Asynchronous Multi-Tape Automata Intersection:
Undecidability and Approximation

Carlo A. Furia
ETH Zurich, Switzerland
caf@inf.ethz.ch

February 13, 2014

Abstract

When their reading heads are allowed to move completely asynchronously,
finite-state automata with multiple tapes achieve a significant expressive power,
but also lose useful closure properties—closure under intersection, in particular.
This paper investigates to what extent it is still feasible to use multi-tape automata
as recognizers of polyadic predicates on words. On the negative side, determin-
ing whether the intersection of asynchronous multi-tape automata is expressible
is not even semidecidable. On the positive side, we present an algorithm that
computes under-approximations of the intersection; and discuss simple conditions
under which it can construct complete intersections. A prototype implementation
and a few non-trivial examples demonstrate the algorithm in practice.

1 Automata As Decision Procedures

Standard finite-state automata are simple computing devices widely used in computer
science. They define a robust class of language acceptors, as each automaton instance
A identifies a set £(A) of words that it accepts as input. The connection between finite-
state automata and predicate logic has been well-known since the work of Biichi [4, 5]
and others [33] [10], and is widely used in applications such as model-checking: each
automaton A p can be seen as implementing a monadic (that is, unary) predicate P(z),
in the sense that the set £(Ap) of words accepted by the automaton corresponds to
the set {z | x &= P(z)} of models of the predicate. Logic connectives (negation —,
conjunction A, etc.) translate into composition operations on automata (complement,
intersection N, etc.), so that finite-state automata can capture the semantics of arbitrary
first-order monadic formulas whose interpreted atomic predicates are implementable.
This gives a very efficient way to decide the satisfiability of monadic logic formu-
las representable by finite-state automata: unsatisfiability of a formula corresponds to
emptiness of its automaton, which is testable efficiently in time linear in the automaton
size.

It is natural to extend this framework [} [32] to represent n-ary predicates, for
n > 1, by means of multi-tape finite-state automata. An n-tape automaton Ag is a
device that accepts n-tuples of words, corresponding to the set of models of a predicate
R(x1,...,zy) over n variables. Sectiondeﬁnes multi-tape automata and summarizes
some of their fundamental properties. It turns out that the class of multi-tape automata
(in their most expressive asynchronous variant) is not as robust as one-tape automata.

caf@inf.ethz.ch

In particular, multi-tape automat are not closed under intersection [14], and hence
the conjunction of n-ary predicates is not implementable in general.

This paper investigates the magnitude of this hurdle in practice. On the nega-
tive side, we prove that determining whether the intersection of two multi-tape au-
tomata A, B is expressible as an automaton is neither decidable nor semi-decidable.
On the positive side, we provide an algorithm J(A, B, d) that computes an under-
approximation of the intersection A N B of A and B, bounded by a given maximum
delay d between heads on different tapes. We also detail a simple sufficient syntac-
tic condition on A and B for the algorithm to return complete intersections. Based
on these results, we implemented the algorithm and tried it on a number of natural
examples inspired by the verification conditions of programs operating on sequences.

2 Preliminaries

7, is the set of integer numbers, and IN is the set of natural numbers 0,1,.... For a
(finite) set S, p(.5) denotes its powerset. For a finite nonempty alphabet 3, X2* denotes
the set of all finite sequences o - - - 0, with n > 0, of symbols from X called words
over X; whenn = 0, ¢ € X* is the empty word. |s| € IN denotes the length n of a word
$=01 ... 0pn. Ann-word is an n-tuple (s1,...,s,) € (£*)" of words over X.

Given a sequence s = x1---x, of objects, a permutation = : {1,...,n} —
{1,...,n} is a bijection that rearranges s into 7(s) = m---m, with m; = 2.
fori = 1,...,n. An inversion of a permutation 7 of s is a pair (¢, j) of indices such
that ¢ < j and w(z) > w(j). For example, the permutation that turns a4b;baasasazbs
into b1 babsasasagar has 6 inversions.

2.1 Multi-Tape Finite Automata

A finite-state automaton with n > 1 tapes scans n read-only input tapes, each with an
independent head. At every step, the current state determines the tape to be read, and
the transition function defines the possible next states based on the current state and the
symbols under the reading head. A special symbol § marks the right end of each input
tape; X¢ denotes the extended alphabet X U {$}.

Definition 1 (n-tape automaton). An n-tape finite-state automaton A is a tuple (3, Q,
0,Qo, F, T,) where: ¥ is the input alphabet, with § & X; T = {¢1,...,t,} is the
set of tapes; (@ is the finite set of states; 7 : () — T assigns a tape to each state;
d: Q x3Xg — p(Q) is the (nondeterministic) transition function; Qo C @ are the
initial states; F' C @ are the accepting (final) states.

We write A(ty,...,t,) when we want to emphasize that A operates on the n tapes
t1,...,tn; A(t),..., 1)) denotes an instance of A with each tape t; renamed to ..
Without loss of generality, assume that the accepting states have no outgoing edges:
d(gr,0) = 0 for all gp € F. Also, whenever convenient we represent the transition
function § as a relation, that is the set of triples (¢, o, ¢’) such that ¢’ € 6(q, o).

A configuration of an n-tape automaton A is an (n + 1)-tuple {q,y1,...,Yn) €
Q x (Z;)", where ¢ € @ is the current state and, for 1 < k < n, y; is the input on
the k-th tape still to be read. A run p of A oninput x = (xy1,...,z,) € (X*)" is

'We do not consider more powerful classes of multi-tape automata, such as pushdown automata, as they
typically possess even fewer closure or decidability properties [20] unless they are significantly restricted to
specific classes of languages [[L1].

a sequence of configurations p = pg - -+ py, such that: (1) po = (g0, 21 $,..., 2, $)
for some initial state g € Qp; and (2) for 0 < k < m, if pr = {q,y1,...,Yn) 1S
the k-th configuration—with ¢, = 7(q) the tape read in state ¢, and y;, = o yj;, with
o € ¥g and y;, € X3 on the h-th tape—then pr 1 = (¢, %1, ..., y,,) with ¢’ € 0(q,0)
and y, = y; for all ¢ # h. A run p is accepting if pm, = (qr,y1,-..,Yyn) for some
accepting state gr € Qr. A accepts an n-word z if there exists an accepting run of
A on z. The language accepted (or recognized) by A is the set £(A) of all n-words
that A accepts. The n-rational languages are the class of languages accepted by some
n-tape automaton. Whenever n is clear from the context, we will simply write “words”
and “automata” to mean “n-words” and “n-tape automata”.

Definition 2. An n-tape automaton A is: deterministic if |Qo| < 1 and |§(q,0)| < 1
for all ¢, o; synchronous for s € IN if every run of A is such that any two heads that
have not scanned their whole input are no more than s positions apart; asynchronous
if it is not synchronous for any s.

