability
problem for MTL over the integers to the same problem over the more familiar
mono-infinite time model isomorphic to the natural numbers. Second, we show
how the technique can be implemented with an automata-theoretic approach
— derived from previous work of ours [MPSS03, PSSM03, Spo05] — which can
work on top of the Spin model-checker [Hol03]. Third, the complexity of the
MTL satisfiability problem over the integer is assessed, and it is shown that
it matches the well-known upper and lower bounds for the same problem over
mono-infinite discrete time domain [AH93]. To the best of our knowledge, this
is the first work which analyzes the complexity of MTL (and LTL) satisfiability
over bi-infinite time and provides a practical algorithm for it.

Structure of the paper. Section 2 introduces the definitions that will be
used in the rest of the paper, and in particular the time model, MTL and
its semantics, its relation with LTL, and the various automata used in the
verification technique. Section 3 recalls a few results from [Spo05, MPSS03,
PSSM03] about automata-theoretic MTL verification over mono-infinite discrete
time, in order to make the paper self-contained. Then, Section 4 presents the
technique for bi-infinite satisfiability checking, shows a few details about its
practical implementation, and analyzes its computational complexity. Section
5 compares briefly the results of the previous sections with those from the most
relevant related literature and sketches some informal considerations about the
practical performances of our technique. Finally, Section 6 concludes with a
summary of directions for future work.

2 Definitions and Preliminaries

This section introduces the notation and definitions that will be used in the rest
of the paper.

The symbols Z and N denote respectively the set of integer numbers and
the set of nonnegative integers (i.e., the natural numbers). We extend the sum
over integers to the set Z ∪ {∞}, by defining k ±∞ = ±∞ for all k ∈ Z. For
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greater clarity, connectives and quantifiers of the meta-language are typeset in
a bold underlined font.

2.1 Metric Temporal Logic

We define Metric Temporal Logic (MTL) [AH93, Koy90] over mono-infinite and
bi-infinite linear discrete time. We always consider the variant with both past
and future operators (called MTLP by some authors [AH93]).

2.1.1 Syntax

Let Π = {p, q, . . .} be a finite set of propositions. MTL formulas are given by:

φ ::= p | ¬φ | φ1 ∧ φ2 | φ1 UI φ2 | φ1 SI φ2

where p ∈ Π, I is an interval of the naturals (possibly unbounded to the right),
and the symbols UI , SI denote the bounded until and since operator, respec-
tively.

Standard abbreviations are assumed such as >,⊥,∨,⇒,⇔. In addition, we
introduce some useful derived temporal operators: the (bounded) eventually
FIφ = >UI φ; the (bounded) always GIφ = ¬FI¬φ; the (bounded) next Xkφ =
F[k,k]φ; the (bounded) release φ1RI φ2 = ¬(¬φ1UI ¬φ2). Each of these operators
has its past counterpart; that is, respectively: PIφ = > SI φ (eventually in
the past); HIφ = ¬PI¬φ (historically); Ykφ = P[k,k]φ (previous or yesterday);
φ1TI φ2 = ¬(¬φ1SI ¬φ2) (trigger). Note that, whenever no interval is specified,
I = (0,∞) is assumed for all operators except X where the interval [1, 1] is
assumed instead; also, the singleton interval [k, k] is abbreviated by = k.

Precedence of operators is defined as follows: ¬ has the highest binding
power, then we have the temporal modalities UI , SI and derived ones, then ∧
and ∨, ⇒, and finally ⇔.

For a set S, B(S) denotes the set of all Boolean combinations of elements
in S, and B+(S) the set of all positive Boolean combinations (i.e., negation-free
combinations). We also introduce the shorthand Alw(φ) to denote that φ holds
always over the time domain, i.e., Alw(φ) = Gφ∧φ∧Hφ. φ̃ denotes the formula
obtained from φ by switching every future operator with its past counterpart,
and vice versa. For instance θ̃ = p∧ q S¬p∨ Fr for θ = p∧ q U¬p∨Pr. Clearly˜̃
φ = φ holds for all φ.

Classes of formulas. The size |φ| of a formula φ is given by the product of
its number of connectives |φ|# times the size |φ|M of the largest constant used
in its formulas, succinctly encoded in binary.

A future formula φ is a formula which does not use any past operator; con-
versely, a past formula π is a formula which does not use any future operator.

A formula ψ is flat if it does not nest temporal operators, i.e., it is definable
by:

ψ ::= p | ¬ψ | ψ1 ∧ ψ2 | β1 UI β2 | β1 SI β2
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where p ∈ Π and β1, β2 ∈ B(Π). A flat formula is propositional if it does not
use temporal operators at all.

2.1.2 Words and operations on them

For a finite alphabet Σ, we introduce the sets of right-infinite words (called ω-
words, read “omega words”), of left-infinite words (called ω̃-words, read “omega-
reverse words”), and of bi-infinite words (called Z-words, read “zee words”1)
over Σ, and we denote them as Σω, ωΣ, and ΣZ, respectively. Correspondingly,
an ω-language (resp. ω̃-language, Z-language) is a subset of Σω (resp. ωΣ, ΣZ).

Given an ω-word w = w0w1w2 · · · , w̃ denotes the ω̃-word · · ·w−2w−1w0

defined by the bijection w−k = wk for k ∈ N. The same notation is used
for the inverse mapping from ω̃-words to ω-words. The mapping is also ex-
tended to languages as obvious, with the same notation. Given a Z-word
x = · · ·x−2x−1x0x1x2 · · · and k ∈ Z, xk denotes the ω-word obtained by trun-
cating x at xk on the left, i.e., xk = xkxk+1xk+2 · · · ; similarly, kx denotes the
ω̃-word obtained by truncating x at xk on the right, i.e., kx = · · ·xk−2xk−1xk.

The operations of intersection (∩), union (∪), and concatenation (.) for words
and languages are defined as usual. Let w and w be an ω- and an ω̃-word,
respectively. The Z-word w . w (right join) is defined as −1w.w, and the Z-
word w / w (left join) is defined as w.w1. The join operations are extended to
languages as obvious, with the same notation.

MTL formulas using a set of propositions Σ will be interpreted on infinite
words over the alphabet 2Σ. Correspondingly, ↓Σ denotes the projection ho-
momorphism over Σ: for a word w = w0w1w2 · · · over 2Σ, ↓Σ w is the word
w′0w

′
1w
′
2 · · · obtained by removing all elements which are not in Σ from the

wi’s; that is, w′i = wi ∩ Σ for all i’s. The ↓Σ operator is extended to languages
as obvious, with the same notation.

2.1.3 Semantics

We define the semantics of MTL formulas for infinite words over 2Π, where Π
is a finite set of atomic propositions. As it is standard, every letter yk ∈ 2Π

in such words represents the set of atomic propositions that are true at integer
time instant k (also called position). We introduce the predicate valid(y, i)
which holds iff i is a valid position in the infinite word y, i.e., iff y is a Z-word
and i ∈ Z, or y is an ω-word and i ∈ N, or y is an ω̃-word and −i ∈ N.

Let φ be an MTL formula, y be a generic infinite word over 2Π, and i be an
integer such that valid(y, i). The satisfaction relation |= is defined inductively
as:

1Or “zed words”, if your prefer.
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y, i |= p ⇔ p ∈ yi
y, i |= ¬φ ⇔ y, i 6|= φ
y, i |= φ1 ∧ φ2 ⇔ y, i |= φ1 ∧ y, i |= φ2

y, i |= φ1 UI φ2 ⇔ ∃d ∈ I: (valid(y, i+ d) ∧
y, i+ d |= ψ2∧∀0 < u < d : y, i+ u |= ψ1)

y, i |= φ1 SI φ2 ⇔ ∃d ∈ I: (valid(y, i− d) ∧
y, i− d |= ψ2∧∀0 < u < d : y, i− u |= ψ1)

y |= φ ⇔ ∀i ∈ Z : (valid(y, i)⇒ y, i |= φ)

Remark 2.1. For k ∈ N, formula H=k⊥ holds over an ω-word w exactly at all
positions j < k. In fact, w, j |= H=k⊥ is the case only if valid(w, j− k) is false,
that is j − k < 0. Similarly, formula P=k> ∧ H=k+1⊥ holds over an ω-word w
exactly at position k, and nowhere else.

Example 2.2 (Border effects). Consider formula ν = H[0,3]p and its interpre-
tation over ω-word w+ in Figure 1. According to the semantics defined above,
ν is true at 1 because p holds for all valid positions between 1 and 1− 3 = −2.
However, there may be justifications in favor of evaluating ν false at 1: there is
no complete interval of size 4 where p holds continuously. This is an example of
so-called border effect : what is a “reasonable” evaluation of formulas near the
origin is influenced by the role the formulas play in a specification.

There is an interesting relation between the reverse φ̃ of a formula φ and the
reverse w̃ of ω-words w that are models of φ, as the following example shows.

