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Abstract

This paper investigates the properties of Metric Temporal Logic (MTL)
over models in which time is dense but phenomena are constrained to have
bounded variability. Contrary to the case of generic dense-time behaviors,
MTL is proved to be fully decidable over models with bounded variability,
if the variability bound is given. In these decidable cases, MTL complexity
is shown to match that of simpler decidable logics such as MITL. On the
contrary, MTL is undecidable if all behaviors with variability bounded by
some generic constant are considered, but with an undecidability degree
that is lower than in the case of generic behaviors.
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1 Introduction

The designer of formal notations faces a perennial trade-off between expressive-
ness and complexity: on the one hand notations with high expressive power
allow users to formalize complex behaviors with naturalness; on the other hand
expressiveness usually comes with a significant price to pay in terms of com-
plexity of the verification problem. This results in a continual search for the
“best” compromise between these diverging features.

A paradigmatic instance of this general problem is the case of real-time tem-
poral logics. Experience with real-time concurrent systems suggests that dense
(or continuous) sets are a natural and effective modeling choice for the time do-
main. Also, Metric Temporal Logic (MTL) is often regarded as a suitable and
natural extension of “classical” Temporal Logic to deal with real-time require-
ments. However, MTL is well-known to be undecidable over dense time domains
[AH93].1 In the literature, two main compromises have been adopted to over-
come this impasse. One consists in the semantic accommodation of adopting
the coarser discrete — rather than dense — time [AH93]. The other adopts
the syntactic concession of restricting MTL formulas to a subset known as
MITL [AFH96]. More recently other syntactic adjustments have been studied
[BMOW07].

In this paper we investigate other semantic compromises, in particular the
use of models where time is dense but events are constrained to have only a
bounded variability, i.e., their frequency of occurrence over time is bounded by
some finite constant. We show that MTL is fully decidable over such behav-
iors when the maximum variability rate is fixed a priori ; in such cases we are
also able to show that the complexity of decidability is the same as for the less
expressive logic MITL, i.e., complete for EXPSPACE. On the contrary, if all
behaviors with bounded variability are considered together, MTL becomes un-
decidable, but with a “lesser degree” of undecidability compared to the case of
unconstrained behaviors. Our decidability results are based on the possibility
of expressing certain features of bounded variability in the expressive decidable
temporal logics of [HR04]. Although the focus of this paper is on the more
expressive behavior semantic model (also called signal, timed interval sequence,
or trajectory) which is more expressive [DP07] but requires more sophisticated
techniques, one can show that the same decidability and complexity results hold
in the timed word case as well (where they were already partly implied by the
results in [Wil94]).

Paper outline. The rest of the paper is organized as follows. The next sub-
section summarizes the related works that are most closely connected to the
results in the present paper. Section 2 introduces the various semantic models
considered in this paper, namely behaviors (and words) with bounded variabil-
ity, as well as those with a similar constraint called non-Berkeleyness. Section
3 introduces the temporal logics MTL, MITL, and a decidable extension of the
latter called QITL. Section 4 shows how the semantic classes introduced before-
hand can be syntactically characterized through some of the logics of Section
3. Section 5 proves the decidability results of the paper, Section 6 discusses the
complexity of the decidable logics, whereas Section 7 proves some undecidability

1With a few partial exceptions that will be discussed in the following.
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results. Finally, Section 8 summarizes the results of the paper.

1.1 Related Work

The complexity, decidability, and expressiveness of MTL over standard discrete
and dense time models are well-known since the seminal work of Alur and Hen-
zinger [AH93] (which popularized the propositional subset of Koyman’s original
notation [Koy90]). In [AH93] MTL is shown to be decidable over discrete time,
with an EXPSPACE-complete decidability problem, and undecidable over dense
time, with a Σ1

1-complete decidability problem. These results hold regardless
of whether a timed word or timed signal time model is assumed, with a pecu-
liar, but significant exception: in a recent, unexpected, result, Ouaknine and
Worrell showed that MTL is fully decidable over finite dense-timed words, if
only future modalities are considered [OW07]. The practical usefulness of this
result is unfortunately plagued by the prohibitively high nonprimitive-recursive
complexity of the corresponding decidability problem.

In another very influential paper [AFH96], Alur, Feder, and Henzinger showed
that disallowing the expression of punctual (i.e., exact) time distances in MTL
formulas renders the language fully decidable over dense time models. The
corresponding MTL subset is called MITL and has an EXPSPACE-complete
decidability problem. The decision procedure in [AFH96] is based on a complex
translation into timed automata; similar, but simpler, automata-based tech-
niques have been studied by Maler et al. [MNP06].

Hirshfeld and Rabinovich have reconsidered the work on MITL from a broader,
more foundational, perspective built upon the standard timed behavior model
[HR04]. Besides providing simpler decision procedures and proofs for a real-time
temporal logic with the same expressive power as MITL, they have probed to
what extent MITL can be made more expressive without giving up decidability.
This lead to the introduction of the very expressive, yet decidable, monadic
logic Q2MLO, and of the corresponding TLC temporal logic. In a nice anal-
ogy with classical results on linear temporal logic [GHR94], TLC is expressively
complete for all of Q2MLO (hence it subsumes MITL), and it has a PSPACE-
complete decidability problem (or EXPSPACE-complete assuming a succinct
encoding of constants used in formulas as it is customary in the majority of
MITL literature).

It is clear that TLC and MTL have incomparable expressive power; in par-
ticular the former disallows the expression of exact time distances. However,
Bouyer et al. [BMOW07] have shown that it is possible to devise significantly
expressive MTL fragments that are fully decidable (with EXPSPACE complex-
ity) even if punctuality requirements are allowed to some extent. Also, for
brevity we omit the summary of other, related complexity results for decidable
real-time temporal logics over dense time domains recently developed by Lutz
et al. [LWW07].

Dense-timed words where the maximum number of events in a unit interval
is fixed have been introduced by Wilke in [Wil94]. More precisely, timed words
over Σ where there are at most k positions over any unit interval are denoted by
TSSk(Σ) and called words of bounded variability k; in the following we introduce
the class TΣTωk,1 that can be seen to correspond to TSSk(Σ). Wilke showed
that, for every k, the monadic logic of distances Ld(Σ) is fully decidable over
TSSk(Σ). Wilke’s results are based on translation into the monadic fragment
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L←→d(Σ), which ultimately corresponds to timed automata; also, they subsume
the decidability of MTL over the same models. In this paper, we extend and
generalize Wilke’s result, and we discuss the complexity of the corresponding
models.

The corresponding notion of dense-time behaviors with bounded variability
has been introduced by Fränzle in [Frä96] (where they are called trajectories of
n-bounded variability). Fränzle shows that full Duration Calculus is undecidable
even over such restricted behaviors, while some syntactic subsets of it become
decidable; the decidability proofs exploit a characterization of certain behaviors
with bounded variability by means of timed regular expressions [ACM02].

In previous work [FR06, FPR08], we introduced the notion of non-Berke-
leyness: a dense-time behavior is non-Berkeley for some δ > 0 if δ time units
elapse between any two consecutive state transitions. In this paper we show that
this notion is similar, but different, than the notion of bounded variability; we
also introduce a corresponding definition of non-Berkeleyness for timed words.

2 Words and Behaviors: A Semantic Zoo

The symbols Z, Q, and R denote the sets of integer, rational, and real numbers,
respectively. For a set S, S∼c with ∼ one of <,≤, >,≥ and c ∈ S denotes the
subset {s ∈ S | s ∼ c} ⊆ S; for instance Z≥0 = N denotes the set of nonnegative
integers (i.e., naturals).

An interval I of a set S is a convex subset 〈l, u〉 of S with l, u ∈ S, 〈 one of
(, [, and 〉 one of ), ]. An interval is empty iff it contains no points; an interval is
punctual (or singular) iff l = u and the interval is closed (i.e., it contains exactly
one point). The length of an interval is given by |I| = max(u− l, 0). −I denotes
the interval 〈−u,−l〉, and I ⊕ t = t⊕ I denotes the interval 〈t+ l, t+u〉, for any
t ∈ S.

For a finite (ordered) sequence x = x1, x2, . . . , xn, let [x] denote the sequence
obtained by removing (consecutive) duplicate elements from x. Correspond-
ingly, we define the length |x| of x as |x| = n and its cardinality 〈x〉 as the
length 〈x〉 = |[x]| of [x]. The intersection between a sequence and a set is a
sequence obtained by projecting all symbols not in the set out of the sequence.

2.1 Words and Behaviors

The two most popular models of real-time behavior [AH93, ACM02] are the
timed word (also called timed state sequence [Wil94]) and the timed behavior
(also called Boolean signal [MNP05], timed interval sequence [AFH96], or tra-
jectory [Frä96]).

Let T be a time domain; in this paper we are interested in dense time
domains, and in particular R and its mono-infinite subset R≥0. Also, let Σ be
a set of atomic propositions.

Behaviors. A (timed) behavior over timed domain T and alphabet Σ is a
function b : T→ 2Σ which maps every time instant t ∈ T to the set of proposi-
tions b(t) ∈ 2Σ that hold at t. The set of all behaviors over time domain T and
alphabet Σ is denoted by BΣT.

5



For a behavior b let τ(b) denote the ordered (multi)set of its discontinuity
points, i.e., τ(b) = {x ∈ T | b(x) 6= limt→x− b(t) ∨ b(x) 6= limt→x+ b(t)}, where
each point that is both a right- and a left-discontinuity appears twice in τ(b). If
τ(b) is discrete, we can represent it as an ordered sequence (possibly unbounded
to ±∞); it will be clear from the context whether we are treating τ(b) as a
sequence or as a set. Elements in τ(b) are called the change (or transition)
instants of b. τ(b) can be unbounded to ±∞ only if T has the same property.

Words. An infinite (timed) word over time domain T and alphabet Σ is a
sequence (Σ × T)ω 3 (σ, t) = (σ0, t0)(σ1, t1) · · · such that: (1) for all k ∈
N : σk ∈ 2Σ, and (2) the sequence t of timestamps is strictly monotonically
increasing. Every element (σn, tn) in a word denotes that the propositions in
the set σn hold at time tn. The set of all infinite timed words over time domain
T and alphabet Σ is denoted by TΣTω. Finite timed words over time domain
T and alphabet Σ are defined similarly as finite sequences in (Σ × T)∗ and
collectively denoted by TΣT∗. Also, the set of all finite timed words of length
up to n is denoted by TΣTn = {(σ, t) ∈ TΣT∗ | |t| ≤ n}.