Example 3. Figure|[I]shows a synchronous deterministic automaton .A— with two tapes
X, Y that recognizes pairs of equal words over {a, b}. Each state is labeled with the
tape read and with a number for identification (the final state’s tape label is immaterial,
and hence omitted). A_ reads one letter on tape Y immediately after reading one letter
on tape X; hence it is synchronous for s = 1. Automaton A, in Figure 2] recognizes
triples of words such that the word on tape Z equals the concatenation of the words on
tapes X and Y (ignoring the end-markers). It is asynchronous because the length of X
is not bounded: when the reading on tape Y starts, the head on Z is at a distance equal
to the length of the input on X.

a l b

NN
@\ﬁ/@\b/@ $ @ $

Figure 1: 2-tape deterministic synchronous automaton .A_.

H-_FHH_ D
a b a YN b i}
\ﬁ@ﬁ/\ﬁ/\ﬁ@/@

Figure 2: 3-tape deterministic asynchronous automaton A,.

2.2 Closure Properties and Decidability

Automata define languages, which are sets of words; correspondingly, we are inter-
ested in the closure properties of automata with respect to set-theoretic operations on
their languages. Specifically, we consider closure under complement, intersection, and
union; and the emptiness problem: given an automaton A, decide whether £(A) = 0,

that is whether it accepts some word. The complement of a language L over n-words
over ¥ is taken with respect to the set (3*)™; the intersection L1 N Lo is also applicable
when L, is a language over n-words and Lo a language over m-words, with m > n:
define Ly N Ly as the set of m-tuples (x1, ..., x,,) such that (x1,...,2,) € L; and
(1,...,Zm) € Lo; a similar definition works for unions. We lift set-theoretic oper-
ations from languages to automata; for example, the intersection A3 = A; N Ay of
two automata A, A, is an automaton Ajz such that £(A3z) = L(A;) N L(A2), when it
exists; we assume that intersected automata share the tapes with the same name (in the
same order). The rest of this section summarizes the fundamental closure properties of
multi-tape automata; see [14] for a more detailed presentation and references.

Synchronous automata [22| [23]] define a very robust class of languages: they have
the same expressiveness whether deterministic or nondeterministic; they are closed
under complement, intersection, and union; and emptiness is decidable. In fact, com-
putations of synchronous n-tape automata can be regarded as computations of standard
single-tape automata over the n-track alphabet (X U {{J})™, where the fresh symbol OJ
pads some of the 7 input strings so that they all have the same length. Under this con-
vention, the standard constructions for finite-state automata apply to synchronous au-
tomata as well. Most applications of multi-tape automata to have targeted synchronous
automata (see Section @), which have, however, a limited expressive power.

Asynchronous automata are strictly more expressive than synchronous ones, but
are also less robust:

e Nondeterministic asynchronous automata are strictly more expressive than de-
terministic ones.

o Deterministic asynchronous automata are closed under complement, using the
standard construction that complements the accepting states. They are not closed
under union, although the union of two deterministic asynchronous automata
always is a nondeterministic automaton. They are not closed under intersection
because, intuitively, the parallel computations in the two intersected automata
may require the heads on the shared tapes to diverge.

e Nondeterministic asynchronous automata are not closed under complement or
intersection, but are closed under union using the standard construction that takes
the union of the transition graphs.

e Emptiness is decidable for asynchronous automata (deterministic and nondeter-
ministic): it amounts to testing reachability of accepting states from initial states
on the transition graph.

3 Multi-Tape Automata: Negative Results

Since multi-tape automata are not closed under intersection, we try to characterize the
class of intersections that are expressible as automata. A logical characterization is
arduous to get, because conjunction would be inexpressible in general. Indeed, we can
prove some strong undecidability results.

Rational intersection is undecidable. The rational intersection problem is the
problem of determining whether the intersection language £(A) N L(B) of two au-
tomata A and B is rational, that is whether it is accepted by some multi-tape automa-
ton.

Theorem 4. The rational intersection problem is not semidecidable.

Proof. Following [18 [19]], we consider valid computations of Turing machines. A
single-tape Turing machine M has state set .S, input alphabet I, transition relation
§ CQRQXxIxQxIx{-1,0,1};and sg, s € S respectively are the initial state and the
accepting state (unique, without loss of generality). We can write M’s configurations
as strings over I U S of the form 41 - -9 Stgy1 - - %y Where iy ---4,, € I is the
sequence of symbols on the tape, s is the current state, and the read/write head is over
the symbol ix11. The set ACC(M) of accepting computations contains all words of
the form #w1# - - - #w,, #, with # ¢ I U S, such that each wy, is a configuration of
M, w1 is an initial configuration (of the form soI™), w,, is an accepting configuration
(of the form I[*spI*), and wyy; is a valid successor of wy according to d, for all
1 < k < m (thatis, for wy, = 4y -4~ 84T ---iy, and (s,i%,s',i’,h) € § then: if
h=—1thenwyyy =iy - 8174 in; if h = 0then wgyy = 419788 -+ ip; if
h = +1 then w1 = iy ---1"4's---i,). The problem of determining, for a generic
M, whether ACC(M) is regular is not semidecidable [18].

Consider now the language L2 defined as {(z,x) | z € ACC(M)}. Since the
single-component projection of a rational language is always regular [30]], if L,z is
rational then ACC(M) is regular. We can express L2 as the intersection of two lan-
guages L}, and L3,. L}, is the set of 2-words (F#u1# - - - #um#, #o14 - #H0p#)
such that: w; is an initial configuration of M; v,, is an accepting configuration; for
1 < k < m, uy, is a valid configuration and vy is a valid successor of uy. L?\/[is
simply the set of 2-words whose first and second component are equal. It is not difficult
to see that L1, N L2, = L2 and both L}, and L3, are rational (and deterministic).
An automaton for L3, works synchronously by alternately reading and comparing one
character from each tape, generalizing the automaton in Figure [T} An automaton for
L}, starts with the second head moving forward to vs; it then compares each uy, and
vk+1 one character at a time, checking that they are consistent with M’s 4.

We can finally prove the theorem by contradiction: assume the rational intersection
problem is semidecidable. Then, the following is a semi-decision procedure for the
problem of determining whether ACC(M) is regular. Construct the automata for L},
and L3,. If L}, N L3, = Ly is rational, then the semi-decision procedure for rational
intersection halts with positive outcome; then we conclude that ACC(M) is regular;
otherwise loop forever. Since regularity of ACC(M) is not semidecidable, we have a
contradiction. O

Remark 5. The rational intersection problem belongs to 39 in the arithmetical hier-
archy. Consider an enumeration C, Cy, ... of multi-tape automata. The rational in-
tersection problem for A and B is expressible as: 3zVz : C,(z) & A(z) A B(z),
where C(x) is a predicate that holds iff automaton C}, accepts input z. The formula
P(z,z) = Cy(x) & A(z) A B(z) within quantifier scope is recursive (just simulate
the automata runs); hence Vz : P(x, z) is 119 and 32Vz : P(z, 2) is 9.