Example 2.3. Consider formula θ = H[0,3]p⇒ Fq and its reverse θ̃ = G[0,3]p⇒
Pq. θ asserts that whenever p held continuously for 4 time units, q must hold
somewhere in the future (excluding the current instant), hence θ is true at
position 4 and false at position 11 over ω-word w+ in Figure 1. If we consider
ω̃-word w− obtained by reversing w+ (also in Figure 1), we see that θ̃ is true at
position −4 and false at position −11 over w−.

By generalizing the example, we have the following proposition.

Proposition 2.4. Let w+∈(2Σ
)ω and w−∈ω(2Σ

)
be an ω-word and an ω̃-word,

respectively, φ be an MTL formula, and i ∈ N. Then: w+, i |= φ iff w̃+,−i |= φ̃;
and w−,−i |= φ iff w̃−, i |= φ̃

Proof. The proof is a straightforward application of the definitions above, and
it is therefore omitted.

Satisfiability and language of a formula. Satisfiability is the following
problem: “given a formula φ is there some word y such that y |= φ ?”. It is the
verification problem we will consider in this paper.

Note that we defined y |= φ to denote “global satisfiability”, i.e., the fact
that φ holds at all valid positions of y. This definition is especially natural
over bi-infinite words, where there is no initial instant at which to evaluate
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0−4−6−11
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w−

p

p

1
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Figure 1: ω-word w+ (above) and its reverse ω̃-word w− (below).

formulas. On the contrary, “initial satisfiability” is more common over mono-
infinite words where an origin is unambiguously fixed. However, the global
satisfiability problem is easily reducible to the initial satisfiability problem, as
∀i : y, i |= φ iff y, 0 |= Alw(φ).

For an MTL formula φ, let Lω0 (φ) denote the set of ω-words w such that
w, 0 |= φ, let Lω(φ) denote the set of ω-words w such that w |= φ, and let LZ(φ)
denote the set of Z-words x such that x |= φ. Then, the satisfiability problem
for a formula φ is equivalent to the emptiness problem for the corresponding
language.

LTL and expressiveness. LTL is a well-known linear temporal logic based
on the unique modality U (note that X can be derived from it as Xφ ≡ ⊥ Uφ).
Originally LTL did not include past modalities (i.e., S and Y which is derivable
from the former), mainly because they do not add expressive power [GHR94].
However, it has been acknowledged that past operators are very useful in for-
malizing certain properties naturally [LPZ85] and concisely [LMS02]. In this
paper, we will consider the past-enhanced variant of the logic, and call it simply
“LTL”.

For the time models we consider in this paper, MTL is simply LTL with an
exponentially succinct encoding. In fact, the following equivalences hold, for
0 < l ≤ u < ∞, 1 < d < ∞, 0 ≤ e < ∞, 0 ≤ f ≤ ∞, and I a bounded interval
of the naturals:2
X=eφ ≡ XX · · ·X︸ ︷︷ ︸

e times

φ

GIφ ≡
∧
k∈I X=kφ1

φ1 U∅ φ2 ≡ ⊥
φ1 U=e φ2 ≡ G(0,e)φ1 ∧ X=eφ2

φ1 U(0,d) φ2 ≡ X
(
φ2 ∨

(
φ1 ∧ φ1 U(0,d−1) φ2

))
φ1 U(l,u) φ2 ≡ G(0,l]φ1 ∧ X=l

(
φ1 U(0,u−l) φ2

)
φ1 U(e,∞) φ2 ≡ G(0,e]φ1 ∧ X=e (φ1 Uφ2)
φ1 U[0,f) φ2 ≡ φ2 ∨ φ1 U(0,f) φ2

φ1 U[l,u] φ2 ≡ φ1 U(l,u) φ2 ∨ φ1 U=l φ2 ∨ φ1 U=u φ2

2Notice that the given equivalences are sufficient to translate any occurrence of the bounded
until operator, because [l, u] = (l− 1, u+ 1) over the naturals. Also, we omit the encoding of
the since modality which is similarly derivable.
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Hence, every MTL formula µ can be translated into an LTL formula λ such
that |λ| = |λ|# = exp O(|µ|# |µ|M), due to the succinct encoding assumption
for MTL formulas.

Example 2.5 (From MTL to LTL). According to the rules presented above,
formula θ = H[0,3]p ⇒ Fq is equivalently expressible in LTL as θ′ = p ∧ Yp ∧
YYp ∧ YYYp⇒ Fq.

Timed words and the integers. MTL is commonly interpreted over timed
words with integer timestamps [AH93]. Usually, timed ω-words are considered,
although timed ω̃-words or timed Z-words could be defined in a natural way.
Timed ω-words are ω-words over 2Π×N: every element wk = 〈σk, δk〉 in a timed
ω-word w = w0w1 · · · records a set σk of atomic proposition that are true at
absolute integer time tk =

∑k
i=0 δk, with the condition that δk > 0 for all k > 0.

The satisfaction relation τ|= for MTL over timed ω-words is defined as follows,
where z is a timed ω-word and i ∈ N:
z, i τ|= p ⇔ p ∈ σi
z, i τ|= ¬φ ⇔ z, i 6 τ|= φ

z, i
τ|= φ1 ∧ φ2 ⇔ z, i

τ|= φ1 ∧ z, i
τ|= φ2

z, i τ|= φ1 UI φ2 ⇔ ∃k > i : (tk − ti ∈ I ∧
z, k |= ψ2 ∧ ∀ i < j < k : z, j |= ψ1)

z, i τ|= φ1 SI φ2 ⇔ ∃0 ≤ k < i : (ti − tk ∈ I ∧
z, k |= ψ2 ∧ ∀ k < j < i : z, j |= ψ1)

Hence, in timed words there are two “times”: one is given by integer position
i ∈ N in a timed word, and the other is given by timestamp ti. Despite the
consequent subtle semantic differences that arise between the timed word inter-
pretation and the integer interpretation we introduced above, it is not difficult
to show that the two models (timed ω-words and ω-words) are reconcilable, as
far as satisfiability is concerned. In fact, let φ be an MTL formula and i ∈ N.
If w, i |= φ for some ω-word w = w0w1 · · · then z, i

τ|= φ for the timed ω-word
z = z0z1 · · · defined as: z0 = 〈w0, 0〉 and zk = 〈wk, 1〉 for k > 0. Conversely, let
z = z0z1 · · · be some timed ω-word. Then, let us extend the alphabet Π with
the fresh proposition a (for “action”) which is true exactly when some events
are recorded in z. Let us define an ω-word w = w0w1 · · · over Π∪{a} as follows:
wtk = σk ∪ {a} whenever tk is defined, and wk = ∅ otherwise. Let φ′ be the
MTL formula obtained from φ by substituting every occurrence of every atomic
proposition p ∈ Π with the formula p ∧ a. It should be clear that z, i τ|= φ iff
w, i |= φ′. All in all, the satisfiability problems for MTL over the naturals and
over timed words are inter-reducible.

2.2 Automata over Infinite Words

Languages definable in MTL can also be described as languages accepted by
finite state automata such as Büchi automata [Tho90].
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Definition 2.6 (Büchi automaton (BA)). A Büchi automaton A is a tuple
〈Σ, Q, q0, δ, F 〉 where:

• Σ is a finite set of input symbols,

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• δ : Q× Σ→ 2Q is the transition relation,

• F ⊆ Q is a set of accepting states.

Differently than finite state automata on finite words, BA accept infinite
ω-words according to the Büchi condition: an ω-word w = w0w1 · · · is accepted
by a BA A iff there exists an infinite sequence of states s = q0q1q2 · · · such that
q0 is the initial state, qi+1 ∈ δ(qi, wi) for all i ∈ N, and there exists a q ∈ F
which appears in s infinitely many times.

The size |A| of a BA A is defined as |Q|. It is well-known that every LTL
formula φ can be translated into a (nondeterministic) Büchi automaton Aφ such
that |Aφ| = exp O(|φ|) [Var06].

Alternating automata (AA, [CKS81, Var06]) are an equally expressive but
possibly more concise version of BA. Formally, the transition relation δ of AA
has a signature Q×Σ→ B

+(Q). This means that AA have two kinds of transi-
tions: nondeterministic transitions (also called existential, corresponding to ∨)
just like vanilla BA, and parallel transitions (also called universal, correspond-
ing to ∧). Nondeterminism allows the automaton to choose, for a given input
symbol, among more than one next state; a word is accepted iff at least one
of the existential choices leads to an accepting run. Dually, parallelism lets the
automaton move, for a given input symbol, to more than one next state in par-
allel; this can be seen as the creation of many parallel copies of the automaton,
one for each of the possible next states. A word is accepted iff all the parallel
runs are accepting.