2.2 Finite Variability and non-Zenoness

Since one is typically interested only in behaviors that represent physically
meaningful behaviors, it is common to assume some regularity requirements
on words and behaviors. In particular, it is customary to assume non-Zenoness,
also called finite variability [HR04].

Non-Zeno behaviors. A behavior b ∈ BΣT is non-Zeno iff τ(b) has no accu-
mulation points; non-Zeno behaviors are denoted by BΣT.

It should be clear that every non-Zeno behavior can be represented through
a canonical countable sequence of adjacent intervals of T such that b is constant
on every such interval. Namely, for b ∈ BΣT, ι(b) is an ordered sequence of
intervals ι(b) = {Ii = 〈ili, ui〉i | i ∈ I} such that:

1. (cardinality of ι(b)) I is an interval of Z with cardinality |τ(b)| + 1 (in
particular, I is finite iff τ(b) is finite, otherwise I is denumerable);

2. (partitioning of T) the intervals in ι(b) form a partition of T;

3. (intervals change at transition points) for all i ∈ I we have τi = ui = li+1;

4. (b constant over intervals) for all i ∈ I, for all t1, t2 ∈ Ii we have b(t1) =
b(t2).

Note that ι(b) is unique for any fixed τ(b) or, in other words, is unique up
to translations of interval indices. Transitions at instants τi corresponding to
singular intervals Ii are called pointwise (or punctual) transitions.

Non-Zeno words. An infinite word w ∈ TΣTω is non-Zeno iff the sequence t
of timestamps is diverging; non-Zeno infinite timed words are denoted by TΣTω.
On the other hand, every finite timed word is non-Zeno by definition.
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2.3 Bounded Variability and Non-Berkeleyness

In this paper we investigate behavior and words subject to regularity require-
ments that are stricter than non-Zenoness. In this section we introduce the
two closely related — albeit different — notions of bounded variability and non-
Berkeleyness.

2.3.1 Bounded Variability

A behavior b ∈ BΣT has variability bounded by k, δ for k ∈ N>0, δ ∈ R>0 iff it
has at most k transition points over every open interval of size δ. The set of all
behaviors in BΣT with variability bounded by k, δ is denoted by BΣTk,δ. With
the notation introduced above, BΣTk,δ = {b ∈ BΣT | ∀t ∈ T : |[t, t+ δ] ∩ τ(b)| ≤
k}.

Similarly, a word w ∈ TΣTω ∪ TΣT∗ has variability bounded by k, δ iff for
every closed interval of size δ there are at most k elements in w whose times-
tamps are within the interval. The set of all infinite (resp. finite) words with
variability bounded by k, δ is denoted by TΣTωk,δ (resp. TΣT∗k,δ). With the no-
tation introduced above, TΣTωk,δ = {w ∈ TΣTω | ∀i ∈ N : ti+k − ti ≥ δ} and
TΣT∗k,δ = {w ∈ TΣTω | ∀0 ≤ i ≤ |w| − (k + 1) : ti+k − ti ≥ δ}.

We also introduce the set of all behaviors (resp. infinite words, finite words)
that are of bounded variability for some k, δ as BΣT∃k∃δ =

⋃
k∈N>0
δ∈R>0

BΣTk,δ
(resp. TΣTω∃k∃δ =

⋃
k∈N>0
δ∈R>0

TΣTωk,δ, TΣT∗∃k∃δ =
⋃
k∈N>0
δ∈R>0

TΣT∗k,δ).

2.3.2 Non-Berkeleyness

A behavior b ∈ BΣT is non-Berkeley for δ ∈ R>0 iff every maximal constancy
interval contains a closed interval of size δ. The set of all behaviors in BΣT that
are non-Berkeley for δ is denoted by BΣTδ; with the notation introduced above
BΣTδ = {b ∈ BΣT | ∀I ∈ ι(b) : ∃t ∈ I : [t, t+ δ] ⊆ I}.

Similarly, the set of infinite (resp. finite) words that are non-Berkeley for
δ ∈ R>0 is denoted by TΣTωδ (resp. TΣT∗δ) and is defined as TΣTωδ = {w ∈
TΣTω | ∀i ∈ N : ti+1 − ti ≥ δ} (resp. TΣT∗δ = {w ∈ TΣT∗ | ∀0 ≤ i ≤ |w| − 2 :
ti+1 − ti ≥ δ}).

We also introduce the set of all behaviors (resp. infinite words, finite words)
that are non-Berkeley for some δ ∈ R>0 as BΣT∃δ =

⋃
δ∈R>0

BΣTδ (resp. TΣTω∃δ =⋃
δ∈R>0

TΣTωδ , TΣT∗∃δ =
⋃
δ∈R>0

TΣT∗δ).

2.3.3 Relations Among Classes

It is apparent that some of the various classes of behaviors that we introduced
above are closely related. More precisely, the following inclusion relations hold.
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Proposition 1. For all δ′ > δ > 0 and k > k′ ≥ 2:

BΣT1,δ′ ⊂ BΣTδ′ ⊂ BΣTδ ⊂ BΣTk′,δ ⊂ BΣTk,δ ⊂ BΣT∃k∃δ ⊂ BΣT (1)
BΣTδ ⊂ BΣT∃δ ⊂ BΣT∃k∃δ ⊂ BΣT (2)
BΣT∃δ and BΣTk′,δ are incomparable (3)

TΣTωδ′ ⊂ TΣTωδ = TΣTω1,δ ⊂ TΣTωk′,δ ⊂ TΣTωk,δ ⊂ BΣT∃k∃δ ⊂ TΣTω (4)

TΣTωδ ⊂ TΣTω∃δ ⊂ BΣT∃k∃δ ⊂ TΣTω (5)
TΣTω∃δ and TΣTωk′,δ are incomparable (6)

TΣT∗δ′ ⊂ TΣT∗δ = TΣT∗1,δ ⊂ TΣT∗k′,δ ⊂ TΣT∗k,δ ⊂ TΣT∗∃δ = TΣT∗∃k∃δ = TΣT∗

(7)

Proof. We prove inclusions in (1) from left to right.
BΣT1,δ′ ⊆ BΣTδ′ : consider any b ∈ BΣT1,δ′ and let t1, t2 ∈ τ(b) be any two
consecutive transition points in b. Then t2 > t1 + δ′ and let d = min(t2 − (t1 +
δ′), δ′), thus [t1 + d/2, t1 + d/2 + δ′] ⊂ [t1, t2]. BΣT1,δ′ 6⊇ BΣTδ′ : consider b such
that ι(b) 3 Ih = [t, t + δ′] for some h, t, and |Ij | > δ′ for all j 6= h. Clearly
b ∈ BΣTδ′ but |Ih ∩ τ(b)| = 2, thus b 6∈ BΣT1,δ′ .
BΣTδ′ ⊆ BΣTδ: immediate from the definitions as [t, t + δ] ⊂ [t, t + δ′] ⊆ I.
BΣTδ′ 6⊇ BΣTδ: immediate for any behavior b with some I ∈ ι(b) such that
δ < |I| < δ′.
BΣTδ ⊆ BΣTk′,δ: for any b ∈ BΣTδ we have that for any pair of consecutive
transition points t1, t2 ∈ τ(b) it is t2 ≥ t1+δ. Then any interval [t, t+δ] contains
at most 2 transition points, thus b ∈ BΣTk′,δ. BΣTδ 6⊇ BΣTk′,δ: consider b such
that t1, t2 ∈ τ(b) are equal, and, for all other transition points tj , tk ∈ τ(b) it is
|tk − tj | > δ, |tk − t1| > δ, and |tj − t1| > δ. Clearly, b ∈ BΣTk′,δ but b 6∈ BΣTδ
because the interval I = [t1, t2] ∈ ι(b) is singular.
BΣTk′,δ ⊆ BΣTk,δ: immediate from the definitions as k > k′. BΣTk′,δ 6⊇ BΣTk,δ:
immediate for any behavior b with some t1 ≤ t2 ≤ · · · ≤ tk+1 ∈ τ(b) such that
tk+1 − t1 = δ.
BΣTk,δ ⊆ BΣT∃k∃δ: obvious from the definitions. BΣTk,δ 6⊇ BΣT∃k∃δ: immediate
for any behavior b such that there exists t1 ≤ t2 ≤ · · · ≤ tk+1 ∈ τ(b) such that
tk+1 − t1 < δ.
BΣT∃k∃δ ⊆ BΣT: obvious from the definitions. BΣT∃k∃δ 6⊇ BΣT: consider b such
that there exists a denumerable sequence of intervals J1, J2, J3, . . . such that
|Jj | = |Jj+1| and 1 + |Jj ∩ τ(b)| = |Jj+1 ∩ τ(b)| for all j ≥ 1. Then b 6∈ BΣTk,δ
for any k, δ, thus b 6∈ BΣT∃k∃δ.

We prove inclusions in (2) from left to right.
BΣTδ ⊂ BΣT∃δ: immediate from BΣTδ ⊂ BΣTδ1 for δ1 < δ from (1).
BΣT∃δ ⊆ BΣT∃k∃δ: immediate from BΣTδ ⊂ BΣTk′,δ in (1). BΣT∃δ 6⊇ BΣT∃k∃δ:
immediate from BΣT∃δ 6⊇ BΣTk′,δ in (3).
BΣT∃k∃δ ⊂ BΣT: see (1).

We prove (3). First of all, notice that BΣT∃δ ∩ BΣTk′,δ 6= ∅, because any
b ∈ BΣTδ is both in BΣTk′,δ from (1) and in BΣT∃δ from (2).
BΣT∃δ 6⊆ BΣTk′,δ: consider b such that any I ∈ ι(b) is such that |I| ≥ δ/(2k′)
and there exist k′ + 1 transition points t1 ≤ t2 ≤ . . . ≤ tk′+1 ∈ ι(b) such that
tk′+1 − t1 ≤ δ. Hence b ∈ BΣTδ′ for δ′ < δ/(2k′) and thus b ∈ BΣT∃δ, but
b 6∈ BΣTk′,δ.
BΣT∃δ 6⊇ BΣTk′,δ: consider b such that there exists exactly one singular interval
I = [t, t] ∈ ι(b) and for all other intervals I ′ it is |I ′| > δ. Then, b ∈ BΣT2,δ and
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thus also BΣTk′,δ from (1). However, b 6∈ BΣT∃δ because of the singular interval
I.