Rational nondeterministic complement is undecidable. Recall that determinis-
tic automata are closed under complement and nondeterministic automata are closed
under union. Therefore, the undecidability Theorem W4 carries over to the rational
complement problem (defined as obvious): the languages L}, and L3, used in the
proof of Theorem 4| are deterministic; hence their complements L}, and L3, are ra-

tional languages whose union E U L3, is also rational. Thus, the complement of
LY, UL2, =L}, N L2, is rational iff ACC(M) is regular.

Corollary 6. The rational complement problem (determining whether the complement
of a rational nondeterministic language is rational) is not semidecidable.

Closure with respect to equality implies synchrony. The proof of Theorem]also
reveals that even the intersection of an asynchronous automaton with a synchronous
one is in general not rational. A natural question is then whether there exist interesting
combinations of synchronous and asynchronous automata whose intersection is ratio-
nal. A particularly significant case is equality of tapes: it is a relation clearly recognized
by synchronous automata, and it plays an important role in the combination of decision
procedures (e.g., a la Nelson-Oppen [28] or following the DPLL(T’) paradigm [29]).
Unfortunately, it is a corollary of standard results that the only “natural” and robust
class of rational languages are those accepted by synchronous automata.

Corollary 7. Consider an n-tape automaton A; if the language L(A)N{z™ | x € ¥*}
is rational, then it is also accepted by a synchronous automaton.

Proof. Language L = L(A) N {z" | x € ¥*} is so-called “length-preserving”: in any
word in L, all components have the same length. Theorem 6.1 in [8, Chap. IX] shows
that length-preserving rational languages are synchronous. O

4 Multi-Tape Automata: Positive Results

The undecidability of whether an intersection is rational does not prevent the definition
of approximate algorithms for intersection. Section describes one such algorithm
that bounds the maximum delay between corresponding heads of the intersecting au-
tomata; the algorithm under-approximates the real intersection. We also discuss very
simple syntactic conditions under which a bound of zero delay still yields a complete
intersection. Sectiond.3ldiscusses to what extent some of these results can be extended
to the approximation of complement for nondeterministic automata.

4.1 An Algorithm for the Under-Approximation of Intersection

This section outlines an algorithm J(A, B, d) that inputs two multi-tape automata A
and B and a delay bound d € IN U {oo} and returns a multi-tape automaton C' that
approximates the intersection A N B to within delay d. The intersection construction
extends the classic “cross-product” construction: simulate the parallel runs of the two
composing automata by keeping track of what happens in each component.

Informal overview. Let us introduce the algorithm’s basics through examples.
Consider the intersection of A_ and A, in Figures [T| and [2} the initial state is labeled
(=1,01) to denote that it combines states =1 (i.e., state 1 in .A_) and oy (state 1 in
A,). As the intersection develops, the composing automata synchronize on transitions
on shared tapes and proceed asynchronously on non-shared tapes. In the example, there
is a synchronized transition from (=1,01) to (=2, 02) upon reading a on shared tape
X, and an asynchronous transition from the latter state to (=2, o1) upon reading a on
A, ’s non-shared tape Z. A_ in state =, can also read a on shared tape Y'; this is a valid
move in the intersection even if A, cannot read on tape Y until it reaches state o4. Since
reading can proceed on other tapes, we just have to “delay” the transition that reads a
on Y to a later point in the computation and store this delay using the states of the
intersection automaton; A, will then be able to take other transitions and will consume
the delayed ones asynchronously before taking any other transition on Y (that is, delays

behave as a FIFO queue). For example, when a run of the intersection automaton
reaches state (=4, 04), A, can read a on Y matching A_’s delayed transition (which

is then consumed). Here is a picture showing these steps:

!
()@ ()* @)@ @)
Delays may become unbounded in some cases. In the example, automaton .4_ may

accumulate arbitrary delays on tape Y while in states =1, =5, =3; this corresponds to
the intersection automaton “remembering” an arbitrary word on tape Y to compare it
against Z’s content later. An unbounded delay is necessary in this case, as the com-
putations on A— and A, manage the heads on X and Y in irreconcilable ways: the
intersection language of A— and A, is not rational.

The algorithm. Consider two automata A = (X, Q4, 64, Q¢', FA, T4, 74) and
B = (%,QB,6% QF, FB T8, r5), such that A has m tapes T4 = {t',... t2A} and
B has n tapes T2 = {8, ... tB}. We present an algorithm J(A, B, d) that constructs
an automaton C' = (X, Q, 6, Qo, F, T, 7)—with C’s tapes T = T U TB—such that
L(C) C L(A) N L(B). We describe the algorithm as the combination of fundamental
operations, introduced as separate routines. All components of the algorithm have
access to the definitions of A and B, to the definition of C' being built, and to a global
stack s where new states of the composition are pushed (when created) and popped
(when processed). The complete pseudo-code of the routines is in Section [B] of the
Appendix.

Routine async_next (lines 1-17 in Figure [) takes a t-tape automaton D (i.e., A
or B) and one of its states ¢, and returns a set of tuples (¢, h1, ..., hs) of all next
states reachable from ¢ by accumulating delayed transitions h; € (6)* in tape t;,
for 1 < ¢ < t. We call delayed states such tuples of states with delayed transitions.
The search for states reachable from ¢ stops at the first occurrences of states asso-
ciated with a certain tape. For example, async_next(A,, o1) consists of (o1, €,¢€,¢€),
(02, (o1, @, 02)’ € €>’ <O37 (017 b, 03), €, €>’ <O4a (Ola $,04), €, 6>’ <Oov (017 $,04), (04,0,
05),€), (96, (01,%$,04), (04,b,06), €), and (o7, (01,$,04), (04,8, 07), €).

Consider now a pair of delayed states (p, hy, ..., h,,) and (g, k1, ..., k), respec-
tively of A and B. The two states can be composed only if the delays on the synchro-
nized tapes are pairwise consistent, that is the sequence of input symbols of one is a
prefix (proper or not) of the other’s; otherwise, the intersection will not be able to con-
sume the delays in the two components because they do not match. cons(h;, k;) denotes
that the sequences h;, k; of delayed transitions are consistent. Routine new_states
(lines 19-26 in Figure [) takes two sets P,) of delayed states and returns all consis-
tent states obtained by composing them. new_states also pushes onto the stack s all
composite states that have not already been added to the composition. For convenience,
new_state also embeds the tape ¢ of each new composite state within the state itself.
(All tapes are considered: states corresponding to inconsistent choices will be dead
ends.)

To add arbitrary prefixes to the delays of delayed states generated by new _states,
routine compose_transition (lines 28-33 in Figure [) takes two sets P,) of delayed
states and an (m + n)-tuple of delays, and calls new_states on the modified states ob-
tained by orderly adding the delays to the states in P and (). It also adds all transitions
reaching the newly generated states to C’s transition function 6.