Alternation can represent concisely the structure of an LTL formula [Var06],
avoiding the exponential blow-up. In [Spo05] we introduced an enriched variant
of AA which makes use of (bounded) counters; this new feature can represent
succinctly MTL formulas as well, i.e., it can encode succinctly constants used
in MTL modalities. Let us recall the definition of such Alternating Modulo-
Counting Automata.

Definition 2.7 (Alternating Modulo Counting Automaton (AMCA) [Spo05]).
An Alternating Modulo Counting Automaton is a tuple 〈Σ, Q, µ, q0, δ, F 〉 where:

• Σ is a finite alphabet,

• Q is a set of states,

• µ ∈ N≥1 such that C = [0..µ] denotes a modulo-µ finite counter,

• q0 ∈ Q is the initial state,
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• δ : Q× C × Σ→ B
+(Q× C) is the transition relation,

• F ⊆ Q is a set of accepting states.

For the sake of readability when indicating the elements in B+(Q× C) we
will use the symbol / to separate the component in Q from the component in C.
Note that the size |A| of an AMCA A can be defined as the product of |Q| times
the size of the counter, succinctly encoded in binary, i.e., |A| = O(|Q| logµ).

A run of an AMCA is defined as follows.

Definition 2.8 (Run of an AMCA). A run (T, ρ) of an AMCA A on the ω-
word w = w0w1 · · · ∈ Σω is a (Q× C ×N)-labeled tree, where ρ is the labeling
function defined as: ρ(ε) = (q0/0, 0); for all x ∈ T , ρ(x) = (q/k, n); and the set
{(q′/h, 1) | c ∈ N, x.c ∈ T, h ∈ C, ρ(x.c) = (q′/h, n + 1)} satisfies the formula
δ(q/k, wn).

The acceptance condition for AMCA is defined similarly as for regular BA:
a path is accepting iff it passes infinitely many times on at least one state in
F . Formally, for a sequence P ∈ Nω and a labeling function ρ, let inf(ρ, P ) =
{s | ρ(n) ∈ {s} × N for infinitely many n ∈ P}. A run (T, ρ) of an AMCA is
accepting iff for all paths P of T it is inf(ρ, P ) ∩ F 6= ∅.

With the usual notation, Lω(A) denotes the set of all ω-words accepted by
the automaton A.

3 Automata-Based MTL Satisfiability over the
Naturals

A widespread approach to testing the satisfiability of an MTL (or LTL) for-
mula over mono-infinite time models isomorphic to the natural numbers relies
on the well-known tight relationship between LTL and finite state automata.
In order to test the satisfiability of an MTL formula µ, one translates it into
an LTL formula λµ, and then builds a nondeterministic BA Aλµ that accepts
precisely the models of λµ, hence of µ. Correspondingly, an emptiness test on
Aλµ is equivalent to a satisfiability check of µ. This procedure, very informally
presented, relies on the following two well-known results.

Proposition 3.1 ([VW94, GO03, Fri05]). Given an LTL formula φ, one can
build a (nondeterministic) BA Aφ with |Aφ| = exp O(|φ|) such that Lω(Aφ) =
Lω(φ) and Lω0 (Aφ) = Lω0 (φ).

Proposition 3.2 ([Var06, VW94, EL85a, EL85b]). The emptiness problem for
(nondeterministic) BA of size n is decidable in time O(n) and space O(log2 n).

In practice, however, this unoptimized approach is inconvenient, because the
BA representing an MTL formula is in general doubly-exponential in the size of
the formula, hence algorithmically very inefficient. On the contrary, we would
like to exploit more concise classes of automata (such as AMCA) to represent
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MTL formulas more efficiently in practice. With this aim, in [Spo05, MPSS03,
PSSM03] we proposed a novel approach to model-checking and satisfiability
checking over discrete mono-infinite time domains for a propositional subset of
TRIO [GMM90], a metric temporal logic with both past and future modalities.
It is clear that the subset of TRIO considered in [Spo05] corresponds to MTL as
we defined it in this paper. Hence, in the following we briefly recall the method
of [Spo05] with reference to MTL formulas. In the remainder of the paper we
will show how to exploit such satisfiability checking procedures over the naturals
to perform satisfiability checking over the integers.

The approach of [Spo05] considers MTL formulas in the form Alw(π ∨ ϕ)
where π is a past formula and ϕ is a future formula. The past component can
be translated into a deterministic BA, whereas the future component can be
translated into an AMCA. A suitable composition of the two automata is a
then an acceptor for the language Lω(Alw(π ∨ ϕ)).

Let us consider past formulas first. Since the past is bounded over ω-words,
at each time instant the prefix of a word — i.e., the only part of the word needed
to evaluate the past formula — is finite. From this consideration one proves the
following proposition. Intuitively, it asserts that for every past formula π it is
possible to build a deterministic BA such that the ω-language accepted by the
automaton is equivalent to the language of π.

Proposition 3.3 (Past automaton [Spo05]). Given a past MTL formula π,
one can build two deterministic BA AAlw(π) and Aπ, called past automaton of
Alw(π) and π, respectively, such that:

• Lω(Aπ) = Lω0 (π);

• Lω(AAlw(π)

)
= Lω0 (Alw(π)) = Lω(π);

• the size of both AAlw(π) and Aπ is exp O(|π|).

On the contrary, the evaluation of a future formula depends in general on the
whole infinite future of the current instant. Correspondingly, future formulas
are translated into AMCA according to the schema we sketch in the following.
The AMCA for a future formula ϕ over alphabet Π is Aϕ = 〈Σ, Q, µ, q0, δ, F 〉
where:

• Σ = 2Π,

• Q = {ν | ν is a subformula of ϕ} ∪ {¬ν | ν is a subformula of ϕ},
• µ = |ϕ|M,

• q0 = ϕ,

• the transition relation δ is defined as follows:

– δ(χ/0, p) = >/0 for χ ∈ Π and χ = p,

– δ(χ/0, p) = ⊥/0 for χ ∈ Π and χ 6= p,

12



– δ(ψ ∧ υ/0, p) = δ(ψ/0, p) ∧ δ(υ/0, p),
– δ(¬ψ/0, p) = dual(δ(ψ/0, p)), where dual(φ) is a formula obtained

from φ by switching > and ⊥, ∧ and ∨, and by complementing all
subformulas of φ,

– δ(ψU[a,b] υ/k, p) =


ψ U[a,b] υ/k + 1 k = 0

δ(ψ/0, p) ∧
(
ψ U[a,b] υ/k + 1

)
0 < k < a

δ(υ/0, p) ∨
(
δ(ψ/0, p) ∧

(
ψ U[a,b] υ/k + 1

))
a ≤ k ≤ b

⊥ k > b

for a ≤ b <∞,

– δ(ψ U υ/k, p) = δ(υ/0, p) ∨ (δ(ψ/0, p) ∧ (ψ U υ/0)),

• F = {ξ | ξ ∈ Q and ξ has the form ¬(ψ U υ)}
Correspondingly, we have the following proposition:

Proposition 3.4 (Future automaton [Spo05]). Given a future MTL formula ϕ,
one can build two AMCA AAlw(ϕ) and Aπ, called future automaton of Alw(ϕ)
and ϕ, respectively, such that:

• Lω(Aϕ) = Lω0 (ϕ);

• Lω(AAlw(ϕ)

)
= Lω0 (Alw(ϕ)) = Lω(ϕ);

• the size of both AAlw(ϕ) and Aϕ is O(|ϕ|).

4 Automata-Based MTL Satisfiability over the
Integers

This section presents the main contribution of the paper: a technique to re-
duce the satisfiability problem for MTL formulas over the integers to the same
problem over the naturals, and how to actually implement the technique with
an automata-based model checker. To this end, Sub-Section 4.1 shows how any
MTL formula can be translated into an equi-satisfiable formula in a canonical
normal form which allows for a straightforward presentation of our technique.
Then, Sub-Section 4.2 shows how satisfiability of MTL formulas in normal form
over the integers can be reduced to satisfiability of related formulas over the
naturals, by taking into account what happens about the origin. Sub-Section
4.3 shows how to implement the satisfiability check over the naturals, introduced
in the previous sub-sections, through a suitable automata-based technique. Fi-
nally, Sub-Section 4.4 summarizes the satisfiability algorithm and analyzes its
worst-case complexity.
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4.1 Flat Normal Form

We introduce a suitable normal form where each application of temporal op-
erators can be analyzed in isolation, and we show that any MTL formula can
be translated into this normal form by introducing auxiliary atomic proposition
but without changing the asymptotic size of the formula.

Definition 4.1 (Flat normal form). An MTL formula φ is in flat normal form
when it is written as:

β ∧
n∧
k=1

Alw(pk ⇔ ψk) (1)

where β ∈ B(Σ) and ψk is a flat formula, for all k = 1, . . . , n. In addition, if
every ψk is a pure past formula or a pure future formula, Formula 1 is named
flat separated normal form.