We prove inclusions in (4) from left to right.
TΣTωδ′ ⊂ TΣTωδ : obvious from the definitions.
TΣTωδ = TΣTω1,δ: also obvious from the definitions.
TΣTω1,δ ⊆ TΣTωk′,δ: immediate for ti+1 − ti ≥ δ implies ti+k′ − ti ≥ δ for all
k′ ≥ 1. TΣTω1,δ 6⊇ TΣTωk′,δ: immediate for any word w with some t1 ≤ t2 ≤ t3
such that t3 − t1 = δ.
TΣTωk′,δ ⊆ TΣTωk,δ: immediate for ti+k′−ti ≥ δ implies ti+k−ti ≥ δ for all k > k′.
TΣTωk′,δ 6⊇ TΣTωk,δ: immediate for any word w with some t1 ≤ t2 ≤ · · · ≤ tk+1

such that tk+1 − t1 = δ.
TΣTωk,δ ⊆ TΣTω∃k∃δ: obvious from the definitions. TΣTωk,δ 6⊇ TΣTω∃k∃δ: immedi-
ate for any word w with some t1 ≤ t2 ≤ · · · ≤ tk+1 ≤ tk+2 such that tk+2 = δ;
clearly w 6∈ TΣTωk,δ.
TΣTω∃k∃δ ⊆ TΣTω: obvious from the definitions. TΣTω∃k∃δ 6⊇ TΣTω: let w be a
word such that there exist t2j ≤ t2j+1 ≤ · · · ≤ t2j+j such that t2j+j − t2j =
t2j+1+j+1 − t2j+1 for all j ≥ 1. Clearly w 6∈ TΣTωk,δ for any k, δ.

We prove inclusions in (5) from left to right.
TΣTωδ ⊆ TΣTω∃δ: obvious from the definitions. TΣTωδ 6⊇ TΣTω∃δ: immediate from
TΣTωδ ⊂ TΣTωδ1 for δ1 < δ from (4).
TΣTω∃δ ⊆ TΣTω∃k∃δ: immediate from TΣTωδ ⊂ TΣTωk′,δ in (4). TΣTω∃δ 6⊇ TΣTω∃k∃δ:
immediate from TΣTω∃δ 6⊇ TΣTωk′,δ in (6).
TΣTω∃k∃δ ⊂ TΣTω: see (4).

We prove (6). First of all, notice that TΣTω∃δ ∩ TΣTωk′,δ 6= ∅, because any
w ∈ TΣTωδ is both in TΣTωk′,δ from (4) and in TΣTω∃δ from (5).
TΣTω∃δ 6⊆ TΣTωk′,δ: consider w such that ti+1 − ti = δ/(k′ + 1) for all i ∈ N.
Then, w ∈ TΣTωδ′ for δ′ = δ/(k′ + 1), so w ∈ TΣTω∃δ. However, ti+k′ − ti =
k′δ/(k′ + 1) < δ thus w 6∈ TΣTωk′,δ.
TΣTω∃δ 6⊇ TΣTωk′,δ: consider word w such that t2i = 2iδ and t2i+1 = t2(i+1)−1/2i

for all i ∈ N. Then, w 6∈ TΣTωδ for any δ > 0, hence w 6∈ TΣTω∃δ. However,
w ∈ TΣTω2,δ, hence w ∈ TΣTωk′,δ for all k′ ≥ 2 from (4).

We prove inclusions in (7) from right to left. We only consider inclusions
that are different from the analogous ones for infinite timed words, as the other
are the same as in (4) or (5).
TΣT∗∃δ ⊆ TΣT∗∃k∃δ ⊆ TΣT∗: obvious from the definitions. TΣT∗∃δ ⊇ TΣT∗∃k∃δ ⊇
TΣT∗: let w ∈ TΣT∗; since |w| is finite, m = mini∈N(ti+1− ti) is also finite (and
greater than zero because we assume strictly monotonic timestamps). Hence,
w ∈ TΣT∗m = TΣT∗1,m and thus w ∈ TΣT∗∃δ and w ∈ TΣT∗∃k∃δ.
TΣT∗k,δ ⊆ TΣT∗∃δ: obvious because TΣT∗k,δ ⊆ TΣT∗ by definition and we proved
that TΣT∗ = TΣT∗∃δ. TΣT∗k,δ 6⊇ TΣT∗∃δ: consider w such that there exist k + 1
consecutive timestamps t0 < t1 < · · · < tk+1 such that tk+1 − t0 = δ and
for all timestamps tj with j > k + 1, tj − tk+1 > δ. Clearly, w ∈ TΣT∗m for
m = mini∈[0..k](ti+1 − ti) so w ∈ TΣT∗∃δ, but w 6∈ TΣT∗k,δ.

Remark 2. In the rest of the paper we will consider only behaviors (and words)
that have bounded variability δ for some rational value of δ > 0. This is
due to the fact that even decidable logics such as MITL become undecidable
if irrational constants are allowed [Rab07]. It is also well-known that this is
without loss of generality — as much as satisfiability is concerned — because
formulas of common temporal logics are satisfiable iff they are satisfiable on
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behaviors (or words) with rational transition points [AFH96]. Finally, it is clear
from Proposition 1 that, for any irrational ∆, we can pick a rational δ that
approximates ∆ with an arbitrary precision and such that the semantic class
for ∆ is strictly contained in the corresponding class for δ.

3 MTL and Its Relatives

The main focus of this paper is the decidability of MTL over the classes of
behaviors and words that we introduced in the previous section. Hence, this
section introduces formally MTL and other closely related temporal logics that
will be used to obtain the results of the following sections. For notational
convenience, in this paper we usually denote MITL formulas as ψ and MTL
formulas as φ.

3.1 MITL and MTL

MITL. Let us start with the Metric Interval Temporal Logic (MITL) [AFH96],
a decidable subset of MTL. MITL formulas are defined as follows, for p ∈ P an
atomic proposition and I a non-singular interval of the nonnegative reals with
rational (or unbounded) endpoints.

MITL 3 ψ := p | ¬ψ | ψ1 ∧ ψ2 | UI(ψ1, ψ2) | SI(ψ1, ψ2)

MTL. Metric Temporal Logic (MTL) [AH93] is defined simply as an extension
of MITL where singular intervals are allowed.

Derived operators. Abbreviations such as>,⊥,∨,⇒,⇔ are defined as usual.
We drop the interval I in operators when it is (0,∞), and we represent inter-
vals by pseudo-arithmetic expressions such as > k, ≥ k, < k,≤ k, and = k for
(k,∞), [k,∞), (0, k), (0, k] and [k, k], respectively.

We also introduce a few derived temporal operators; in the following defi-
nitions I is an interval of the nonnegative reals with rational (or unbounded)
endpoints. More precisely, the following definitions introduce MITL derived op-
erators if I is taken to be non-singular and φ is an MITL formula; otherwise
they introduce MTL derived operators. For both semantics we introduce the
following derived operators: ♦I(φ) = UI(>, φ), �I(φ) = ¬♦I(¬φ), RI(φ1, φ2) =
¬UI(¬φ1,¬φ2), as well as their past counterparts

←−
♦ I(φ) = SI(>, φ),

←−
� I(φ) =

¬←−♦ I(¬φ), TI(φ1, φ2) = ¬SI(¬φ1,¬φ2), and Alw(φ) =
←−
�(φ) ∧ φ ∧ �(φ). Just

for the behavior semantics we also introduce ©(φ) = U(φ,>),
←−©(φ) = S(φ,>),

and 4(φ) =
←−©(¬φ) ∧ (φ ∨©(φ)). Just for the word semantics we have instead

©I(φ) = UI(⊥, φ) and
←−©I(φ) = SI(⊥, φ).

Granularity. The granularity ρ of an M[I]TL formula φ is defined as the re-
ciprocal of the product of all positive finite denominators appearing in intervals
of formulas. Informally, the granularity characterizes the “resolution” of the for-
mula: any change in a behavior by an amount smaller than ρ cannot be detected
by a formula whose granularity is ρ. Let MITLρ and MITL≥ρ (resp. MTLρ and
MTL≥ρ) denote the sets of all MITL (resp. MTL) formulas of granularity ρ and
greater than or equal to ρ, respectively.
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Semantics. For b ∈ BΣT (with Σ = 2P) and t ∈ T the semantics of MTL
(and MITL) is defined as follows.2

b(t) |=T p iff p ∈ b(t)
b(t) |=T ¬φ iff b(t) 6|=T φ
b(t) |=T φ1 ∧ φ2 iff b(t) |=T φ1 and b(t) |=T φ2

b(t) |=T UI(φ1, φ2) iff there exists d ∈ t⊕ I ∩T such that b(d) |=T φ2

and for all u ∈ (t, d) it is b(u) |=T φ1

b(t) |=T SI(φ1, φ2) iff there exists d ∈ −I ⊕ t ∩T such that b(d) |=T φ2

and for all u ∈ (d, t) it is b(u) |=T φ1

b |=T φ iff b(0) |=T φ
For w = (σ, t) ∈ TΣTω∪TΣT∗ (with Σ = 2P) and N 3 k < |w| the semantics

of MTL (and MITL) is defined as follows.
w(k) |=T p iff p ∈ σk
w(k) |=T ¬φ iff w(k) 6|=T φ
w(k) |=T φ1 ∧ φ2 iff w(k) |=T φ1 and w(k) |=T φ2

w(k) |=T UI(φ1, φ2) iff there exists k < h < |w| such that th ∈ I ⊕ tk,
w(h) |=T φ2, and for all k < j < h it is w(j) |=T φ1

w(k) |=T SI(φ1, φ2) iff there exists 0 ≤ h < k such that th ∈ −I ⊕ tk,
w(h) |=T φ2, and for all h < j < k it is w(j) |=T φ1

w |=T φ iff w(0) |=T φ

Normal form over behaviors. In order to simplify the presentation of some
of the following results, we present a normal form for MITL over behaviors,
defined by the following grammar, where d is a positive rational number.

ψ := p | ¬ψ | ψ1 ∧ ψ2 | U(ψ1, ψ2) | S(ψ1, ψ2) | ♦<d(ψ) | ←−♦<d(ψ)

The fact that every MITL formula can be expressed according to the syntax
above follows from two results. [HR04, Th. 4.1, Prop. 4.2] showed that every
generic MITL formula using intervals with integer endpoints can be translated
into an equivalent one in the normal form above. Second, [AFH96, Lm. 2.16]
showed that every MITL using intervals with rational endpoints can be trans-
lated into an equi-satisfiable one with integer endpoints only; this is achieved
by uniformly scaling the endpoints into integers. It is then clear that all our
results for behaviors can assume formulas in this normal form.