We are ready to describe the main routine intersect which builds C' from A and

B; see Figure [5] for the pseudo-code (some symmetric cases are omitted for brevity).
Routine intersect takes as arguments a bound on the maximum number of states and
on the maximum delay max_delay (measured in number of transitions) accumulated
in the states. After building the initial states of the compound (lines 4-5), intersect
enters a loop until either no more states are generated (i.e., the stack s is empty) or it
has reached the bound max_states on the number of states. Each iteration of the loop
begins by popping a state r from the top of the stack (line 7). r is normally added to the
set Q of C’s states, unless some of its sequences of delayed transitions are longer than
the delay bound max_delay; in this case, the algorithm discards r and proceeds to the
next iteration of the loop (line 8). If r is not discarded, intersect builds all composite
states reachable from r. These depend on the tape ¢ read when in r: if it is shared
between A and B we have synchronized transitions (lines 10-30), otherwise we have
an asynchronous transition of A (lines 32—41) or one of B (line 43).

Consider the case of a synchronized transition on some shared tape t € T4 N T5,
While both A and B must read the same symbol on the same tape, they may do so by
consuming some transition that has been delayed. For example, if A has a non-empty
delay h; # e for tape t, it will consume the first transition (u,, o, u/,) in hy; since the
transition is delayed, A’s next state in the compound is not determined by the delayed
transition (which only reads the input o at a delayed instant) but by A’s current state
g, in the compound (line 12 and line 17). The reached states are the composition of
those reached within A and B, with the delays updated so as to remove the delayed
transitions consumed. For example, lines 12-14 correspond to both A and B taking
a delayed transition, whereas lines 17-20 correspond to A taking a delayed transition
and B taking a “normal” transition determined by its transition function 62 on symbol
o. If neither A nor B have delayed transitions for tape ¢, they can only perform normal
transitions according to their transitions functions, without consuming the delays stored
in the state; this is shown in lines 26-30.

The final portion of intersect (from line 32) handles the case of transitions on
some non-shared tape ¢. In these cases, the component of the state r corresponding
to the automaton that does not have tape ¢ does not change at all, whereas the other
component is updated as usual—either by taking a delayed transition (lines 33-35) or
by following its transition function (lines 37-41).

The output of J(A, B, d) coincides with the main routine intersect called on A
and B with no bound on the number of states and max_delay = d; the final states F'
in C' coincide with those whose components are both final in A and B and have no
delayed transitions.

4.2 Correctness and Completeness

In the proofs of this section, we make the simplifying assumption that all tapes are
shared: 74 = TB = T'; handling non-shared tapes is straightforward. Let us show that
J(A, B, d) is correct, that is it constructs an under-approximation of the intersection.

Theorem 8 (Correctness). For every finite delay d € W, J(A, B, d) returns a C such
that L(C) C L(A) N L(B).

Proof. Let us show that € £(C) implies € L(A) N L(B). The basic idea is that,
given an accepting run p = pgp; - - - pn of C on x, one can construct two permutations
74, 7B such that 74 (p) is an accepting run of A and 77 (p) is an accepting run of
B on x. The permutation 7 is constructed as follows (constructing 72 works in the

same way): each element py, in p, for 0 < k < n, corresponds to either a synchronous

or a delayed transition of A; in the former case, 74 does not change the position of
Pk, otherwise it moves it to where the transition was delayed (i.e., consumed asyn-
chronously). For accepting runs, it is always possible to construct such permutations,
since accepting states in C' have no delays, and hence delayed transitions must have
been consumed somewhere before reaching the accepting state. O

Remark 9 (Termination). J(A, B, d) only expands states encoding a maximum delay
of d, and terminates after the given maximum number of states have been generated
or when all states have been explored—whatever comes first. Upon termination, in
general we do not know if the generated intersection automaton accepts £(C') or only
a subset of it—consistently with the undecidability degree of deciding the intersection
(Remark[5).

Remark 10 (Complexity). Since J(A, B, d) may have to enumerate all d-delayed states,
its worst-case time complexity is exponential in d and |T'|—which determine the com-
binatorial explosion in the number of compound states—as we now illustrate.

To get an upper bound on the time complexity of J(A, B, d), let ¢ = max(|Q*|,
|QB), § = max(|64,[68]) = O(¢?), and t = [TANTE| = |T4| = |TB|. Consider
the case in which intersect expands all d-delay compound states determined by A
and B, and ignore constant multiplicative factors. The main loops executes once per
compound state, that is ¢26%? times. Each iteration: (1) calls async_next on A and
B, taking time tq> using an algorithm such as Floyd-Warshall for the all-pairs shortest
path (but whose results can be cached); and (2) composes the sets of states by calling
compose_transition , taking time dtq* assuming states in (are hashed. The dominant
time-complexity factor is then dtq®q*?, exponential in d and .

There is a simple condition for J(A, B, d) to return complete intersections. If A
and B share only one tape, J(A, B, 0) returns a C' that reads the input on non-shared
tapes asynchronously whenever possible; otherwise, C' reads synchronously the input
on the single shared tape without need to accumulate delays.

Lemma 11 (Sufficient condition for completeness). If A and B share at most one tape,
then 3(A, B, 0) returns a C such that L(C) = L(A) N L(B).

Example 12. Consider the intersection of A1 = A.(X,Y,Z) and Ay = A_(Z, W)
(the latter is A in Figure [2] with tapes renamed to Z and W). Since A; and A, only
share tape Z, they can be ready to read synchronously on Z whenever necessary with-
out having to delay such transitions, since asynchronous transitions can be interleaved
ad lib. Therefore, bounding the construction to have no delays gives an automaton that
accepts precisely the intersection of A;’s and A5’s languages.

0 0 0 0
NSNS Nk NS aYLING 2Nk
NV N AN

(a) Automaton Ax. (b) Automaton Ay

D
D

Figure 3: Two automata accepting the same language {(a™,a™) | m,n € IN}.

Remark 13. Even when called without bound on the delays, J(A, B,co) may ter-
minate; in this case, there is not guarantee on the completeness of the returned C.

Consider, for example automata Ax and Ay in Figure 3} they both accept the lan-
guage L = {(a™,a™) | m,n € IN} but by reading on the tapes in different order.
J(Ax, Ay, 00) terminates and returns a C' accepting the language

Le = {{a",€),{e,a") | n € N}.

Clearly, Lc C L(Ax)NL(Ay) = L.

4.3 Approximating Complement

Since deterministic automata are closed under complement, we can use a construc-
tion to approximate determinization to build approximate complement automata. A
straightforward under-approximation algorithm for determinization works as follows.
Consider a generic nondeterministic automaton A, and let b be a bound on delays; A
is the approximate deterministic version of A which we construct. Whenever A has
a nondeterministic choice between going from state ¢ to states q; or g2 upon reading
some o, A goes to g1 and continues the computation corresponding to that choice for
up to b steps; while performing these b steps, A stores the symbols read in its finite
memory. If the computation terminates with acceptance within b steps, then A accepts;
otherwise, it continues with the computation that chose to go to g», using the stored fi-
nite input for b steps and then continuing as normal. It is clear that if such an automaton
A accepts, A accepts as well; the converse is in general not true. Since A is determin-
istic, it can be complemented with the usual construction that switches accepting and
non-accepting states.