For a generic MTL formula φ over an alphabet Σ, let us show how to build an
MTL formula φ′ over an alphabet Σ′ ⊇ Σ such that φ′ is in flat separated normal
form and φ and φ′ are such that L (φ) =↓ΣL (φ′). The idea is straightforward:
for every temporal subformula µ in φ we add a new propositions pµ to Σ′. pµ
is an alias for µ and thus it is defined by Alw(pµ ⇔ µ). By applying this idea
recursively we get to the desired form.

More formally, the set of temporal subformulas of φ, denoted by tsf (φ), is
defined inductively as:

tsf (β) = ∅
tsf (¬φ) = tsf (φ)
tsf (φ1 ∧ φ2) = tsf (φ1) ∪ tsf (φ2)
tsf (φ1 UI φ2) = {φ1 UI φ2} ∪ tsf (φ1) ∪ tsf (φ2)
tsf (φ1 SI φ2) = {φ1 SI φ2} ∪ tsf (φ1) ∪ tsf (φ2)

where β is a propositional formula. Notice that |tsf (φ)| ≤ |φ|#.
We build a an extended alphabet Σ′, a new set of formulas Ξ, and a formula

ϕ from Σ, tsf (φ), and φ, respectively, as follows. Let initially Σ′ := Σ, Ξ :=
tsf (φ), and ϕ := φ. We repeatedly pick a flat formula ψ from Ξ and recursively:
(1) add the element pψ to Σ′; (2) replace every occurrence of ψ in all (non-flat)
elements of Ξ with pψ; and (3) replace every occurrence of ψ in ϕ with pψ.
Note that, when no more substitutions can be made, all formulas in Ξ are a
flat application of a single temporal operator and ϕ is a propositional formula.
Also, the number of elements in Ξ does not change during the process. Finally,
we build φ′ as:

φ′ = ϕ ∧
∧
µ∈Ξ

Alw(pµ ⇔ µ)

It is clear that the following theorem holds by construction.

Theorem 4.2. Let φ be an MTL formula over Σ, and let φ′ be the formula
in flat separated normal form built as above. Then LZ(φ) =↓ΣLZ(φ′), |φ′|M =
|φ|M, and |φ′|# = O(|φ|#).
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Example 4.3. Considering formula θ = H[0,3]p ⇒ Fq, we can build θ′ by
replacing H[0,3]p and Fq with two new Boolean literals p′ and q′ respectively.
Hence, θ′ = (p′ ⇒ q′) ∧ (p′ ⇔ H[0,3]p) ∧ (q′ ⇔ Fq).

4.2 Splitting the Evaluation about the Origin

The overall goal of this sub-section is providing a means to check the emptiness
of the language LZ(φ), for any MTL formula φ. Following Theorem 4.2, we
consider instead a formula φ′ — computed from φ — in flat separated normal
form:

φ′ = β ∧
n∧
k=1

(pk ⇔ ψk) (2)

Notice that the satisfiability of φ′ can be analyzed by considering each of the
n + 1 subformulas β, pk ⇔ ψk|1≤k≤n separately. In fact, x |= φ′ iff x |= β and
∀k = 1, . . . , n : x |= pk ⇔ ψk. Hence, without loss of generality, we focus on
studying the satisfiability of formulas in the form p ⇔ ψ+ and p ⇔ ψ−, where
ψ+ and ψ− are flat until and since formulas, respectively.

More precisely, let us start with the future formula:

ψ = f ⇔ p UI q ≡ (¬f ∨ p UI q) ∧ (f ∨ ¬p RI ¬q) (3)

In turn, x |= ψ iff x |= ¬f ∨ p UI q and x |= f ∨ ¬p RI ¬q. Correspondingly, we
now focus on studying the satisfiability of the simple formula ¬f ∨ p UI q over
the integers. Once we have this fundamental characterization, we will see that
it is straightforward to extend it to handle the other formula f ∨ ¬p RI ¬q by
duality, as well as the corresponding past formula f ⇔ p SI q.

4.2.1 Behavior about the origin

Let us consider a Z-word x such that x |= pU[l,u] q for some 0 ≤ l ≤ u <∞. We
would like to split the evaluation of x |= p U[l,u] q into the evaluation of other
— suitably built — formulas over the two mono-infinite words x0 and 0x.

pp

4 6

p, q p p p p p pq qqppp

0 10 1 2 3 5 7 8 9−1−2−3−4−5−6−7−8−9

p

pU[3,7]q pU[3,7]q pU[3,7]q

x00̃x

Figure 2: Splitting the evaluation of p U[3,7] q about the origin.

Before introducing and proving the formal results, let us provide some intu-
ition about our technique, and let l = 3, u = 7. First of all, x |= pU[3,7] q requires
in particular that x0 |= p U[3,7] q: until is a future operator, thus its evaluation
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over x0 is independent of all instant before the origin, hence x0 |= p U[3,7] q iff
∀k ≥ 0 : x, k |= p U[3,7] q. For instance this is the case of instant 3 in Figure 2.

Similarly, let us consider any position k of x such that the interval (k, k+7] ⊂
(−∞, 0] is contained completely to the left of the origin, such as position −8 in
Figure 2. The evaluation of pU[3,7] q at k is independent of all instants after the
origin, hence x, k |= pU[3,7] q iff 0x, k |= pU[3,7] q, for all k + 7 ≤ 0, i.e., k ≤ −7.

Finally, let us consider what happens to the evaluation of pU[3,7] q at instants
k such that the interval (k, k+7] 3 0 contains the origin; for instance let k = −4
and consider again Figure 2. Hence, there exists a h ∈ [−1, 3] such that x, h |= q
and for all −4 < j < h it is x, j |= p. Here, we have to distinguish two cases
and handle them differently. If h ≤ 0 such as for h = −1 in Figure 2, the
evaluation of p U[3,7] q at −4 is still independent of instants after the origin,
hence x, k |= pU[3,7] q iff 0x, k |= pU[3,7] q. Otherwise, if h > 0 such as for h = 2
in Figure 2, we consider separately the adjacent intervals (k, 0] and (0, k + 7].
The fact that p holds throughout (k, 0] is independent of instants after the
origin, so x, k |= G(0,−k]p iff 0x, k |= Gp. Moreover, pUI q holds at the origin for
the “residual” interval (0, 3], thus x, 0 |= p U[1,3] q iff x0, 0 |= p U[1,3] q.

By generalizing the above informal reasoning, we get the following.

Lemma 4.4. For any bi-infinite word x, 0 ≤ l ≤ u <∞ such that u 6= 0,3 for
all 1− u ≤ i ≤ −1:

x, i |= p U[l,u] q ⇔
x, i |= p U[l,−i] q

∨(
x, i |= G[1,−i]p ∧ x, 0 |= p U[max(1,i+l),i+u] q

) (4)

Proof. Let us start with the ⇒ direction: assume x, i |= p U[l,u] q. Hence, there
exists a d ∈ [l, u] such that x, i+ d |= q and for all i < j < i+ d it is x, j |= p. If
i+d ≤ 0 then 0 ≤ d ≤ −i, hence x, i |= pU[l,−i] q holds. Otherwise, i+d > 0; in
this case, p holds throughout (i, 0] and thus x, i |= G[1,−i]p holds. In addition, let
d′ = i+d; note that 1 ≤ d′ ≤ i+u and also i+l ≤ d′, so x, 0 |= pU[max(1,i+l),i+u] q
holds.

Let us now consider the⇐ direction. If x, i |= pU[l,−i] q, from 1−u ≤ i ≤ −1
we get 1 ≤ −i ≤ u − 1, thus [l,−i] ⊆ [l, u] which entails x, i |= p U[l,u] q.
Otherwise, let x, i |= G[1,−i]p and x, 0 |= p U[max(1,i+l),i+u] q. That is, p holds
throughout (i, 0], and there exists a k ∈ [max(1, i+ l), i+ u] such that x, k |= q
and p holds throughout (0, k). Let d = −i+ k; from k ∈ [max(1, i+ l), i+ u] we
get d ∈ [l, u], which establishes x, i |= p U[l,u] q.

Lemma 4.4 showed how to “split” the evaluation of an until formula into the
evaluation of two derived formulas, one to be evaluated to the left of the origin,
and one to its right. Next, we use that result to express the satisfiability of a
formula of the form ¬f ∨pU[l,u] q over a bi-infinite word x as the satisfiability of

3This restriction is clearly without loss of generality, as φ1 U
[0,0]

φ2 ≡ φ2.
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several different formulas, each evaluated separately either on the whole mono-
infinite word x0 or on the whole mono-infinite word 0̃x. Precisely, we have the
following.