In addition, an analogous normal form for MTL can be defined by introduc-
ing the additional operators:

φ := ♦=d(φ) | ←−♦ =d(φ)

Derived behavior of a formula. For any MTL formula φ and behavior
b ∈ BΣT, we define the derived behavior bφ that represents the truth value of φ
over b; namely:

bφ(t) =

{
b(t) ∪ {φ} if b(t) |=T φ
b(t) otherwise

2We assume that 0 ∈ T without practical loss of generality.
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Size of a formula. The size |φ| of a formula φ is defined as the number of
its atomic propositions, connectives, and temporal operators, multiplied by the
size — assuming a binary encoding — of the largest finite constant appearing
in intervals bounding temporal operators.

3.2 QTL and QITL: Decidable Extensions of MITL

Following [HR04, Rab08], we introduce extensions of MITL over behaviors that
are known to be decidable. They will be useful in the decidability proofs of
Section 5.

QTL(n). For n ∈ N>0,d ∈ Q≥0, ψ1, . . . , ψn ∈ MITL, we introduce the n-ary
modality ♦♦n<d (ψ1, . . . , ψn).3 For every n ∈ N>0, we denote by QTL(n) the tem-
poral logic obtained by extending MITL with all operators ♦♦1

<d () , . . . ,♦♦n<d ().
Informally, ♦♦n<d (ψ1, . . . , ψn) specifies that the formulas ψ1, ψ2, . . . , ψn will

occur within d time units, in that order. Formally, we have the following se-
mantics over behaviors:
b(t) |=T ♦♦n<d (ψ1, . . . , ψn) iff there exist t < t1 < · · · < tn < t+ d

such that for all 1 ≤ i ≤ n it is b(ti) |=T ψi
Obviously, QTL(1) is exactly MITL. Then, we recall the following from

[HR04, Th. 10.2].

Proposition 3 (Expressiveness and Decidability of QTL(n)). For all n > 0:
(1) QTL(n) is decidable; and (2) QTL(n + 1) is strictly more expressive than
QTL(n).

QITL(n). We further extend QTL by introducing modalities ♦♦nI (ψ1, . . . , ψn)
for n > 0 and I a non-singular interval. We denote the corresponding temporal
logics by QITL(n), for n > 0. Also, we denote the temporal logic

⋃
k>0 QITL(k)

simply by QITL. The semantics of the new operators is as expected:
b(t) |=T ♦♦nI (ψ1, . . . , ψn) iff there exist t1 < · · · < tn ∈ I ⊕ t

such that for all 1 ≤ i ≤ n it is b(ti) |=T ψi

We also introduce the abbreviation ♦♦nI (ψ) = ♦♦nI

ψ,ψ, . . . , ψ︸ ︷︷ ︸
n times

.

Note that QITL is essentially equivalent to the logic TPLI introduced in
[Rab08]. More precisely, the fundamental difference between the two logics
is that TLPI allows only open intervals (l, u) in the ♦♦n(l,u) (· · ·) operators. It is
however clear that this gap can be bridged along the lines of [HR04]. Namely, the

3In [HR04] the same modality is denoted as (♦ψ1 · · ·♦ψn)d.
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following equivalences hold, where the modality Pn(l,u)
n is defined in [Rab08].4

♦♦n(l,u) (ψ1, . . . , ψn) ≡ Pn(l,u)
n (ψ1, . . . , ψn)

♦♦n[l,u) (ψ1, . . . , ψn) ≡ ♦♦n(l,u) (ψ1, . . . , ψn) ∨
(

♦♦n−1
(l,u) (ψ2 ∧ S(¬ψ1, ψ1) , ψ3, . . . , ψn)

∧ ←−©
(
♦♦n(l,u) (ψ1, . . . , ψn)

) )

♦♦n(l,u] (ψ1, . . . , ψn) ≡ ♦♦n(l,u) (ψ1, . . . , ψn) ∨
(

♦♦n−1
(l,u) (ψ1, . . . , ψn−1 ∧ U(¬ψn, ψn))

∧ ©
(
♦♦n(l,u) (ψ1, . . . , ψn)

) )
♦♦n[l,u] (ψ1, . . . , ψn) ≡ ♦♦n−1

[l,u) (ψ1, . . . , ψn−1) ∧ ♦♦n−1
(l,u] (ψ2, . . . , ψn)

Hence, the following is a corollary of the complexity results for TLPI presented
in [Rab08].

Proposition 4 (Decidability and Complexity of QITL). QITL is decidable
with a PSPACE-complete validity problem (EXPSPACE-complete if constants
are encoded succinctly).

As a final remark, let us show that the results of this paper are even slightly
more robust, as they can be proved with the following weakening of Proposition
4. Let QITL<B denote the set of QITL formulas where all intervals I appearing
in ♦♦nI (· · ·) operators (for any n) have size bounded by B.

Proposition 5. For any B ∈ N>0, QITL<B is decidable with an EXPSPACE-
complete if constants are encoded succinctly.

Proposition 5 can be proved through the following.

Lemma 6. Any QITL formula ψ can be translated into a TPL [Rab08] formula
ψ′ such that |ψ′| = |ψ|O(L), where L is the size of the largest (finite) interval
used in ψ.

Proof. Without practical loss of generality, assume l, u ∈ N. Consider the
following equivalences, for 1 < l − u ≤ L:

♦♦0
I (· · ·) ≡ >

♦♦n(0,1) (ψ1, . . . , ψn) ≡ Pnn(ψ1, . . . , ψn)

♦♦n(l,l+1) (ψ1, . . . , ψn) ≡ �(0,1)

(
♦(0,l)

(
♦♦n(0,1) (ψ1, . . . , ψn)

))

♦♦n(l,u) (ψ1, . . . , ψn) ≡
∨

n=Σu−li=1 ki
ki∈N


∧u−l−1
i=1 ♦♦ki(l+i−1,l+i]

 ψ1+Σj<ikj

, . . . ,
ψki+Σj<ikj


∧ ♦♦ku−l(u−1,u)

(
ψn−ku−l+1, . . . , ψn

)


where closed (or half-closed) intervals can be handled as discussed above. Essen-
tially, to represent intervals of size larger than one, we consider all possible ways
in which the n formulas can be distributed among the u − l adjacent intervals
of unit length, and we explicitly enumerate them. From the definitions for TPL
in [Rab08], it should be clear that the truth-preserving translation induced by

4For simplicity, we assume l, u to be natural numbers.
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the equivalences builds TPL formulas whose size is as described in the state-
ment of the lemma; in particular, the number of terms in the last disjunction is
upper-bounded by nu−l ≤ nL.

Correspondingly, Proposition 5 follows from Lemma 6 and the fact — also
proved in [Rab08] — that TPL is EXPSPACE-complete. In this paper, we are
going to use the ♦♦nI (· · ·) operator only with intervals of size at most δ, where
δ will be independent of the size of the other formulas. Hence, Proposition 5
suffices to prove all the decidability results of this paper.

4 Syntactic Definition of Regularity Constraints

In this section we show how to express the regularity constraints of bounded
variability and non-Berkeleyness as MITL or QITL formulas. The following two
sub-sections introduce two preliminary results.

4.1 From Non-Berkeleyness to Bounded Variability

Let φ be any MTL formula and b ∈ BΣTδ a non-Berkeley behavior. While non-
Berkeleyness is defined according to the behavior of atomic propositions in b,
it is simple to realize that, in general, it cannot be lifted to the behavior of φ
itself in bφ. In other words, it may happen that bφ is Berkeley (i.e., two adjacent
transitions are less than δ time units apart) even if b is not.

However, bφ is at least with variability bounded by θ(φ), δ, where θ(φ) can
be computed from the structure of φ. More precisely, consider the following
definition, where β is a Boolean combination of atomic propositions.

θ(β) = 2
θ(¬φ) = θ(φ)

θ(φ1 ∧ φ2) = θ(φ1) + θ(φ2)
θ(U(φ1, φ2)) = θ(φ1)
θ(♦<d(φ)) = θ(φ) + 1
θ(♦=d(φ)) = θ(φ)

Note that θ(φ) = O(|φ|).
Then, we can prove the following.

Lemma 7. For any b ∈ BΣTδ and MTL formula φ, it is bφ ∈ BΣTθ(φ),δ.

Proof. Let b be a non-Berkeley behavior for δ > 0, J = [t, t + δ] be any closed
interval of size δ, and φ be a generic MTL formula. The proof goes by induction
on the structure of φ.

• φ = β.
Since b is non-Berkeley, for any two adjacent transition points xi, xi+1 ∈
τ(bβ) = τ(b) it is xi+1 − xi ≥ δ. Therefore, J contains at most two
transitions of bβ , and in fact θ(β) = 2.

• φ = ¬φ′.
Clearly τ(b′φ) = τ(bφ); therefore bφ has at most θ(φ) = θ(φ′) transition
points within J , by inductive hypothesis.
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[t, t+ δ] = J

Figure 1: bφ′ and b♦<d(φ
′) over J .

• φ = φ1 ∧ φ2.
A little reasoning should convince us that τ(bφ) ⊆ τ(bφ1) ∪ τ(bφ2); in fact
whenever bφ has a transition, at least one of bφ1 , bφ2 must have a transition,
while the converse does not hold necessarily. Hence, |τ(bφ)∩J | ≤ |(τ(bφ1)∪
τ(bφ2)) ∩ J | ≤ |τ(bφ1) ∩ J | + |τ(bφ2) ∩ J | ≤ θ(φ1) + θ(φ2) = θ(φ), where
the last inequality follows by inductive hypothesis.

• φ = ♦=d(φ′).
Clearly, τ(bφ) = . . . , x−1 − d, x0 − d, x1 − d, . . . , xi − d, . . ., where τ(φ′) =
. . . , x−1, x0, x1, . . . , xi, . . .. Thus, bφ′ ∈ BΣTθ(φ′),δ implies bφ ∈ BΣTθ(φ),δ

as well, since θ(φ) = θ(φ′).

• φ = ♦<d(φ′).
Let x1, . . . , xk = τ(bφ′) ∩ J be the transition points of bφ′ over J ; by
inductive hypothesis we know that k ≤ θ′ = θ(φ′).