Remark 14. Note that, while deterministic automata are closed under complement, the
converse is not true: there exist rational languages whose complement is also rational
that are strictly nondeterministic. For example, consider L = {(a®,a¥) | x # y or & #
2y}. It is clear that L is rational; it also requires nondeterminism to “guess” whether
to check = # y (pair each a on the first tape with one a on the second tape) or = # 2y
(pair each a on the first tape with two a’s on the second tape). L’s complement L is the
singleton set with (e, €), and hence also rational.

5 Implementation and Experiments

To demonstrate the constructions for multi-tape automata in practice, we implemented
the algorithm of Section 4.1 in Python with the IGraph library to represent automata
transition graphs; the prototype implementation is about 900 lines long, and includes
other basic operations on asynchronous automata such as union, complement (for de-
terministic), and emptiness test. Using this prototype, we constructed eight composite
automata corresponding to language-theoretic examples and simple verification condi-
tions expressible as the composition of rational predicates, and tested them for empti-
ness. Table[T]lists the results of the experiments; the examples themselves are described
below, and all the formulas are listed in Section[E]of the Appendix. All the experiments
ran on a Ubuntu GNU/Linux box with Intel Quad Core2 CPU at 2.40 GHz, 4 GB of
RAM, Python 2.7.3, and IGraph 0.6. Each experiment consists of two parts: computing
the intersection until (possibly bounded) termination (INTERSECTION) and testing the
emptiness on the simplified intersection (EMPTINESS). For each part of each experi-
ment, Table reports the time taken to complete it (¢, in seconds); for the first part, it

2Thanks to the anonymous Reviewer 1 of CSR 2014 for suggesting this example.

10

INTERSECTION EMPTINESS

tgQl et 2
Lio 0 14 6 0 N
L34 0 56 48 0 N
tail : vcy 0 32 32 0 Y
tail : vcq 0 248 387 0 Y
tail : vco 119 1907 11061 4 Y
tail : icep 0 224 564 0 N
tail : iceo | 222 1644 21048 | 28 N
catg 2 595 1009 0 N

Table 1: Checking languages and verification conditions with multi-tape automata.

also shows the number of states |@| and transitions |d| of the generated automaton; the
EMPTINESS column also shows the outcome (?: Y for empty, N for non-empty), which
is, of course, checked to be correct. Note that the prototype is only a proof-of-concept:
there is plenty of room for performance improvement.

Language-theoretic examples. Examples L; > and L3 4 (taken from [24]) are 2-
word languages whose intersection is finite. The structure of the automata recognizing
the intersected components is such that the algorithm infersect can only unroll their
loops finitely many times, hence terminates without a given bound. L 5 is the intersec-
tion Ly o = L1NLgy = (abcabe, abcabea) of L1 = {{ab(cab)™c, a(bc)™abca) | n € N}
and Ly = {((abc)™, a(bca)™) | n € IN} . Lg 4 is the intersection Lg 4 = L3 N Ly =
(ab,xyz) of Ly = {{(ab™, xy"z) |n € N} and Ly = {(a"b,zy"z) |n € N} . Itis
trivial to build the automata for Ly, Lo, L3, L4; the experiments reported in Table [I]
composed them and determined their finite intersection languages, which happens to
be complete for L o and L3 4.

Program verification examples. Consider a routine tail that takes a nonnegative
integer n and a sequence = and returns the sequence obtained by dropping the first n
elements of x (where rest (x) returns x without its first element):

tail (n: IN, x: SEQUENCE): SEQUENCE is
if n =0 or x = ¢ then Result := x else Result := rail (n—1, rest(x)) end

If |y| denotes the length of y, a (partial) postcondition for fail is:
(n=0AResult =z)V (n>0A |z] >nA |Result| = |z| —n). (1)

The bulk of proving tail against this specification is showing that the postcondition
established by the recursive call in the else branch (assumed by inductive hypothesis)
implies the postcondition (I)). Discharging this verification condition is equivalent to
proving that three simpler implications, denoted vcg, vcy, and vcg, are valid. For ex-
ample: vc; = |y| > m Ay = rest(z) = |z| > n Am = n — 1 states that if sequence
rest(x) has length > n — 1, then the sequence x has length > n.

We discharged the verification conditions vcg, vcy, veo using multi-tape automata
constructions as follows. vcy, is valid if and only if vc, = —wvcy, is unsatisfiable. Hence,
we have:

vep =-wvep = |yl >mAy=rest(x) Azl <nVm#n—1).

Assume that sequence elements are encoded with a binary alphabet {a, b} and el-
ements of the sequence are separated by a symbol #; this is without loss of generality
as a binary alphabet can succinctly encode arbitrary sequence elements.

11

Then, define multi-tape automata that implement the atomic predicates appear-
ing in the formulas; in all cases, these are very simple and small deterministic au-
tomata. For example, define 3 automata Ae,, (X, N), Arest (X, Y), Agec(M, N) for
vcy. In A, (X, N), tape X stores arbitrary sequences encoded as described above,
and tape N encodes a nonnegative integer in unary form (as many a’s as the integer);
Ajen (X, N) accepts on X sequences whose length (i.e., number of #’s) is no smaller
than the number encoded on N. A, (X, Y") accepts if the sequence on tape Y equals
the sequence on tape X with the first element (until the first #) removed. Age.(M, N)
inputs two nonnegative integers encoded in unary on its tapes M, N and accepts iff M
has exactly one less a than N.

Finally, compose an overall automaton according to the propositional structure of
the formula vcy, (using intersection, union, and complement as described in Section
of the Appendix) that is equivalent to it, and test if for emptiness. For example, Ay, is
equivalent to vcy:

Az, = (Vs M) N A (X, V) 0 (Aien (KN U Ao MLN)) - @)

where A, (Y, M) denotes an instance of A;.,, with tapes X, N renamed to Y, M. In
all cases vcg, vCy, VCa, the overall automaton is effectively constructible from the basic
automata and each intersection shares only one tape; hence constructing intersections
with a zero bound on delays is complete (Lemma [IT). For example, Ag, build with
zero delays is complete, because each element of the disjunction (I) is treated sepa-
rately, as every run of the disjunction automaton is either in A, (X, N) (that only
shares X) orin Age. (M, N) (that only shares M).

Table |1| shows the results of discharging the verification conditions through this
process. The most complex case is vy which is the largest formula with 8 variables.
The complete set of verification conditions is shown in Section [E|of the Appendix.

Failing verification conditions. Automata-based validity checking can also detect
invalid verification conditions by showing concrete counter-examples (assignments of
values to variables that make the condition false). Formulas ice; and ice, are invalid
verification conditions obtained by dropping disjuncts or not complementing them in
vcy and vcs. Table([T]shows that the experiments correctly reported non-emptiness.
Even in the cases where the complete intersection is infinite, rational constructions
may still be useful to search on-the-fly for accepting states, with the algorithm stop-
ping as soon as it has established that the intersection is not empty. We did a small
experiment in this line with formula catg, asserting an incorrect property of sequence
concatenation: x oy = z A last(z) = u A last(y) = v = u = v, which does not hold
if y is the empty sequence. Building the intersection with zero delays is not guaranteed
to be complete because antecedent and consequent share two variables u, v; however,
it is sufficient to find a counter-example where y is the empty sequence (see Table|I).