Lemma 4.5. Let x be a bi-infinite word, and 0 ≤ l ≤ u < ∞ such that u 6= 0;
then:

x |= ¬f ∨ p U[l,u] q ⇔

x0 |= ¬f ∨ p U[l,u] q ∧ f0x |= ¬f ∨ p S[l,u] q ∨ (Hp ∧ H=u⊥)

∧

∀1 ≤ i ≤ u− 1 :

0B@ f0x |= P=i> ∧ H=i+1⊥ ⇒ ¬f ∨ p S[l,u] q

∨
x0, 0 |= p U[max(1,−i+l),−i+u] q

1CA
(5)

Proof. Let us start with the ⇒ direction where we assume x |= ¬f ∨ p U[l,u] q.
For all k ≥ 0, x, k |= ¬f ∨ p U[l,u] q implies x0, k |= ¬f ∨ p U[l,u] q, hence
x0 |= ¬f ∨ p U[l,u] q is established. Notice also that 0x, 0 |= Gp ∧ G=u⊥ holds

trivially because the interval (0, 0] is empty, thus also 0̃x, 0 |= Hp ∧ H=u⊥ (see
Remark 2.1).
Then, let k < 0 and show 0x, k |= ¬f ∨ pU[l,u] q ∨ (Gp ∧ G=u⊥), hence 0̃x,−k |=
¬f ∨pS[l,u] q∨ (Hp ∧ H=u⊥). From the current hypothesis, x, k |= ¬f ∨pU[l,q] q.
In particular, if x, k |= ¬f we are done. Otherwise, x, k |= pU[l,u] q, that is there
exists a d ∈ [k + l, k + u] such that x, d |= q and for all k < j < d it is x, j |= p.
If d ≤ 0, the truth of the until at k does not depend on any instant beyond 0,
hence also 0x, k |= p U[l,u] q. Otherwise, let d > 0. In this case, (k, 0] ⊆ (k, d),
therefore 0x, k |= Gp is established. Moreover, 0 < d ≤ k + u implies k > −u.
Hence 0x, k |= G=u⊥ as required.
Finally, let 1 ≤ i ≤ u − 1 and establish that either 0̃x |= P=i> ∧ H=i+1⊥ ⇒
¬f∨pS[l,u] q or x0, 0 |= pU[max(1,−i+l),−i+u] q. Note that P=i>∧H=i+1⊥ holds at

position h in an ω-word iff h = i (see Remark 2.1). So, if 0̃x, i |= ¬f ∨ p S[l,u] q

then we are done. Otherwise, assume that 0̃x, i 6|= ¬f ∨ p S[l,u] q. Since it is
x,−i |= ¬f∨pU[l,u] q, we infer that, in this case, there exists a d ∈ [−i+l,−i+u]
such that d > 0, x, d |= q, and p holds throughout (−i, d) over x. Notice that
d > 0 and d ∈ [−i + l,−i + u] means that d ≥ max(1,−i + l) and d ≤ −i + u.
Therefore, x, 0 |= p U[max(1,−i+l),−i+u] q and thus x0, 0 |= p U[max(1,−i+l),−i+u] q
a fortiori, which concludes this direction of the proof.

Let us now tackle the ⇐ direction.
First of all, from x0 |= ¬f ∨ p U[l,u] q it follows that we are left with proving
x, k |= ¬f ∨ p U[l,u] q for all k < 0.

If 0̃x,−k |= ¬f ∨ p S[l,u] q, then 0x, k |= ¬f ∨ p U[l,u] q follows from Proposition
2.4, hence x, k |= ¬f∨pU[l,u] q a fortiori because the truth of it does not depend
on instants beyond 0 in this case.
Otherwise, let 0̃x,−k 6|= ¬f ∨ p S[l,u] q and assume 0̃x,−k |= Hp∧H=u⊥, that is
p holds over (k, 0] on 0x (and x) and 0 < −k < u (see Remark 2.1). From the
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right-hand side of (5) for i = −k, it must be x0, 0 |= p U[max(1,k+l),k+u] q, that
is there exists a d ∈ [max(1, k + l), k + u] such that x0, d |= q and p holds over
(0, d). Then, p holds over the whole (k, d). Also, from d ≤ k + u it follows that
−k+ d ≤ u, and from d ≥ k+ l it follows that −k+ d ≥ l. Hence −k+ d ∈ [l, u]
and x, k |= p U[l,u] q is established.

Remark 4.6. Let φL and φR be the left- and right-hand side of Formula (5),
respectively. Note that u = exp O(|φL|M), due to the succinct encoding of
constants assumption. Then, |φR|M = O(|φL|M) and |φR|# = O(u · |φL|#) =
|φL|# exp O(|φL|M).

4.2.2 From formulas to languages

It is not difficult to show that the equivalence of Formula (5) can be exploited to
derive an equivalent formulation of the bi-infinite language LZ

(
¬f ∨ p U[l,u] q

)
in terms of mono-infinite ω-languages and composition operations on them.

Theorem 4.7. Let 0 ≤ l ≤ u <∞ and u 6= 0; then:

LZ
(
¬f ∨ p U[l,u] q

)
=

fLω“¬f ∨ p S[l,u] q ∨ (Hp ∧ H=u⊥)
”
. Lω

“
¬f ∨ p U[l,u] q

”
∩

Tu−1
i=1

0BB@
fLω“P=i> ∧ H=i+1⊥ ⇒ ¬f ∨ p S[l,u] q

”
.
“

2Π
”ω

∪
ω
“

2Π
”
. Lω0

“
p U[max(1,−i+l),−i+u] q

”
1CCA

(6)

Proof. Let us simplify the presentation with the abbreviations: φL = ¬f ∨
p U[l,u] q, φR1 = ¬f ∨ p S[l,u] q ∨ (Hp ∧ H=u⊥), φiR2

= P=i> ∧ H=i+1⊥ ⇒ ¬f ∨
p S[l,u] q, φ

i
R3

= p U[max(1,−i+l),−i+u] q.

Let x ∈ LZ(φL) so x |= φL. From Lemma 4.5, it is 0̃x |= φR1 and x0 |= φL, so
0̃x ∈ Lω(φR1) — or equivalently 0x ∈ L̃ω(φR1) — and x0 ∈ Lω(φL). Also, note
that w, 0 |= φR1 is the case for any ω-word w, because Hp∧H=u⊥ holds trivially
at 0. Hence, x ∈ L̃ω(φR1) .Lω(φL). Let now pick a generic 1 ≤ i ≤ u− 1. From
Lemma 4.5, it is: (1) 0̃x |= φiR2

; or (2) x0, 0 |= φiR3
. Note that w, 0 |= φiR2

is the
case for any ω-word w, because the antecedent P=i>∧H=i+1 holds trivially at 0
for i ≥ 1. So, if (1) is the case, 0̃x ∈ Lω(φiR2

)
, that is 0x ∈ L̃ω(φiR3

)
; hence, x ∈

L̃ω(φiR3

)
.
(
2Π
)ω. If (2) is the case, x0 ∈ Lω0

(
φiR3

)
; hence, x ∈ ω

(
2Π
)
.Lω0

(
φiR3

)
.

For the converse, let us consider any Z-word x such that: −1x ∈ L̃ω(φR1),
x0 ∈ Lω(φL), and for any 1 ≤ i ≤ u−1: either −1x ∈ L̃ω(φiR2

)
or x0 ∈ Lω(φiR3

)
.

Correspondingly, we have that 0̃x |= φR1 , x0 |= φL, and for any 1 ≤ i ≤ u − 1:
either 0̃x |= φiR2

, or x0, 0 |= φiR3
. From Lemma 4.5 we immediately infer that

x |= φL, hence x ∈ LZ(φL).
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4.2.3 Other operators

So far, we have provided a characterization of flat formulas only in the form
¬f ∨ p U[l,u] q, for finite l ≤ u. In order to handle every possible subformula in
the form (1), we have to present similar characterizations for the subformulas:

1. ¬f ∨ p U[l,∞) q;

2. f ∨ p RI q, for any interval I;

3. f ⇔ p SI q ≡ (¬f ∨ p SI q) ∧ (f ∨ ¬p TI ¬q), for any interval I;

4. β ∈ B(Σ′).

We devote the remainder of this sub-section to the presentation of such
characterizations. We omit most of the proofs, as they can be easily derived
from the corresponding ones for the until presented above.

Until with unbounded interval. Notice that φ1 U[l,∞) φ2 is equivalent to
G(0,l]φ1∧F=l (φ1 Uφ2) for all l ≥ 1, and φ1U[0,∞) φ2 is equivalent to φ2∨φ1Uφ2.
Hence, without loss of generality we just consider the case p U q; we have the
following results.