Let us first consider the case: xi − xi−1 ≥ d for all i = 2, . . . , k + 1. If
also x1 is a transition from false to true (see Figure 1 for an example with
k = 4, where x′i = xi − d), bφ has the corresponding transition points
x1−d, x2, x3−d, . . .; if instead x1 is a transition from true to false, bφ has
the corresponding transition points x1, x2 − d, x3, . . .. In particular, note
that when xi+1−xi = d and φ′ is false throughout (xi, xi+1), xi = xi+1−d
is a punctual transition point for bφ, and in fact it appears twice in τ(bφ).
Overall, bφ has at most all the transition points bφ′ has over J , plus
one corresponding to xk+1 − d. Since θ(φ) = θ(φ′) + 1, we have that
bφ ∈ BΣTθ(φ),δ.

Whenever xi− xi−1 < d for some i = 2, . . . , k+ 1, the transition points of
bφ′ may instead be fewer. In fact, if x1 is a transition from false to true,
for all odd i = 3, . . . , k+ 1 such that xi−xi−1 < d, there are no transition
points for bφ between xi−1 and xi+1. Similarly, if x1 is a transition from
true to false, for all even i = 2, . . . , k+1 such that xi−xi−1 < d, there are
no transition points for bφ between xi−1 and xi+1. Overall, θ(φ) = θ(φ′)+1
is an upper bound on the number of transitions of bφ over J in this case
as well.

• φ = U(φ1, φ2).
Let x1, . . . , xk = τ(bφ1) ∩ J be the transition points of bφ1 over J ; by
inductive hypothesis we know that k ≤ θ1 = θ(φ1). For the sake of
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Figure 2: bφ1 , bφ2 and bU(φ1,φ2) over J .

presentation, assume that x1 is a transition from true to false; we will show
shortly that the other cases can be handled with trivial modifications.

Let us first consider the case b(xi) |=T φ2 ∨←−©(φ2) for all odd i = 1, . . . , k.
Then, it is clear that φ holds throughout (t, x1), (x2, x3), . . . , (x2h, x2h+1),
. . ., and it does not hold over (x1, x2), (x3, x4), . . . , (x2h−1, x2h), . . .. Hence,
the transition points of φ over J are precisely x1, x2, . . . , xk, which shows
that bφ ∈ BΣTθ(φ),δ, as θ(φ) = θ1.

Let us now consider the case in which some xi, with odd i, is such that
b(xi) |=T ¬φ2 ∧ ←−©(¬φ2). Let us denote by y− (resp. y+) the largest
(resp. smallest) transition point of φ2 which comes before (resp. after) xi
(see Figure 2 for a visual representation in which i = 3). Then, it should
be clear that φ holds over (xi−1, y

−) and is false over (y−, xi+1), where
(xi−1, y

−) can possibly be empty. So, xi is surely not a transition point
for φ, but y− can be (if (xi−1, y

−) is not empty). Iterating this reasoning
for all odd i’s such that b(xi) |=T ¬φ2∧←−©(¬φ2), we have that the number
of transition points of bφ over J is at most θ1, so bφ ∈ BΣTθ(φ),δ in this
case as well.

The remaining cases can be handled routinely. In particular, if x1 is a
transition from false to true we just replace “odd” with “even” in the
above reasoning.

4.2 Describing Sequences of Transitions

This section introduces QITL formulas that can be used to describe sequences
of transitions of the truth value of MTL formulas.

For every QITL formula φ, nonsingular interval I, and integer k > 0, we
introduce the QITL formula:

happ(φ, k, I) = ♦♦kI

φ′,¬φ′, · · · , φ,¬φ, φ︸ ︷︷ ︸
k terms

∧¬♦♦k+1
I

φ′,¬φ′, · · · , φ,¬φ, φ,¬φ︸ ︷︷ ︸
k+1 terms


where φ′ = φ if k is odd and φ′ = ¬φ otherwise.

Informally, happ(φ, k, I) means that φ takes exactly k − 1 consecutive tran-
sitions, eventually leading to true, i.e., it holds at the end of I. More precisely
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we have the following.

Lemma 8. Let φ undergo exactly k transitions over t ⊕ [τ−, τ+], for some
τ+ > τ− ≥ 0, that is 〈τ(bφ) ∩ t ⊕ [τ−, τ+]〉 = k; then, b(t + τ+) |= φ iff
b(t) |= happ(φ, k + 1, [τ−, τ+]).

Proof. For the ⇒ direction, it is clear that ♦♦k+2
[τ−,τ+] (φ′,¬φ′, · · · , φ,¬φ, φ,¬φ)

cannot hold at t, since φ undergoes no more than k transitions over t⊕ [τ−, τ+],
and such transitions are represented by no more than k+1 alternations between
false and true values. From the fact that φ holds at t + τ+, we infer that the
k-th transition over the interval is to a true value, which is held until t + τ+

included. Thus φ alternates over a total of k + 1 false and true values, i.e.,
♦♦k+1

[τ−,τ+] (φ′,¬φ′, · · · , φ,¬φ, φ) holds at t.
For the ⇐ direction, let us start from the fact that the k-th transition is

the last one over the interval t ⊕ [τ−, τ+] and it yields a true value; also, the
value is kept until t+ τ+ included, otherwise there would be at least one more
transition to false. Consequently, b(t+ τ+) |= φ.

Next, we introduce a formula, built upon happ(φ, k, I), to describe the case
where we have at most n transitions over I. For every QITL formula φ, non-
singular interval I, and n > 0, we introduce the QITL formula:

yieldsT(φ, n, I) =
∨

0≤k≤n
happ(φ, k, I) (8)

Generalizing Lemma 8 we have the following.

Lemma 9. Let φ undergo at most n transitions over t⊕[τ−δ, τ ] for some τ > 0,
that is 〈τ(bφ) ∩ t ⊕ [τ − δ, τ ]〉 ≤ n; then b(t + τ) |= φ iff b(t) |= yieldsT(φ, n +
1, [max(0, τ − δ), τ ]).

Proof. Let φ undergo exactly k ≤ n transitions over t ⊕ [τ − δ, τ ], and let
I = [max(0, τ − δ), τ ].

Let us first consider the case τ−δ > 0, and thus I = [τ−δ, τ ]. If b(t+τ) |= φ
then, from Lemma 8, b(t) |= happ(φ, k + 1, [τ − δ, τ ]), which implies b(t) |=
yieldsT(φ, n+ 1, [τ − δ, τ ]) according to (8). Conversely, if b(t) |= yieldsT(φ, n+
1, [τ − δ, τ ]) then b(t) |= happ(φ, k̃, [τ − δ, τ ]) for some k̃ ≤ n+ 1. In particular,
it is b(t) |= happ(φ, k + 1, I); hence b(t+ τ) |= φ from Lemma 8.

Let us now assume τ − δ ≤ 0, and thus I = [0, τ ] ⊆ [τ − δ, τ ]. Then,
φ undergoes exactly h transitions over t ⊕ I, for some h ≤ k ≤ n. If b(t +
τ) |= φ then, from Lemma 8, b(t) |= happ(φ, h + 1, [0, τ ]), which implies b(t) |=
yieldsT(φ, n + 1, [0, τ ]) according to (8). Conversely, if b(t) |= yieldsT(φ, n +
1, [0, τ ]) then b(t) |= happ(φ, h̃, [0, τ ]) for some h̃ ≤ n + 1. In particular, it is
b(t) |= happ(φ, h+ 1, I); hence b(t+ τ) |= φ from Lemma 8.

4.3 Syntactic Characterizations

This section defines non-Berkeleyness and bounded variability syntactically.

17



4.3.1 Non-Berkeleyness

Behaviors. The following formula χδ characterizes behaviors that are non-
Berkeley for δ > 0, that is b ∈ BΣTδ with Σ = 2P iff b |= χδ.

χδ = Alw

♦[0,δ]

 ∨
β∈2P

�[0,δ](β)

 ∧
←−� (⊥)⇒

∨
β∈2P

�[0,δ](β)


Note that the second conjunct is needed only for time domains bounded to the
left, where it holds precisely at the origin.

While χδ has size exponential in |P|, it is possible to express non-Berkeleyness
with a formula which is polynomial in |P|. This will be useful when assessing
the complexity class of MTL over non-Berkeley behaviors (in Section 6). To
this end, let us first define:

RT(β) = 4(β) ∧ β ∨ 4(¬β) ∧ ¬β
LT(β) = 4(β) ∧ ¬β ∨ 4(¬β) ∧ β

GT(β) = 4(β) ∨ 4(¬β)

that model a right-continuous, left-continuous, and generic transition of β, re-
spectively. Then, we introduce:

χR
δ =

∧
β∈Σ

RT(β)⇒
∧
γ∈Σ


�(0,δ)(¬GT(γ))

∧
GT(γ)⇒ RT(γ)

∧
♦(0,δ](GT(γ))⇒ ♦(0,δ](LT(γ))




χL
δ =

∧
β∈Σ

LT(β)⇒
∧
γ∈Σ

 �(0,δ](¬GT(γ))
∧

GT(γ)⇒ LT(γ)


χI
δ =
←−
� (⊥)⇒

∧
β∈Σ

�[0,δ](β ∨ ¬β)

χ′δ = Alw
(
χR
δ ∧ χL

δ ∧ χI
δ

)
χR
δ describes the non-Berkeley requirement about a right-continuous transition:

no other transition can occur over (0, δ), if there is a transition at the current in-
stant it must also be right-continuous, and if there is a transition at δ it must be
left-continuous, so that a closed interval of size δ is fully contained between the
two consecutive transitions. Similarly, χR

δ describes the non-Berkeley require-
ment about a left-continuous transition. Finally, χI

δ describes the non-Berkeley
requirement at the origin of a time domain bounded to the left. It should be
clear that b ∈ BΣTδ with Σ = 2P iff b |= χ′δ, and χ′δ has size quadratic in |P|.

Words. The following formula χWδ characterizes words that are non-Berkeley
for δ > 0, that is w ∈ TΣTωδ ∪ TΣT∗δ with Σ = 2P iff w |= χWδ .

χWδ = Alw
(©≥δ(>) ∨ ¬©(>)

)
Note that the second conjunct holds iff it is evaluated at the last position in a
finite word.
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4.3.2 Bounded Variability

Behaviors. To describe bounded variability syntactically over behaviors, we
first introduce QITL formula pt(k, I), for k > 0.

pt(k, I) = ♦♦kI

∨
β∈P

(
4(β) ∧©(¬β) ∨ 4(¬β) ∧©(β)

)
∧ ¬♦♦k+1

I

∨
β∈P

(
4(β) ∧©(¬β) ∨ 4(¬β) ∧©(β)

)
If we let pt(0, I) = ¬♦♦1

I

(∨
β∈P

(
4(β) ∧©(¬β) ∨4(¬β) ∧©(β)

))
, pt(k, I)

states that there are exactly k ≥ 0 punctual transitions of atomic propositions
over interval I.