6 Related Work

The study of multi-tape automata began with the classic work of Rabin and Scott [30].
In the 1960’s, Rosenberg and others contributed to the characterization of these au-
tomata [12] 9]]. Recent research has targeted a few open issues, such as the properties
of synchronous automata [21]] and the language equivalence problem for deterministic

12

multi-tape automata [[17]. See [[14] for a detailed survey of multi-tape automata, and
[7]] for a historical perspective.

Khoussainov and Nerode [25]] introduced a framework for the presentation of first-
order structures based on multi-tape automata; while [25] also defines asynchronous
automata, all its results target synchronous automata—and so did most of the research
in this line (e.g., [2, 31} 22} [23]]). To our knowledge, there exist only a few applica-
tions that use asynchronous multi-tape automata. Motivated by applications in com-
putational linguistic, [6] discusses composition algorithms for weighted multi-tape au-
tomata. Our intersection algorithm (Section shares with [6] the idea of accumulat-
ing delays in states; on the other hand, [6] expresses intersection as the combination of
simpler composition operations, and targets weighted automata with bounded delays—
a syntactic restriction that guarantees that reading heads are synchronized—suitable for
the applications of 6] but not for the program verification examples of Section[5] An-
other application is reasoning about databases of strings (typically representing DNA
sequences), for which multi-tape transducers have been used [[15].

Much recent research targeted the invention of decision procedures for expressive
first-order fragments useful in reasoning about functional properties of programs. In-
terpreted theories supporting operations on words, such as some of the examples in the
present papers, include theories of arrays [3,116], strings [26], multi-sets [27], lists [35],
and sequences [13]. All these contributions (with the exception of [16]) use logic-
based techniques, but automata-theoretic techniques are ubiquitous in other areas of
verification—most noticeably, model-checking [34]. The present paper has suggested
another domain where automata-theoretic techniques can be useful.

Acknowledgements. Thanks to Stéphane Demri for suggesting looking into auto-
matic theories during a chat at ATVA 2010; and to Cristiano Calcagno for stimulating
discussions. Many thanks to the reviewers of several conferences, and in particular to
the anonymous Reviewer 1 of the 9th International Computer Science Symposium in
Russia (CSR 2014), who pointed out—in an extremely detailed and insightful review
of a previous version of this paper—some non-trivial errors about the completeness
analysis for the algorithm of Section 4]

References

[1] Jean Berstel. Transductions and Context-Free Languages. Teubner-Verlag, 1979.
Available at http://goo.gl/WnDppd.

[2] Achim Blumensath and Erich Griadel. Automatic structures. In LICS, pages 51—
62. IEEE, 2000.

[3] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s decidable about
arrays? In VMCAI, volume 3855 of LNCS, pages 427-442. Springer, 2006.

[4] J. Richard Biichi. Weak second-order arithmetic and finite automata. Zeit. Math.
Logik und Grundl. Math., 6:66-92, 1960.

[5] J. Richard Biichi. On a decision method in restricted second order arithmetic. In
Proceedings of the 1960 International Congress on Logic, Method, and Philoso-
phy of Science, pages 1-12. Stanford University Oress, 1962.

13

http://goo.gl/WnDppd

[6] Jean-Marc Champarnaud, Franck Guingne, André Kempe, and Florent Nicart.
Algorithms for the join and auto-intersection of multi-tape weighted finite-state
machines. IJFCS, 19(2):453-476, 2008.

[7] Christian Choffrut. Relations over words an logic: A chronology. Bulletin of the
EATCS, (89):159-163, June 2006.

[8] Samuel Eilenberg. Automata, languages, and machines, volume S9A of Pure and
Applied Mathematics. Academic Press, 1974.

[9] Samuel Eilenberg, C. C. Elgot, and John C. Shepherdson. Sets recognized by
n-tape automata. Journal of Algebra, 13:447-464, 1969.

[10] C. Elgot. Decision problems of finite-automata design and related arithmetics.
Trans. Americ. Math. Soc., 98:21-51, 1961.

[11] Javier Esparza, Pierre Ganty, and Rupak Majumdar. A perfect model for bounded
verification. In LICS, pages 285-294, 2012.

[12] Patrick C. Fischer and Arnold L. Rosenberg. Multitape one-way nonwriting au-
tomata. Journal of Computer and System Sciences, 2(1):88—101, 1968.

[13] Carlo A. Furia. What’s decidable about sequences? In ATVA, volume 6252 of
LNCS, pages 128-142. Springer, 2010.

[14] Carlo A. Furia. A survey of multi-tape automata. http://arxiv.org/abs/
1205.0178, May 2012.

[15] Gosta Grahne, Matti Nykénen, and Esko Ukkonen. Reasoning about strings in
databases. JCSS, 59(1):116-162, 1999.

[16] Peter Habermehl, Radu losif, and Toméas Vojnar. A logic of singly indexed arrays.
In LPAR, volume 5330 of LNCS, pages 558-573. Springer, 2008.

[17] Tero Harju and Juhani Karhuméki. The equivalence problem of multitape finite
automata. Theoretical Computer Science, 78(2):347-355, 1991.

[18] Juris Hartmanis. Context-free languages and Turing machine computations. In
Proceedings of Symposia in Applied Mathematics, volume 19, pages 42-51, 1967.

[19] Markus Holzer, Martin Kutrib, and Andreas Malcher. Multi-head finite automata:
Characterizations, concepts and open problems. In Workshop on The Complexity
of Simple Programs, volume 1 of EPTCS, pages 93—-107, 2009.

[20] Oscar H. Ibarra. Reversal-bounded multicounter machines and their decision
problems. Journal of the ACM, 25(1):116-133, 1978.

[21] Oscar H. Ibarra and Nicholas Q. Tran. On synchronized multitape and multihead
automata. In DCFS, volume 6808 of LNCS, pages 184—197. Springer, 2011.

[22] Oscar H. Ibarra and Nicholas Q. Tran. How to synchronize the heads of a multi-
tape automaton. In CIAA, volume 7381 of LNCS, pages 192-204. Springer, 2012.

[23] Oscar H. Ibarra and Nicholas Q. Tran. On synchronized multi-tape and multi-
head automata. Theor. Comput. Sci., 449:74-84, 2012.

14

http://arxiv.org/abs/1205.0178
http://arxiv.org/abs/1205.0178

[24] Andre Kempe, Franck Guingne, and Florent Nicart. Algorithms for weighted
multi-tape automata. Technical Report 031, XRCE, 2004.

[25] Bakhadyr Khoussainov and Anil Nerode. Automatic presentations of structures.
In LCC, volume 960 of LNCS, pages 367-392. Springer, 1995.

[26] Adam Kiezun, Vijay Ganesh, Philip J. Guo, Pieter Hooimeijer, and Michael D.
Ernst. HAMPI: a solver for string constraints. In ISSTA, pages 105-116. ACM,
2009.