Lemma 4.8. For any bi-infinite word x, for all i ≤ −1:

x, i |= p U q ⇔
x, i |= p U[1,−i] q

∨(
x, i |= G[1,−i]p ∧ x, 0 |= p U q

) (7)

Proof. Let us start with the ⇒ direction: assume x, i |= p U q. Hence, there
exists a d > 0 such that x, i + d |= q and for all i < j < i + d it is x, j |= p. If
i+d ≤ 0 then 0 ≤ d ≤ −i, hence x, i |= pU[1,−i] q holds. Otherwise, i+d > 0; in
this case, p holds throughout (i, 0] and thus x, i |= G[1,−i]p holds. In addition,
let d′ = i+ d; note that d′ ≥ 1, so x, 0 |= p U q holds.

Let us now consider the ⇐ direction. If x, i |= p U[1,−i] q, from i ≤ −1 we
get −i ≥ 1, thus [1,−i] ⊆ (0,∞) which entails x, i |= p U q. Otherwise, let
x, i |= G[1,−i]p and x, 0 |= p U q. That is, p holds throughout (i, 0], and there
exists a k > 0 such that x, k |= q and p holds throughout (0, k). Let d = −i+ k;
note that d > k > 0, so x, i |= p U q is established.

Lemma 4.9. Let x be a bi-infinite word; then:

x |= ¬f ∨ p U q ⇔
x0 |= ¬f ∨ p U q ∧ 0̃x |= ¬f ∨ p S q ∨ Hp

∧(
0̃x |= ¬f ∨ p S q ∨ x0, 0 |= p U q

) (8)
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Proof. Let us start with the ⇒ direction: assume x |= ¬f ∨ p U q. Clearly, the
assumption entails x0 |= ¬f ∨pU q because we are considering a future formula.
Then, let k > 0 be any positive integer and prove 0̃x, k |= ¬f ∨ p S q ∨ Hp.
Since x,−k |= ¬f ∨ p U q, let us assume x,−k |= p U q: there exists a d > 0
such that x,−k + d |= q and p holds over (−k,−k + d). If −k + d ≤ 0, then
0x,−k + d |= q, hence 0̃x, k |= p S q by Proposition 2.4. Otherwise, −k + d > 0,
hence (−k,−k + d) ⊃ (−k, 0]; so 0x,−k |= Gp and 0̃x, k |= Hp by Proposition
2.4 and Lemma 4.9. Finally, let k > 0 be the least position such that x,−k |=
¬f ∨ p U q but 0̃x, k |= f ∧ ¬(p S q). If such k does not exist, we conclude that
0̃x |= ¬f ∨ p S q. Otherwise, there exists a d > −k such that x, d |= q and for all
−k < j < d it is x, j |= p. It should be clear that it cannot be d ≤ 0, otherwise
it would also be 0x,−k |= p U q, in contradiction with 0̃x, k |= ¬(p S q) because
of Proposition 2.4. Hence d > 0, which implies x0, 0 |= p U q.

For the ⇐ direction, let k be any integer: we show that x, k |= ¬f ∨ p U q.
If k ≥ 0, x0 |= ¬f ∨ p U q entails the goal, because we are considering a future
formula. So, let k < 0. If 0̃x,−k |= ¬f ∨ p S q, then 0x, k |= ¬f ∨ p U q by
Proposition 2.4, and x, k |= ¬f ∨ pU q holds because of Lemma 4.9. Otherwise,
0̃x,−k |= f ∧¬(pS q)∧Hp. Notice that in this case 0̃x 6|= ¬f ∨pS q, thus it must
be x0, 0 |= p U q, that is there exists a d > 0 such that x0, x |= q and p holds
over (0, d). Moreover, p holds over (k, 0] because of 0̃x,−k |= Hp. All in all, p
holds throughout (k, d) and hence x, k |= pU q is the case from Lemma 4.9.

Theorem 4.10.

LZ(¬f ∨ p U q) =
L̃ω(¬f ∨ p S q ∨ Hp) . Lω(¬f ∨ p U q)

∩(
L̃ω(¬f ∨ p S q) /

(
2Π
)ω ∪ ω

(
2Π
)
. Lω0 (p U q)

) (9)

Release operator. The characterization of the subformula f ∨pRI q in terms
of mono-infinite languages can be derived from the corresponding characteriza-
tion of the until subformula ¬f∨pUI q by duality. In fact, we have the following
straightforward results.

Corollary 4.11. For any bi-infinite word x, l ≤ u < ∞ such that u 6= 0, for
all 1− u ≤ i ≤ −1:

x, i |= p R[l,u] q ⇔
x, i |= p R[l,−i] q

∧(
x, i |= F[1,−i]p ∨ x, 0 |= p R[max(1,i+l),i+u] q

) (10)

x |= f ∨ p R[l,u] q ⇔

x0 |= f ∨ p R[l,u] q ∧ f0x |= f ∨ p T[l,u] q

∧

∀1 ≤ i ≤ u− 1 :

0@ f0x |= P=i> ∧ H=i+1⊥ ⇒ Pp
∨

x0, 0 |= p R[max(1,−i+l),−i+u] q

1A (11)
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LZ
(
f ∨ p R[l,u] q

)
=

fLω“f ∨ p T[l,u] q
”
. Lω

“
f ∨ p R[l,u] q

”
∩

Tu−1
i=1

0BB@
fLω`P=i> ∧ H=i+1⊥ ⇒ Pp

´
.
“

2Π
”ω

∪
ω
“

2Π
”
. Lω0

“
p R[max(1,−i+l),−i+u] q

”
1CCA (12)

Corollary 4.12. For any bi-infinite word x, for all i ≤ −1:

x, i |= p R q ⇔
x, i |= p R[1,−i] q

∧(
x, i |= F[1,−i]p ∨ x, 0 |= p R q

) (13)

x |= f∨pR q⇔
x0 |= f ∨ p R q

∧(
0̃x |= f ∨ (p T q ∧ Pp)∨

(
0̃x |= f ∨ p T q ∧ x0, 0 |= p R q

))
(14)

LZ(f ∨ p R q) =
L̃ω(f ∨ (p T q ∧ Pp)) . Lω(f ∨ p R q)

∪
L̃ω(f ∨ p T q) . (Lω0 (p R q) ∩ Lω(f ∨ p R q))

(15)

Past operators. Clearly, equivalences for past operators (namely, since and
trigger) can be derived mechanically from the corresponding equivalences for its
future counterpart. Namely, every reference to future is switched to a reference
to past, and vice versa. For instance, the equivalents of Lemmas 4.4–4.5 and of
Theorem 4.7 for the since operator are, respectively:

Lemma 4.13. For any bi-infinite word x, l ≤ u < ∞ such that u 6= 0, for all
1 ≤ i ≤ u− 1:

x, i |= p S[l,u] q ⇔
x, i |= p S[l,i] q

∨(
x, i |= H[1,i]p ∧ x, 0 |= p S[max(1,−i+l),−i+u] q

) (16)

Lemma 4.14. Let x be a bi-infinite word, and l ≤ u < ∞ such that u 6= 0;
then:

x |= ¬f ∨ p S[l,u] q ⇔

fx0 |= ¬f ∨ p U[l,u] q ∧ x0 |= ¬f ∨ p S[l,u] q ∨ (Hp ∧ H=u⊥)

∧

∀1 ≤ i ≤ u− 1 :

0B@ x0 |= P=i> ∧ H=i+1⊥ ⇒ ¬f ∨ p S[l,u] q

∨f0x, 0 |= p U[max(1,−i+l),−i+u] q

1CA
(17)
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Theorem 4.15. Let l ≤ u <∞ and u 6= 0; then:

LZ
(
¬f ∨ p S[l,u] q

)
=

fLω“¬f ∨ p U[l,u] q
”
/ Lω

“
¬f ∨ p S[l,u] q ∨ (Hp ∧ H=u⊥)

”
∩

Tu−1
i=1

0BB@
ω
“

2Π
”
/ Lω

“
P=i> ∧ H=i+1⊥ ⇒ ¬f ∨ p S[l,u] q

”
∪fLω0 “p U[max(1,−i+l),−i+u] q

”
/
“

2Π
”ω

1CCA
(18)

For brevity, we omit the full presentation, and the proofs, of all the other
easily derivable equivalences.

Propositional formulas. The case for propositional formulas β ∈ B(Σ′) is
trivial, as the evaluation of atomic proposition at some position is independent
of any other (future or past) position, hence x |= β iff x0 |= β and 0̃x |= β.