Second, we introduce QITL formula gt(k, I), for k > 0:

gt(k, I) = ♦♦kI

∨
β∈P

(
4(β) ∨4(¬β)

)∧¬♦♦k+1
I

∨
β∈P

(
4(β) ∨4(¬β)

)
If we let gt(0, I) = ¬♦♦1

I

(∨
β∈P

(
4(β) ∨4(¬β)

))
, gt(k, I) states that there are

exactly k ≥ 0 (generic, i.e., punctual or not) transitions of atomic propositions
over interval I.

Finally, the following formula χk,δ characterizes behaviors with variability
bounded by k, δ, that is b ∈ BΣTk,δ with Σ = 2P iff b |= χk,δ.

χG
k,δ =

∨
0≤j≤k

0≤h≤bj/2c

pt(h, [0, δ]) ∧ gt(j − h, [0, δ])

χI
k,δ =

←−
�(⊥) ∧

∨
β∈P

 β ∧©(¬β)
∨

¬β ∧©(β)

⇒ ∨
0≤j≤k−2

0≤h≤bj/2c

 pt(h, (0, δ])
∧

gt(j − h, (0, δ])


χk,δ = Alw

(
χG
k,δ ∧ χI

k,δ

)
More precisely, χG

k,δ applies to any time instant and requires that at most k
transitions (weighted according to whether they are punctual or not) occur over
any closed interval of size δ. On the other hand, χI

k,δ applies only at the origin
of time domains that are bounded to the left: if there is a punctual transition
at the origin, there must be at most k − 2 transitions over the residual interval
(0, δ] (in fact, limt→0− b(t) is undefined and hence different than b(0)); if not,
it is clear that the general formula χG

k,δ is enough. Note that the size of χk,δ is
polynomial in |P|, k.

5 Decidability Results

For simplicity, in this section we assume future-only MTL formulas. It is how-
ever clear that the results can be extended to MTL with past operators by
providing a few additional details. We also assume formulas in normal form
(introduced in Section 3.1).
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5.1 MTL over Non-Berkeley Behaviors

This section shows that MTL is decidable over non-Berkeley behaviors, by pro-
viding a translation from MTL formulas to QITL formulas. The translation is
introduced first for the simpler case of flat MTL formulas.

5.1.1 From Flat MTL to MITL

Every flat MTL formula (i.e., where no temporal operators are nested) can be
translated into an MITL formula that is equivalent over non-Berkeley behaviors.
In particular, given that any MITL formula is also an MTL formula, we only
need to prove that the following equivalence holds over behaviors b ∈ BΣTδ,
where β is a Boolean combination of atomic propositions.

♦=d(β) ≡
♦[d−δ,d]

(
�[0,δ](β)

)
if d > δ

�[0,d](β) ∨ ♦[0,d]

(
�[0,δ](β)

)
if d ≤ δ

(9)

Proof. Let us start with the simpler⇐ direction, and let t be the current instant.
If d > δ, there exists a t′ ∈ [t+d−δ, t+d] such that β holds over Iβ = [t′, t′+δ].
It suffices to show that t + d ∈ Iβ ; in fact t + d ∈ Iβ iff t′ ≤ t + d ≤ t′ + δ iff
t + d ≤ t + d ≤ t + d− δ + δ, which is clearly satisfied. If d ≥ δ and �[0,d](β),

clearly β holds at t + d in particular. If instead ♦[0,d]

(
�[0,δ](β)

)
, there exists

a t′ ∈ [t, t + d] such that β holds over [t′, t′ + δ]; then it is easy to check that
t+ d ∈ [t′, t′ + δ].

Let us now consider the⇒ direction, and let t be the current instant. Assume
first d > δ, so the interval [d − δ, d] is non-empty (and non-punctual). Let us
consider χδ at t+ d, where β holds: there exists t′ ∈ [t+ d− δ, t+ d] such that β
holds over [t′, t′ + δ]. This can be expressed equivalently as ♦[d−δ,d]

(
�[0,δ](β)

)
with respect to the current instant t. Let us now assume d ≤ δ and also that
�[0,d](β) is false at t; thus there exists a t′ ∈ [t, t + d] where β is false. Since
we are assuming that β holds at t+ d, β must become true somewhere between
t′ and t + d. Formally, either (a) there exists a t′′ ∈ (t′, t + d] such that β is
false over [t′, t′′) and is true at t′′; or (b) there exists a t′′ ∈ [t′, t + d) such
that β is false over [t′, t′′] and is true over (t′′, t′′ + ε) for some ε > 0. As usual
the two cases correspond to β switching from false to true right-continuously
(in (a)) or left-continuously (in (b)). Let us first consider (a), and evaluate
χδ at t′′. Since β is false to the left of t′′, it must be �[0,δ](β) at t′′. Since

t′′ ∈ (t′, t + d] and t′ ∈ [t, t + d], we have ♦[0,d]

(
�[0,δ](β)

)
at t a fortiori. Let

us now consider (b), and evaluate χδ “arbitrarily close to” t′′, from the right
to the left. This implies that �[0,δ](β) also holds “arbitrarily close to” t′′, so β
holds over (t′′, t′′ + δ + ν) for some ν > 0 (as it must contain a closed interval
of length δ). Since t′′ ∈ [t′, t+ d) and t′ ∈ [t, t+ d], we have ♦[0,d]

(
�[0,δ](β)

)
at

t a fortiori.

5.1.2 From MTL to QITL

For generic MTL formulas φ, (9) does not hold. However, we provide the follow-
ing equivalence for distance formulas in generic MTL formulas over behaviors
that are non-Berkeley for some δ > 0.
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Lemma 10. For any MTL formula φ over any behavior b ∈ BΣTδ, we have:

♦=d(φ) ≡ yieldsT(φ, θ(φ) + 1, [max(0,d− δ),d])

Proof. Let I = [max(0,d − δ),d]. From Lemma 7, φ undergoes at most θ(φ)
transitions over t⊕I. So, from Lemma 9, we have immediately that b(t+d) |= φ
— i.e., b(t) |= ♦=d(φ) — iff b(t) |= yieldsT(φ, θ(φ) + 1, I).

5.1.3 Decidability of MTL over Non-Berkeley Behaviors

It is now straightforward to prove the decidability of MTL over non-Berkeley
behaviors. To this end, let us introduce the following translation function µ
from MTL formulas to QITL formulas, where ψ is any MITL formula and φ is
any MTL formula.

µ(ψ) ≡ ψ

µ(¬φ) ≡ ¬µ(φ)
µ(φ1 ∧ φ2) ≡ µ(φ1) ∧ µ(φ2)

µ(U(φ1, φ2)) ≡ U(µ(φ1), µ(φ2))
µ(♦<d(φ)) ≡ ♦<d(µ(φ))
µ(♦=d(φ)) ≡ yieldsT(µ(φ), θ(φ) + 1, [max(0,d− δ),d])

Given the “non-standard” nature of the full QITL language, it may be useful
to introduce its operators in the translation of MTL formulas only when strictly
needed. To this end, we provide an alternative translation ν as follows.

ν(ψ) ≡ ψ

ν(♦=d(β)) ≡
♦[d−δ,d]

(
�[0,δ](β)

)
if d > δ

�[0,d](β) ∨ ♦[0,d]

(
�[0,δ](β)

)
if d ≤ δ

ν(♦=d(U(φ1, φ2))) ≡ yieldsT(U(ν(φ1), ν(φ2)) , θ(U(φ1, φ2)) + 1, [max(0,d− δ),d])

ν(♦=d

(
♦〈a,b〉(φ)

)
) ≡ ♦〈d+a,d+b〉(ν(φ))

ν(♦=d1

(
♦=d2

(φ)
)
) ≡ ν(♦=d1+d2

(ν(φ)))
ν(♦=d(¬φ)) ≡ ¬ν(♦=d(φ))

ν(♦=d(φ1 ∧ φ2)) ≡ ν(♦=d(φ1)) ∧ ν(♦=d(φ2))

For both translations, it is straightforward to prove the following equivalence
result.

Theorem 11. For any MTL formula φ, for any behavior b ∈ BΣTδ for some
δ > 0, the QITL formulas µ(φ), ν(φ) are such that: b |=T φ iff b |=T µ(φ) iff
b |=T ν(φ).

Proof. The proof is trivial by induction on the structure of φ, from (9) and
Lemma 10.

Theorem 11, the decidability of MITL and QITL [AFH96, HR04], and the
syntactic characterization of non-Berkeleyness by means of the χδ formula, im-
mediately imply the following.
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Corollary 12. For any δ > 0, the satisfiability of MTL formulas is decidable
over BΣTδ.
Proof. Given a generic MTL formula φ, φ is satisfiable over BΣTδ iff φ′ = φ∧χ′δ
is satisfiable over non-Zeno behaviors. In turn, by Theorem 11, φ′ is satisfiable
over non-Zeno behaviors iff φ′′ = µ(φ) ∧ χ′δ is. Since φ′′ is a QITL formula, the
theorem follows from Proposition 4.

5.2 MTL over Bounded Variably Behaviors

The results of the previous section can be extended to the case of behaviors
with bounded variability along the following lines. First, consider the claim: for
any b ∈ BΣTk,δ and MTL formula φ, it is bφ ∈ BΣTk+θ(φ),δ. The claim can be
proved similarly as for Lemma 7, where the base case for Boolean combinations
β is changed into 2 + k, whereas the inductive steps are essentially unaffected,
provided the inductive hypothesis about the variability being bounded by θ is
replaced by it being bounded by θ + k. Correspondingly, we can introduce
a translation µ′ from MTL to QITL formulas which is obtained from µ by
replacing θ(φ) with k + θ(φ). Finally, QITL formula µ′(φ) ∧ χk,δ is satisfiable
over BΣT iff φ is satisfiable over BΣTk,δ. Hence, MTL is decidable over BΣTk,δ.