[27] Viktor Kuncak, Ruzica Piskac, Philippe Suter, and Thomas Wies. Building a
calculus of data structures. In VMCAI, volume 5944 of LNCS, pages 26-44.
Springer, 2010.

[28] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision proce-
dures. ACM TOPLAS, 1(2):245-257, 1979.

[29] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT
Modulo Theories. JACM, 53(6):937-977, 2006.

[30] Michael O. Rabin and Dana Scott. Finite automata and their decision problems.
IBM Journal of Research and Development, 39(2):114-125, 1959.

[31] Sasha Rubin. Automata presenting structures: A survey of the finite string case.
The Bulletin of Symbolic Logic, 14(2):169-209, 2008.

[32] Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press,
2009.

[33] B. Trakhtenbrot. The synthesis of logical nets whose operators are described in
terms of one-place predicate calculus. Doklady Akad. Nauk SSSR, 118(4):646—
649, 1958.

[34] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to automatic
program verification. In LICS, pages 332-344. IEEE, 1986.

[35] Thomas Wies, Marco Muiiiz, and Viktor Kuncak. Deciding functional lists with
sublist sets. In VSTTE, volume 7152 of LNCS, pages 66-81, 2012.

15

A Multi-Tape Automata: Negative Results (Section [3)

While Theorem [] subsumes the undecidability of the rational intersection problem,
we can give independent proofs of two variants of the problem. The first one uses a
reduction from Post’s correspondence problem; the second one, given later, a reduction
from the disjointness problem for multi-tape automata.

Theorem 15. The rational intersection problem is undecidable.

Proof. We prove undecidability by reduction from Post’s correspondence problem
(PCP): given a finite set {(x1,y1),. -, {(Tm,Ym)} , of 2-words over ¥ (with |X| > 2)
determine if there exists a sequence %1, i2,...,%; of indices from 1,..., m (possibly
with repetitions) such that z;, @, - - T, = Yiy Yiy " * Yi-

Given an instance of PCP, define X = {z1,...,zpn} and Y = {y1,...,Ym}
Assume, without loss of generality, that the symbols 1, ..., m and a marker # are not
in X. Consider the two languages L1, Lo defined as:

Ly ={(i1r- o, @i, - Ti, Yiy - Vi, #2) | >0andz € X*},
Lo ={(j1Js: Y Yjs, Y# xjy - Tjy) | B> 0andy € Y},

where the 7;’s and ji’s are indices from 1,...,m. It is not difficult to see that I
and L, are rational languages. An automaton accepting L; works as follows: for each
element ¢, on the first tape, it checks that the corresponding z;, and y;, respectively
appear on the second and third tape; finally, it checks that only elements in X appear
after the # on the third tape. An automaton for Ly can follow a similar logic.

The intersection L. = Ly N Ly consists of all words of the form

(i)™ @iy @iy Uiy - Yir) " # (g - m0,)"™)

for n > 0, such that iq,...,% is a solution of the PCP. If the PCP has no solution,
then L is the singleton (e, €, €) which is clearly rational; conversely, if the PCP has no
solution, L contains infinitely many words but is not rational, because its projection
onto the third component has the form u™#wv™, which is non-regular [[14]. O

The proof of Theorem|[I5]uses 3-words, which implies that the result carries over to
any number of tapes n > 3; is it possible to generalize to n > 27 It seems difficult to
simultaneously express the PCP solution requirements and the non-regularity of one of
the components. However, a slightly weaker (but practically as useful) undecidability
result for n > 2 tapes follows easily from the undecidability [14] of the disjointness
problem for rational languages (that is, determining whether the intersection L; N Lo
of two rational languages is empty). We can prove that the following problem P is
undecidable: constructively determine whether the intersection L N Lo of two rational
languages L1, Lo is rational; “constructively” refers to the fact that we require that, if
LN Ly is rational, then we can build an automaton A; o such that £(A; 2) = L1 N L.
Assume, to the contrary, that P is decidable. Then, we have a decision procedure for
the disjointness problem: if L; N Lo is rational, construct and automaton A; o that
accepts it, and test A; o for emptiness; otherwise, L; N Lo is not rational, and hence
certainly Ly N Ly # (.

16

B Under-Approximation of Intersection (Section 4.1))

1 asyncnext (D, q): SET[{(¢',h1,...,hs)]
2 —— gis always reachable from itself
3 Result :={{(g,¢,...,¢)}

4 ——forevery tape other than ¢’s

5 for eacht; € {tP, ... tP}\ 7P(q) do
6 P := all shortest paths p from ¢ to some ¢ such that:
7
8

7P(q) = t; and no state ¢ with 72 (§) = t; appears in p before g
—— each element in P is a sequence of transitions
9 for eache; --- ¢, € Pdo
10 hi,...,hy :=¢
11 —— each transition is a triple (source, input, target)
12 for each (q1,0,¢2) €e1 - e,, do
13 —— add the transition to the sequence corresponding
14 ——to its source’s tape
15 hep(q) = heo () + (01,0, q2)
16 —— ga2(ey,) is the target state of the last transition e,
17 Result := Result U{qz(en), h1, ..., he)
18

19 new_states (P: SET(p,h1,...,hm)], Q: SET[{q, k1, ..., kn)]): S
20 S:=0
21 for each (p,hi,...,hy,) € P,{(q,k1,...,k,) € Qdo

22 —— if delays on synchronized tapes are consistent

23 if Vi e TANTB : cons(h,, k;) then

24 for eacht € T'do S :=SU{(p,q,t,h1,...,hm,k1,...,ks)} end
25 —— Here @ denotes C’s set of states, not the input argument

26 for eachr € Sdoifr ¢ Q then s.push () end

27

28 compose_transition (P: SET[(p,h1,...,hm)], Q: SETI(q, k1, ..., kn)],

29 d: (hi,...,hpm,k1,...,kn),0,71)

30 Ja:={(p,h1hy,...;hmhl.)]| (p,RhY,...,h.,) € P}
31 Jp={(g.kiky,.. . knky) | (¢ K1, k) € Q)
32 S := new_states (J 4, JB)

33 for eachr’ € Sdod:=6U{r,o,7"} end

Figure 4: Routines async_next, new_states, compose_transition .