Example 4.16. Let us consider the running example of formula θ = H[0,3]p⇒
Fq. θ in separated normal form becomes θ′ = (p′ ⇒ q′) ∧ (p′ ⇔ H[0,3]p) ∧ (q′ ⇔
Fq). Then, subformula λ = p′ ∨¬H[0,3]p = p′ ∨P[0,3]¬p = p′ ∨> S[0,3] ¬p can be
directly decomposed according to (17):

x |= p′ ∨ P[0,3]¬p ⇔

fx0 |= p′ ∨ F[0,3]¬p ∧ x0 |= p′ ∨ P[0,3]¬p ∨ H=u⊥
∧

∀1 ≤ i ≤ 2 :

0B@ x0 |= P=i> ∧ H=i+1⊥ ⇒ p′ ∨ P[0,3]¬p
∨f0x, 0 |= F[1,−i+3]¬p

1CA (19)

4.3 From Languages to Automata (to ProMeLa)

In Section 3 we showed how to build an automaton that accepts any given
MTL ω-language. On the other hand, in the previous section we showed how
to reduce MTL satisfiability over Z-languages to MTL satisfiability over ω-
languages composed through the operations of right . and left / join, union ∪,
intersection ∩, and projection ↓Σ. In this section we show that the reduction
can be fully implemented, by showing that the automata we consider are closed
under the operations of union and intersection, and by showing how to deal
with join and projection.

4.3.1 Union and intersection

Notice that BA can be regarded as a special case of AMCA, one where counters
and universal transitions are not used at all. Hence, let us just show how to
build intersection and union of of AMCA.

Proposition 4.17 (AMCA union). Consider two AMCA Ai = 〈Σ, Qi, µi, qi0, δi, Fi〉
for i = 1, 2. Let A1 ∪ A2 be the AMCA defined as:

A1 ∪ A2 = 〈Σ, Q1 ∪Q2 ∪ {q0},max(µ1, µ2), q0, δ, F1 ∪ F2〉
where:

22



• q0 6∈ Q1 ∪Q2,

• δ = δ1 ∪ δ2 ∪ {(q0/0, σ) 7→ δ(q1
0/0, σ) ∨ δ(q2

0/0, σ)}
for all σ such that δ(q1

0/0, σ) or δ(q2
0/0, σ) is defined.

Then, Lω(A1 ∪ A2) = Lω(A1) ∪ Lω(A2).

Proof. Omitted for brevity.

Proposition 4.18 (AMCA intersection). Consider two AMCA Ai = 〈Σ, Qi, µi,
Λi, qi0, δi, Fi〉 for i = 1, 2. Let A1 ∩ A2 be the AMCA defined as:

A1 ∩A2 = 〈Σ, Q1 ×Q2 × {0, 1, 2}, µ1 × µ2, {q1
0} × {q2

0} × {0}, δ, F1 × F2 × {2}〉

where µ1 × µ2 means that we have a pair of parallel counters C1 = [0..µ1] and
C2 = [0..µ2], and where δ((qi, qj , k)/(m1,m2), σ) = (q′i, q

′
j , h)/(m′1,m

′
2) if and

only if:

• δ1(qi/m1, σ) = q′i/m
′
1,

• δ2(qj/m2, σ) = q′j/m
′
2,

• k and h are correlated ad follows:

– if k = 0 and q′i ∈ F1 then h = 1,

– if k = 1 and q′j ∈ F2 then h = 2,

– if h = 2, then h = 0,

– k = h, otherwise.

Then, Lω(A1 ∩ A2) = Lω(A1) ∩ Lω(A2).

Proof. Omitted for brevity.

Remark 4.19. Let A1 and A2 be two automata (either BA or AMCA). Then
|A1 ∪ A2| = O(|A1|+ |A2|) and |A1 ∩ A2| = O(|A1| · |A2|).

4.3.2 Join and projection

Let L1, L2 be two ω-languages. Let us consider a Z-language L defined as
L̃1 . L2. Then a Z-word x is in L iff −̃1x ∈ L1 and x0 ∈ L2. Similarly, for the
language L′ defined as L̃1 / L2, x is in L′ iff 0̃x ∈ L1 and x1 ∈ L2. Hence, if
we have two automata A1,A2 such that Lω(A1) = L1 and Lω(A2) = L2 the
emptiness of L and L′ can be checked noting that L = ∅ iff Lω(A1) = ∅ or
Lω(A2) = ∅, and the same for L′ = ∅ iff Lω(A1) = ∅ or Lω(A2) = ∅.

For the projection, for any MTL formula φ over Π let φ′ be an equi-satisfiable
MTL formula over Π′ ⊇ Π. Then, ↓Π LZ(φ′) = LZ(φ). Hence, LZ(φ) = ∅ iff
LZ(φ′) = ∅. Correspondingly, the technique to check the satisfiability of the
formula over the extended alphabet suffices to complete the satisfiability check
on the original formula.
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4.3.3 Implementing automata

In [BMP+07, BSM+07] we presented TRIO2ProMeLa, a tool that translates
TRIO formulas (or, equivalently, MTL formulas) into a ProMeLa representa-
tion of the automata presented in Section 3. ProMeLa is the input language
to the Spin model-checker [Hol03], hence the tool allows one to check the sat-
isfiability of an MTL formula on top of Spin. This approach is very efficient in
practice, since it translates directly AMCA, BA, and compositions thereof (i.e.,
unions and intersections) to ProMeLa, obtaining a code of the same size as the
original automata. When Spin is run on the automata described in ProMeLa, it
unfolds them on-the-fly. This unfolding may lead to a blow-up in the dimension
of the automata but it is performed by the model-checker only when needed.
This approach is convenient, since in many practical cases — when the origi-
nal formulas are large — the direct translation to BA and then to ProMeLa is
simply unfeasible.

In a nutshell, every state of an AMCA is implemented with a ProMeLa
process, existential transitions are implemented as nondeterministic choices, and
universal transitions as the parallel run of concurrent processes. The tool also
introduces some useful optimizations, such as merging processes when possible.
We refer the reader to [BMP+07, BSM+07, Spo05] for a detailed description of
the translation from AMCA and BA to ProMeLa code.

For our purposes, TRIO2ProMeLa can be reused to provide an implemen-
tation of our satisfiability checking procedure over the integers. Once a formula
is decomposed as explained in the previous sections, each component is trans-
lated into the ProMeLa process that represents the equivalent automaton. All
the obtained processes are then suitably composed and coordinated by starting
them together at time 0. The results of the various emptiness checks are then
combined to have a response about the satisfiability of the original formula.

4.4 Summary and Complexity

Let us briefly summarize the satisfiability checking technique we presented in
this section and let us analyze its worst-case asymptotic complexity.

4.4.1 Summary of the satisfiability checking algorithm

Given an MTL formula φ over alphabet Σ, the satisfiability over Z-words is
checked according to the following steps.

1. From φ, build a formula φ′ in flat separated normal form such that
LZ(φ) =↓ΣLZ(φ′).

2. For each subformula φ′i of φ′, build a set of formulas {φ′i,j}j , whose com-
bined satisfiability over ω-words is equivalent to the satisfiability of φ′i over
Z-words (e.g., according to (6) for the bounded until). Let φ′′i =

⋃
j{φ′i,j}.

3. Translate each subformula φ′i,j into an automaton Ai,j according to what
described in Section 3.
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4. For each i, compose the various automata Ai,j according to the structure
of the corresponding language equivalence theorems (e.g., according to (6)
for the bounded until). In practice, for every i we can assume to have two
automata A+

i ,A−i such that L̃ω(A−i ) ∼ Lω(A+
i

)
= LZ(φ′i), where ∼ is .

or /.

5. Let A+,A− be the automata resulting from the intersection of the various
A±i ’s according to the structure of LZ(φ′).

6. Since the equivalence ↓ΣLZ(φ′) = LZ(φ) holds by construction, the empti-
ness test on Lω(A+) and on Lω(A−) is equivalent to the satisfiability check
of φ over Z-words.

Example 4.20. Let us go back to our running example of θ = H[0,3]p ⇒ Fq.
In Example 4.16 we showed how to decompose the subformula λ = p′ ∨ P[0,3]p

(see (19)). Correspondingly, we would build the following automata:

• A1 for p′ ∨ P[0,3]¬p;
• A2 for p′ ∨ P[0,3]¬p ∨ H=u⊥;

• Aj3 for P=j> ∧ H=j+1⊥ ⇒ p′ ∨ P[0,3]¬p, j = 1, 2;

• Aj4 for F[1,−j+3]¬p, j = 1, 2.

The automata would then be composed into:

• A−λ = A1;

• A+
λ = A2 ∩

⋂2
j=1

(
Aj3 ∪ Aj4

)
.

Overall, we build two such automata A−i and A+
i for each of the 5 subformulas

θ′ can be decomposed into. Let A+ =
⋂5
i=1A+

i and A− =
⋂5
i=1A−i . Finally, we

conclude that θ is satisfiable iff Lω(A+) is non-empty and Lω(A−) is non-empty.

4.4.2 Upper-bound complexity of satisfiability checking over the in-
tegers

Let us now evaluate an upper bound on the complexity of the above procedure.
The worst-case occurs when overall automata A± are expanded entirely into
nondeterministic BA, thus losing entirely the conciseness of AMCA and the
implicit representation of intersections.