5.3 MTL over Words

The decidability of MTL over words with bounded variability has been already
been proved by Wilke [Wil94]. More precisely, Wilke’s results entail the sat-
isfiability of MTL over TΣTωk,1. However, it is clear that any MTL formula φ
is satisfiable over TΣTωk,δ with δ = n/d iff φ′ is satisfiable over TΣTωdk,1 where
φ′ is obtained from φ by scaling all its constants by n. From the equivalences
TΣTωδ = TΣTω1,δ and TΣT∗δ = TΣT∗1,δ (Proposition 1) it is clear that MTL is
decidable over non-Berkeley words as well.

Additionally, we can prove the same result for non-Berkeley words with a
different technique. Namely, we provide a translation from MTL to MITL that
preserves satisfiability for non-Berkeley words. Shortly, we have the following
equivalence over non-Berkeley words for MTL formulas:

♦=d(φ) ≡
{

�(d−δ,δ)(⊥) ∧ ♦(d−δ,δ](φ) if d ≥ δ
⊥ if d < δ

(10)

Then, if we replace every occurrence of the ♦=d operator in an MTL formula
according to (10) we obtain an MITL formula which is equivalent to the original
MTL formula over words that are non-Berkeley for δ > 0. The syntactic capabil-
ity of expressing non-Berkeleyness requirements in MITL entails the decidability
of MTL over TΣTωδ ∪ TΣT∗δ .

Extending this approach to TΣTωk,δ ∪ TΣT∗k,δ seems to require some kind of
“counting” modality as in the case of behaviors. Wilke [Wil94] showed that
words in TΣTωk,δ ∪ TΣTωk,δ can be characterized by means of a formula in a
monadic second-order logic that is decidable and expressively complete for Alur
and Dill’s timed automata [AD94]. This entails that it is possible to introduce
suitable “counting” modalities that do not compromise decidability. We leave
the exploration of this possibility to future work.
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Figure 3: All behaviors of MITL over bρ,ε for ε = ρ/8.

6 Related Results

This section discusses the expressiveness and complexity of MTL over non-
Berkeley and bounded variably behaviors and words.

6.1 Expressiveness of MTL over non-Berkeley

The technique used in Section 5 to assess the decidability of MTL over non-
Berkeley behaviors involved the translation of MTL formulas into QITL, a strict
superset of MITL. This raises the obvious question of whether QITL is really
needed in translating MTL to a decidable logic. We provide a partial nega-
tive answer to this question, by showing that MITL is strictly less expressive
than MTL over non-Berkeley behaviors,5 and consequently we cannot generalize
MITL formula (9) to handle generic MTL formulas. This answer is only partial
because we address expressiveness, not equi-satisfiability; that is, it might be
possible to construct, for every MTL formula, a corresponding MITL formula
which is equi-satisfiable over non-Berkeley behaviors but requires additional
atomic propositions to be built.

Let us consider explicitly full MITL (and not just future-only MITL) because
MITL increases its expressive power if we add past operators [MNP05, AH92].
Expressiveness separation results are usually quite convoluted. The ensuing
complexity is commonly tamed by considering behaviors with pointwise transi-
tions only, as it is usually simpler to characterize exhaustively the truth value of
formulas over such behaviors. This is however impossible for non-Berkeley be-
haviors (where pointwise transitions cannot occur), so the following separation
proofs would be quite verbose if all details were spelled out. In fact, consider
behavior bρ,ε defined as p ∈ bρ,ε(t) iff t ∈ ⋃k∈Z (ρ(k+1/4)⊕ (0, ε)∪ρ(k+3/4)⊕
(0, ε) ∪ ρ(2k + 1/2)⊕ (0, ε)

)
; we have the following.

Lemma 13. Let 0 < ε < ρ/4; then the the truth value over bρ,ε of any MITL
formula φ of granularity ρ coincides with one of those in G ∪ ¬G, where G =

5The difference in expressive power between MTL and MITL is obvious over generic be-
haviors, where MITL is decidable while MTL is not.
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{>, p,©(p) ,
←−©(p) , ψA = ¬p ∧ ©(p) , ψB =

←−©(p) ∧ ©(¬p) , ψC =
←−©(¬p) ∧

©(¬p) , ψD = ¬ψA ∧ ¬ψB} and G′ = {¬ψ|ψ ∈ G} (see Figure 3).

Proof. The proof is straightforward — albeit quite tedious — by induction on
the structure of φ.

Consider for instance φ = U(γ1, γ2) with γ1 ≡ p and γ2 ≡ ¬p; φ holds
precisely when p is true and will become false right-continuously. However, this
is the case whenever p holds, as well as when p becomes true left-continuously.
Therefore φ is equivalent to ©(p).

Another example is for φ = ♦<d(γ) with d = kρ for k ≥ 1 and γ =©(p). It
is simple to check that any interval of size ≥ ρ encompasses points where ©(p)
holds. Correspondingly, φ is simply equivalent to >.

The other cases are handled similarly.

Correspondingly, we have a first partial separation result.

Lemma 14. For any δ > 0, for all ρ > 8δ, MTL≥ρ is strictly more expressive
than MITL≥ρ over BΣTδ.
Proof. To prove the lemma, we fix a granularity ρ > 8δ and show that there
exists an MTLρ formula φρDist which is equivalent to no MITL≥ρ formula over
some behavior bρ,ε ∈ BΣTδ. Consider MTL formula MTLρ 3 φρDist = p ⇒
♦=ρ(p) whose granularity is ρ. You can check that bρ,ε(t) 6|= φρDist iff t ∈ ρ(2k+
1/2) ⊕ (0, ε) for some k ∈ Z. However, Lemma 13 showed that no MITL≥ρ

formula has this behavior.

Lemma 14 settles the problem of expressiveness only for formulas of gran-
ularity ρ with respect to behaviors that are non-Berkeley for δ < ρ/8. On the
contrary, we are interested also in determining if the same relations holds when
the behaviors are “slower than the granularity”, that is for ρ ≤ 8δ and in par-
ticular if ρ < δ. In this case, a full characterization of MITL formulas is even
more tedious than the one in Lemma 13. On the one hand, in order to consider
behaviors that are non-trivial in that punctuality provides indeed more expres-
siveness, one has to take behavior with a “long” period. On the other hand,
such “slower” behaviors give rise to many different “derived” behaviors, where
by derived we mean those representing the truth of some MITL formula. We
claim that MTL is nonetheless more expressive than MITL even in such cases.
For simplicity, we only sketch a proof idea for this case, and leave all details for
a longer version of the paper.

Lemma 15. For any δ > 0, for all ρ < δ, MTL≥ρ is strictly more expressive
than MITL≥ρ over BΣTδ.
Proof sketch. The idea is to build a behavior cρ and a formula ψρb such that
the truth value bψρb of ψρb over cρ is qualitatively similar to the bρ,ε of Lemma
13. Then, we build a punctual formula which has ψρb as a subformula. Simi-
larly to what happens in Lemma 14 for φρDist, the new formula has a behavior
different than any MITL≥ρ formula over cρ. Hence, we have the corresponding
expressiveness separation.

More precisely, consider behavior cρ defined as p ∈ cρ(t) iff t ∈ ⋃ i∈Z
j∈[0..3]

9ρ(i+

(2j + 1)/8) ⊕ [0, 9ρ/8). It is pictured in Figure 4(a), over a period of 9ρ units.
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Figure 4: a) cρ; b) bψρb ; c) bψρb⇒♦=2ρ(ψρb ).

Let ψρb be MITL formula
∨

0≤k≤7 �kρ⊕[0,1)(p). The truth behavior bψρb of ψρb is
picture in Figure 4(b). Now, let us consider MTLρ formula ψρb ⇒ ♦=2ρ(ψ

ρ
b ); its

truth value changes over time as in Figure 4(c). Notice that we have introduced
a sort of “irregular” behavior as with φρDist in Lemma 13. Then, a tedious case
analysis of all MITL≥ρ formulas would show that none of them has the same
behavior as ψρb ⇒ ♦=2ρ(ψ

ρ
b ) over cρ, which entails the theorem.

The desired separation result follows as a corollary of the previous lemma.

Theorem 16. For any δ > 0, MTL is strictly more expressive than MITL over
BΣTδ.
Proof. Note that MITLρ1 ⊇ MITLρ2 for all ρ1 = ρ2/k with k any positive
integer. Hence, MITL =

⋃
k∈N>0

MITL≥ρ/k for any ρ > 0. Then, the theorem
follows from Lemma 15.

6.2 Complexity of MTL over Non-Berkeley

This section shows that the satisfiability problem for MTL formulas over non-
Berkeley (and bounded variably) behaviors has the same complexity as the same
problem for MITL over generic behaviors.

Theorem 17. The satisfiability problem for MTL over behaviors in BΣTδ is
EXPSPACE-complete (assuming a succinct encoding of constants for MTL for-
mulas).

Proof. The fact that the problem is in EXPSPACE follows from the translation
procedure of Section 3 from an MTL formula φ to an equi-satisfiable QITL
formula of size polynomial in |φ|, and from the complexity of QITL (Proposition
4).

The EXPSPACE-hardness of MTL satisfiability over non-Berkeley behav-
iors can be proved by reducing the corresponding problem over the integers.
Let φ be any MTL formula. It is always possible to build an equi-satisfiable
formula φ obtained from φ by “flattening” nesting temporal operators through
the introduction of additional fresh atomic propositions (see [FS08] for details
of the straightforward construction). Hence, φ can be defined by φ ::= β |
α ∨ UJ(β1, β2) | α ∨ RJ(β1, β2) | α ∨ ♦=d(β) | φ1 ∨ φ2 | φ1 ∧ φ2 with α an
atomic proposition (negated or unnegated), β a Boolean combination of atomic
propositions, and J a nonsingular interval. Correspondingly, every occurrence
of an atomic proposition α in φ is called existential iff one of the following is
the case: (1) the occurrence appears in the second argument β2 of a subformula
in the form UJ(β1, β2); (2) the occurrence appears in the first argument β1 of
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a subformula in the form RJ(β1, β2). Every occurrence that is not existential is
called universal.

We reduce the satisfiability of φ (and hence of φ) over the integers to the
satisfiability of another formula ξ over non-Berkeley behaviors for some δ > 0.
To this end, let θ = kδ be a multiple of δ for some k ≥ 2. We introduce a fresh
proposition clock; its behavior is defined by the formula:

π = �(0,θ](clock) ∧Alw
(
�(0,θ](clock)⇔ �(θ,2θ](¬clock)

)
∧ Alw

(
�(0,θ](¬clock)⇔ �(θ,2θ](clock)

)
which describes clock as a square wave with a 50% duty cycle and where tran-
sitions are left-continuous.