17

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

intersect (max_states, max_delay)
Q:=0;s:=10
—— Initially reachable states
Ja = UieQ{)‘ async_next (A, i) ; Jg := U,L-GQ[])s async_next (B, i)
S :=new_states (J4, JB) ; Qo := S
until s = () or |Q| > max_states loop
r = (qa,qp,t, h1,. s hm, k1, ... kn) = s.pop
if Vd e {hy,...,k,} :|d| < max_delay then Q := Q U {r} else continue
if t € T4 N TP then —— event on shared tape
if hy = (uq,0,u,)h; and k; = (up, o, u})k; then
—— delayed transition on both A and B
P :=asyncnext (A, q,) ; Q := async_next (B, q,)
di=(hi, . P s Kty T En)
compose_transition (P, Q,d,o,r)
elseif h; = (u,,o,u,)h; and k; = ¢ then
—— delayed transition on A, normal transition on B
P := async_next (A, qq)
Q := { asyncnext (B, q}) | (a,00,q,) € B No =0, ATB(qp) =t}
d:= (hl,...,E,...,hm,kl,...,kn)
compose_transition (P, Q,d,o,r)
elseif h; = e and k; = (up, 0, u})k; then
—— delayed transition on B, normal transition on A

elseif h; = k; = e then
——normal transition on both A and B
for each o € X do
P :={asyncnext (A,q.) | (¢a,0a,q,) €04 Noy =0 NT4(qs) =t}
Q = { asyncnext (B, q}) | (qv, 00, ;) € 08 Aoy =0 AT8(q,) =t}
d:= (hl,...,hm,kjl,...,...,k’n)
compose _transition (P,Q,d,o,r)
elseif ¢ € T4\ TP then —— event on A’s non-shared tape
if h; = (44,0, ul,)h; then —— delayed transition on A, B stays
P :=asyncnext (A,q,) ; Q := {(gp,€,...,€)}
d:= (hl,...,E,...,hm,kl,...,kn)
compose_transition (P, Q,d,o,r)
elseif h; = ¢ then —— normal transition on A, B stays
Q = {(qbvca cee 76)}
for each o € ¥ do
P = { asyncnext (A, q2) | (o, 0ardh) € 64 N 0o = 0 AT4(ga) = 1}
d:.= <h17~-~7hm;k17---akn)
compose_transition (P,Q,d,o,r)
elseif ¢ € T8\ T then —— event on B’s non-shared tape

Figure 5: Routine intersect .

18

C Correctness and Completeness (Section 4.2)

Lemma 16 (Pumping lemma). Let L be an n-rational language. Then there exists an
integer N > 1 such that every word (x1,...,x,) € L where |x1|+ -+ + |x,| > N
can be written as (p1q171, - - -, PnqnTn), With qx # € for at least one 1 < k < n, and
(p1q*r1, .., ppgry) is in L for every m € IN.

Proof. Let Ap be an automaton accepting L; then, the number of states of Ay, is the
pumping length N = M. Consider a word w = (21,...,z,) € L with length |z;| +
-+« 4+ |z,] > N. A computation accepting w visits N + 1 states of Ay ; by the
pigeonhole principle, there exists a state s in the sequence which is visited twice. The
sequence of symbols read in the transitions that go from the first to the second visit of
s determines an n-word (g1, . ..,q,) with at least one g, # €. Looping an arbitrary
number of times over the sequence that starts and ends on s determines words that are
all accepted by Ay, and hence belong to L. O

D Asynchronous Rational Theories

The signature So = C U F' U R of a first-order theory © is a set of constant C,
function F', and predicate R symbols. A quantifier-free formula of © is built from
constant, function, and predicate symbols of Sg, as well as variables z,y, z, ... and
logical connectives =,V,A,—. An interpretatiorﬂ Io assigns constants, functions,
and predicates over a domain D to each element of C, F', and R. It is customary that
R include an equality symbol = with its natural interpretation. Then, assume without
loss of generality that © is relational, that is F' = {J; to this end, introduce a (m + 1)-
ary predicate Ry for every m-ary function f such that Ry(z1,...,%m,y) holds iff
f(z1,...,2m) = y. A model M of a formula F of © is an assignment of values to
the variables in F’ that is consistent with /g and makes the formula evaluate to true;
write M |= F to denote that M is a model of F. The set of all models of a formula F'
under an interpretation g is denoted by [F] ;. F is satisfiable in the interpretation Ig
if [F]ro # 0; it is valid if [F] . contains all variable assignments that are consistent
with Ig.

Similar to automatic presentations, a rational presentation of a first-order theory ©
consists of:

1. A finite alphabet ¥;

2. A surjective mapping v : S — D, with S a regular subset of ¥*, that defines an
encoding of elements of the domain D in words over X;

3. A 2-tape automaton Aeq whose language is the set of 2-words (z,y) € (¥*)?
such that v(z) = v(y);

4. For each m-ary relation R,, € R, an m-tape automaton .Ar whose language
is the set of m-words (21,...,Zm) € (£*)™ such that R, (v(x1),...,v(zm))
holds.

A first-order theory with rational presentation is called rational theory. If the automata
of the presentation are deterministic (resp. synchronous, asynchronous) the theory is
also called deterministic (resp. synchronous, asynchronous).

3For simplicity, we do not discuss how to axiomatize the semantics of interpreted items.

19

Example 17 (Rational theory of concatenation). The theory of concatenation over
{a, b}* is the first-order theory with constant e (the empty sequence), sequence equality
=, and concatenation predicate R, such that R,(x,y, z) holds iff z is the concatena-
tion of = and y. This theory is asynchronous rational, with ¥ = {a, b}, v the identity
function, Acq as in Figure[T} and Ag, as in Figure[2]

Consider a quantifier-free formula F' of a rational theory ©. To decide if F' is
satisfiable we can proceed as follows. First, build an automaton Ap that recognizes
exactly the models of F'. This is done by composing the elementary automata of the
theory according to the propositional structure of F'; namely, for sub-formulas G, H,
negation =G corresponds to complement Ag, disjunction G V H corresponds to union
Ag U Ag, and conjunction G A H corresponds to intersection Ag N Ag. To verify if
F is valid, test whether A_r = A is empty: L£(A-r) is empty iff ~F is unsatisfiable
iff F'is valid.

We can apply this procedure only when the automaton Ap is effectively con-
structible, which is not always the case for asynchronous rational theories because
asynchronous automata lack some closure properties (see Section [2.2)—intersection,
in particular. The following section, however, shows some non-trivial examples of for-
mulas whose rational presentation falls under the criterion of Corollary [1 1| (and whose
components to be complemented are deterministic), hence we can decide their validity
by means of automata constructions.

E Implementation and Experiments (Section |5)

veo = |yl >mAy=rest(z) = |z|>nAm=n—1

velr = Jy| >mAy=rest(zx) = |lzg| >nAm=n—1
caty = xoy =z Alast(z) =uANlast(y) =v = u=v

ice; = |y| >mAy=rest(x) = |z|<n

icea = |Result| = uAu=|y| —mAy=rest(zr) = |Result|=v

vcy = |Result] = u A u = |y| — m Ay = rest(x)
= [Resultl| =vAv=|z|—nAm=n—1Alz|=n

20

	Automata As Decision Procedures
	Preliminaries
	Multi-Tape Finite Automata
	Closure Properties and Decidability

	Multi-Tape Automata: Negative Results
	Multi-Tape Automata: Positive Results
	An Algorithm for the Under-Approximation of Intersection
	Correctness and Completeness
	Approximating Complement

	Implementation and Experiments
	Related Work
	Multi-Tape Automata: Negative Results (Section ??)
	Under-Approximation of Intersection (Section ??)
	Correctness and Completeness (Section ??)
	Asynchronous Rational Theories
	Implementation and Experiments (Section ??)