First of all, let us estimate the size of every Ai,j with respect to the size
of φ′i. In Proposition 3.1 we recalled that the size |B| of a Büchi automaton B
encoding an LTL formula θ of size |θ| is exp O(|θ|). Also, every MTL formula
η can be translated into an equivalent LTL formula of size exp O(|η|# |η|M). In
our case, every formula φ′i,j is translated into an automaton of size:

|Ai,j | = exp exp O
(∣∣φ′i,j∣∣# ∣∣φ′i,j∣∣M) = exp exp O

(∣∣φ′i,j∣∣M)
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because every subformula φ′i,j has a constant (i.e., independent of |φ|) number
of connectives. Also, in Remark 4.6 we noted that

∣∣φ′i,j∣∣M = |φ′i|M, so:

|Ai,j | = exp exp O (|φ′i|M)

Next, let us estimate the size of A±i . Roughly, A±i is the intersection
⋂
j Ai,j ,

hence its size is upper-bounded by the product of the sizes |Ai,j |:

∣∣A±i ∣∣ =
∏
j

|Ai,j | ≤
(

max
j
|Ai,j |

)|φ′′i |
= (exp exp O(|φ′i|M))exp O(|φ′i|M)

where the equivalence between |φ′′i | and exp O(|φ′i|M) was highlighted in Remark
4.6. After some manipulation, we get:∣∣A±i ∣∣ = exp

(
(exp O(|φ′i|M)) (exp O(|φ′i|M))

)
= exp exp O (|φ′i|M)

Then, the overall size of A+ and A− can be computed as:

∣∣A+
∣∣+∣∣A−∣∣ = O(

∣∣A±∣∣) =
∏
i

∣∣A±i ∣∣ ≤ (max
i
|Ai|

)|φ′|# = exp
( |φ′|# exp O(|φ′|M)

)
thanks to the equivalence between |φ′i|M and O(|φ′|M) stated in Remark 4.6.

Finally, Theorem 4.2 relates the size of φ′ to that of the original formula φ,
so we have: ∣∣A+

∣∣+
∣∣A−∣∣ = exp

( |φ|# exp O(|φ|M)
)

From the well-known result that emptiness check of a Büchi automaton takes
time polynomial (actually, linear) in the size of the automaton (see Proposition
3.2), we have established the following.

Theorem 4.21 (Upper-bound complexity). The verification algorithm of this
paper can check the satisfiability of an MTL formula φ over Z-words in time
doubly-exponential in the size |φ| of φ.

4.4.3 Complexity of MTL over the integers

Let us now show that the satisfiability problem for MTL over the integers is an
EXPSPACE-complete problem, just like it is over the naturals [AH93].

Theorem 4.22 (Complexity of MTL over the integers). The satisfiability prob-
lem for MTL over the integers is EXPSPACE-complete.

Proof. From Proposition 3.2 and the analysis of the previous section, it follows
that the satisfiability problem for MTL over the integers is decidable in nonde-
terministic (singly) exponential space, hence it is in EXPSPACE. (In particular,
[VW94] shows how to check emptiness without building the whole (doubly-
exponential in size) Büchi automaton.)
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For the lower bound, we reduce the satisfiability problem for future-MTL
over the naturals to MTL satisfiability over the integers. Let φ be a future
MTL formula, and let s be a fresh atomic proposition. Let ι be the formula:

ι = Alw(Fs ∨ Ps ∨ s) ∧Alw(s⇒ G¬s ∧ H¬s)

Basically, ι asserts that s is a “unique event”: occurs exactly once over the whole
temporal axis. Hence, it can be used to simulate the origin of the mono-infinite
case. Let:

φ′ = ι ∧ (s⇒ φ)

Let φ′ be satisfiable over Z-word x and let h ∈ Z be the unique instant
where s holds, so xh, h |= φ because φ is a future formula. Then, let us consider
the ω-word w obtained from xh as wk = xhh−k \ {s}. It is clear that w |= φ.

Conversely, let φ be satisfiable over the ω-word w. We build a Z-word x as
follows: x1 = w1, x0 = w0 ∪ {s}, −1x = ω∅. It is cleat that x |= φ′.

So, future-MTL satisfiability over the naturals is reducible to MTL satisfia-
bility over the integers. Alur and Henzinger [AH93] showed that the satisfiability
problem for future-MTL over the naturals4 is EXPSPACE-complete, hence the
theorem follows.

5 Discussion

As we discussed in the Introduction, bi-infinite time models for temporal logic
have been studied very rarely. Let us briefly consider a few noticeable excep-
tions.

On the more practical side, Pradella et al. [PMS07] recently developed a tool-
supported technique for bounded model-checking of temporal logic specifications
over the integers. Bounded model-checking [BHJ+06] is a verification technique
based on reduction to the propositional satisfiability (SAT) problem, for which
very efficient off-the-shelf tools exist. The technique is however incomplete, as
it only looks for words of length up to a given bound k, where k is a parameter
of the verification problem instance. [PMS07] describes a direct encoding of
MTL bounded satisfiability as a SAT instance and reports on some interesting
experimental results with an implementation. [PMS07] also discusses the appeal
of bi-infinite time from a system modeling perspective; some of its considerations
are also discussed in the Introduction of the present paper.

In the area of automata theory and formal languages, there exist a few works
considering bi-infinite time models. For instance Perrin, Pin, et al. [PP04,
Chap. 9],[NP82, NP86, GN91] introduce bi-infinite words and automata on
them, and extend some classical results for mono-infinite words to these new
models. In the same vein, Muller et al. [MSS92] establish the decidability of
LTL over the integers. However, to the best of our knowledge the complexity

4Actually, [AH93] uses the different semantic model of timed ω-words with natural times-
tamps, but we discussed in Section 2 how this difference does not impact the problem of
satisfiability and in particular its lower-bound complexity.
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of temporal logic over bi-infinite time has never been investigated in previous
work.

On the contrary, temporal logic over mono-infinite time models has been
extensively studied, and it has been the object of an impressive amount of both
practical and theoretical research (e.g., [Eme90, CGP00, MP92, GHR94, Var06,
AH93, Hen98, AH92, FMMR07]). Satisfiability of both LTL [SC85, DS02] and
MTL [AH93] — also with past operators — over mono-infinite discrete time
models has been thoroughly investigated. Sistla and Clarke [SC85] proved that
LTL satisfiability over the naturals is PSPACE-complete, with a (singly) expo-
nential time algorithm. Correspondingly, Alur and Henzinger [AH93] proved
that MTL satisfiability over mono-infinite integer timed words is EXPSPACE-
complete, and provided a doubly-exponential time algorithm. In this paper we
established that MTL satisfiability remains EXPSPACE-complete over the inte-
gers, and we provided an algorithm which matches the worst-case time com-
plexity of MTL satisfiability over mono-infinite time.

We notice, however, that the algorithm we presented in the paper has not
only theoretical interest in determining the worst-case complexity of MTL sat-
isfiability over the integers. In fact, it allows for various practical improvements
over the naive approach of translating the MTL formulas into LTL, and then
directly into Büchi automata. Here it is an informal summary of such improve-
ments:

• MTL future formulas are succinctly encoded as AMCA. With respect to
vanilla Büchi automata, alternation can bring an exponential succinctness
gain in representing the Boolean structure of the formula, whereas the use
of counters can bring an exponential succinctness gain in encoding the
constants used in the formula.

• MTL past formulas are conveniently encoded as deterministic Büchi au-
tomata.

• Then, both AMCA and deterministic Büchi automata can be translated
straightforwardly into ProMeLa code of comparable size (i.e., without
exponential blow-up in the description). Also, the various operations
of intersection and union among automata can be described directly in
ProMeLa, without building the intersection or union automata before-
hand.

• When the Spin model-checker is run on the generated ProMeLa code it
explores the overall automaton on-the-fly. Of course, in the worst case
it will end up expanding the whole underlying Büchi automaton, with a
doubly-exponential blow-up in size. However, as it is usually the case with
on-the-fly algorithms, we expect that the average-case behavior will be
much better than the worst case, thus achieving a significant improvement
in several cases of interest. Indeed, this guess is supported by our past
experience with the mono-infinite tool based on the Spin model checker
[BMP+07, BSM+07].
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6 Conclusion

We investigated the satisfiability problem for MTL (with both past and future
operators) over bi-infinite time models isomorphic to the integer numbers. We
provided a technique to reduce such a satisfiability problem to the same problem
over mono-infinite time models isomorphic to the natural numbers. We showed
how to implement the technique with an automata-theoretic approach which
can be implemented on top of the Spin model checker. Also, we investigated
the complexity of the integer-time MTL satisfiability problem, and showed that
it is EXPSPACE-complete.

In the future, we plan to work on the implementation of an automated trans-
lator from integer-time MTL specifications to Spin models, and to experiment
with it to assess the practical feasibility of the approach, also in comparison
with similar tools for mono-infinite time models. Also, the related MTL model-
checking problem over integer time will be investigated.
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