Then, let φ′ be the MTL formula obtained from φ by substituting every
existential occurrence of an atomic proposition α = p or α = ¬p by (¬clock ∧
©(clock)) ∧ ©(α) and every universal occurrence by (¬clock ∧ ©(clock)) ⇒
©(α), and by multiplying all constants in φ by 2θ. Finally, let ξ = π ∧ φ′. We
claim that ξ is satisfiable over non-Berkeley behaviors for δ iff φ is satisfiable over
the integers. Let us first consider a behavior i over the integers such that i |=Z φ
and thus also i |=Z φ by construction. Consider behavior r over the reals built as
follows. First, clock ∈ r(t) iff t ∈ (2kθ, (2k+ 1)θ] for some k ∈ Z. Then, for any
other proposition p, if p ∈ i(k) for some integer k, let p hold over (2kθ, (2k+1)θ]
over r, and let p be false over r otherwise. Now, the transformation from φ to
φ′ is such that the truth of φ′ depends only on what happens at raising edges of
clock. Correspondingly, it is not difficult to check by induction on the structure
of φ′ that r |=R φ′ and thus also r |=R ξ. For the converse, let r be a non-
Berkeley behavior such that r |=R ξ, and thus r |=R φ′ in particular. We build
a behavior i over the integers as follows. For any proposition p and instant of
time k, p ∈ i(k) iff r(2kθ) |=R ©(p); intuitively we discard whatever happens
between integer multiples of 2θ. Note that, for any non-Zeno behavior b (and
thus for non-Berkeley behaviors a fortiori), b(t) |=R ¬©(p) iff b(t) |=R ©(¬p).
Consequently, thanks to how φ′ has been built from φ it is straightforward to
show by induction that i |=Z φ and thus also i |=Z φ by construction.

With a very similar justification we can prove the following.

Theorem 18. The satisfiability problem for MTL over behaviors in BΣTk,δ is
EXPSPACE-complete (assuming a unary encoding of k).

The following is instead derivable from the previous theorem and [Wil94].

Theorem 19. The satisfiability problem for MTL over words in TΣTωk,δ∪TΣT∗k,δ
for k ≥ 1 is EXPSPACE-complete (assuming a unary encoding of k).

Proof. The EXPSPACE-hardness proof can be worked out as for Theorem 17,
with trivial modifications. Membership in EXPSPACE for k = 1 can also be
derived as in Theorem 17, through the results of Section 5.3. Membership in
EXPSPACE for k > 1 can instead be derived by examining Wilke’s proof of the
decidability of MTL over TΣTωk,δ [Wil94], where it is clear that the underlying
decision procedure has the same complexity as other logics of similar expressive
power (MITL, in particular). It is also clear that the same results can be
extended to the case of finite words.
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7 Undecidability Results

MTL is no more decidable if we consider all non-Berkeley behaviors for any δ
together. More precisely, the satisfiability problem for MTL over BΣT∃δ is Σ0

1-
complete; compare against the same problem over BΣT where it is Σ1

1-complete.

Theorem 20. The satisfiability problem for MTL over behaviors in BΣT∃δ is
Σ0

1 = RE-complete.

Proof. Let φ be a generic MTL formula. φ is satisfiable over BΣT∃δ iff there
exists a δ > 0 such that φ is satisfiable over BΣTδ. Given that BΣTγ ⊃ BΣTδ
for all γ < δ (Proposition 1), and that the satisfiability of φ is decidable over
BΣTγ for any fixed γ > 0 (Corollary 12), the following procedure halts iff φ is
satisfiable over BΣT∃δ: (1) let d← 1; (2) decide if φ is satisfiable over BΣTd; (3)
if not, let d← d/2 and goto (2). This proves that the satisfiability problem for
MTL over BΣT∃δ is in RE.

To show RE-hardness, we reduce the halting problem for 2-counter machines
to MTL satisfiability over BΣT∃δ. The key insight is that a halting computation
is one where only a finite portion of the tape is used. Correspondingly it can
be represented by a behavior where only a finite number of transition points lie
within a finite amount of time; such behaviors are necessarily in BΣT∃δ because
the infimum over distances between transitions coincides with the minimum.

Then, we use standard techniques such as those in [AH93] with some simple
modifications. A 2-counter machine M consists of a finite control unit whose
locations are in a finite set L and two unbounded variables C,D ranging over
the naturals, called counters. The behavior of M is determined by the sequence
of instructions corresponding to L. Every instruction belongs to one of three
types: branching to a certain location upon a specific counter having value
0; incrementing a counter; and decrementing a counter (which accomplishes
something only if the counter has a positive value). When a given location
lH ∈ L is reached, the machine halts. The halting problem for M consists
in determining whether M eventually halts. It is well-known that the halting
problem for 2-counter machines is an undecidable, RE-hard problem [Min67].
We reduce deciding whether a generic 2-counter machine M halts to deciding if
a suitable MTL formula φM is satisfiable over BΣT∃δ.

We introduce the following propositions: s, {li | li ∈ L} for every location,
and c, d to “count” values of the two counters as we will explain shortly. Con-
figurations of M are triples 〈l, c, d〉 with l ∈ L the current location, and c, d ≥ 0
the current values of the two counters. Every such configuration is encoded by
the value of the propositions over an interval of time [k, k + 1) for some k ∈ N,
with l holding at the beginning of the interval, and c (resp. d) transitioning to
true exactly c (resp. d) times within the interval. Consecutive configurations
are encoded in adjacent intervals.

More precisely, s is used to determine where each interval begins. In fact, its
value is determined by the following formula, where 0 < ε < 1/3 is some chosen
constant:

ψs ≡ �[0,ε)(s) ∧�[ε,1](¬s) ∧�(1,1+ε)(s) ∧�>0(s⇔ ♦=1(s))

which entails that the formula ∇(s) ≡ ¬s∧©(s) holds precisely at all k ∈ N≥1.
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For a proposition li we define l[i ≡ li∧
∧
j 6=i ¬lj . Then, the initial configuration

〈l0, 0, 0〉 is encoded by the following formula:

ψstart ≡ �<ε

(
l[0

)
∧�<1(¬c ∧ ¬d)

Every instruction is encoded by suitably “copying” the current configuration
to the next state and then possibly changing the value of the counters. In
particular, an increment can always be accommodated thanks to the density
of the time domain. For instance, consider an instruction lk that increments
counter c (and then moves to the next instruction in lk+1. This would be
encoded by the following formula, where ∇=1(ψ) ≡ ♦=1(∇(ψ)):

Alw

 ∇(s) ∧ l[k ⇒



∇=1

(
l[k+1

)
∧ �(0,1)(∇(c)⇒ ∇=1(c))

∧ U(0,1)

 ∇=1(c)⇒ ∇(c) ,
¬∇(c) ∧∇=1(c)
∧ U(∇=1(c)⇒ ∇(c) ,∇(s))


∧ �(0,1)(∇(d)⇔ ∇=1(d))




In the consequent, the first conjunct ensures that the next location is lk+1;
the second conjunct asserts that in the next interval contains at least as many
c transitions as the current interval; the third conjunct, combined with the
second, ensures that there is exactly one more c transition in the next interval
than in the current one; the fourth conjunct requires that there is exactly the
same number of d transitions in the current interval and in the next one.

Finally, halting can be expressed by the formula:

♦
(
∇
(
l[H

))
Now, if M has a computation that halts after N steps, a behavior b can be

built such that it models the N steps according to what required by φM . In
particular, after time N all propositions can take a constant value, except for s
that switches at most every ε time units. Let τ(b) = τ1, τ2, . . . be the sequence
of transition points of b and let Z be such that τZ ≤ N < τZ+1; then, b is
in BΣTmin(δ,ε)/2 for δ = min1≤k≤Z−1(τk+1 − τk). Conversely, it is clear that a
computation that halts after N steps corresponds to any behavior b ∈ BΣT∃δ
satisfying φM , where N is the least instant such that ∇(l[H) holds.

As usual, the above proof can be adapted with simple modifications to work
for infinite timed words. Hence, we have the following.

Theorem 21. The satisfiability problem for MTL over words in TΣTω∃δ is Σ0
1 =

RE-complete.

In addition, the decidability of MTL over the classes BΣTk,δ and TΣTωk,δ
entails the following.

Corollary 22. The satisfiability problem for MTL over BΣT∃k∃δ and TΣTω∃k∃δ
is Σ0

1 = RE-complete.
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Decidability Complexity
BΣTδ, BΣTk,δ Yes EXPSPACE-C
BΣT∃δ,BΣT∃k∃δ No Σ0

1-C
BΣT No Σ1

1-C
TΣTωδ , TΣTωk,δ Yes EXPSPACE-C
TΣTω∃δ, TΣTω∃k∃δ No Σ0

1-C
TΣTω No Σ1

1-C
TΣT∗δ , TΣT∗k,δ Yes EXPSPACE-C
TΣT∗∃δ, TΣT∗∃k∃δ Yes non-PR

TΣT∗ Yes non-PR

Table 1: Summary of the known results.

Proof. The RE-hardness proof works as in the case of Theorems 20–21, from
the inclusions BΣT∃δ ⊂ BΣT∃k∃δ and TΣTω∃δ ⊂ TΣTω∃k∃δ in Proposition 1. Mem-
bership in RE follows from the decidability of MTL over the classes BΣTk,δ and
TΣTωk,δ, with the procedure: (1) let h ← 1, d ← 1; (2) decide if φ is satisfiable
over BΣTh,d (or TΣTωh,d); (3) if not, let h← 2h, d← d/2 and goto (2).

Undecidability does not carry over to finite words, where the problem is
known to be decidable [OW05, OW07].

8 Summary

Table 1 summarizes the results on the expressiveness of MTL over various se-
mantic classes. Cells without shade host previously known results; cells with a
light shade are corollaries of known results; cells with a dark shade correspond
to the main results discussed and proved in this paper.

As future work, it will be interesting to investigate the practical impact of
the new decidability results of this paper. This will encompass, on the one
hand, experimenting with implementations of decision algorithms to evaluate
their performances on practical verification problems and, on the other hand,
assessing which classes of systems can be naturally described with bounded
variably models.
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[OW05] Joël Ouaknine and James Worrell. On the decidability of metric temporal
logic. In Proceedings of the 20th Annual IEEE Symposium on Logic in
Computer Science (LICS’05), pages 188–197. IEEE Computer Society
Press, 2005.

30
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