Practical Efficient Modular
Linear-Time Model-Checking

Carlo A. Furid and Paola Spoletifi

L DEI, Politecnico di Milano, Milano, Italy
2 DSCPI, Universita degli Studi dell'Insubria, Como, Italy

Abstract. This paper shows how the modular structure of compositeesyst
can guide the state-space exploration in explicit-statsli-time model-checking
and make it more efficient in practice. Given a compositeesgsivhere every
module has input and output variables — and variables ofifft modules can
be connected — a total ordering according to which variahhesgenerated is
determined, through heuristics based on graph-theoratiedysis of the modular
structure. The technique is shown to outperform standgptbeation techniques
(that do not take the modular structure information intaoaiect) by several orders
of magnitude in experiments with Spin models of MTL formulas

1 Introduction

Systems are complex; as apparent as it sourasplexityis the primal hurdle when
it comes to describing and understanding them. Abstraaimhmodularizationare
widely-known powerful conceptual tools to tame this comfile In extreme summary,
a large system is described as the composition of simpleutasdEvery module en-
capsulates a portion of the system; its internal behavalrs¢racted away at its interface
— the set of input/output variables that are connected teratiodules [14]. Modular-
ization is widely practiced in all of computer science anffvgare engineering.

A class of systems that are especially difficult to analyzgiven by concurrent
systems. In such systems the various parts are often highiyled, as a result of their
ongoing complex synchronization mechanisms. Nonethebess the last decades the
state of the art in specifying and verifying concurrent egst has made very conspic-
uous advancements. A significant part of them is centeregndrthe formalisms of
temporal logics [4] and finite-state automata [18], and tgeré&hmic verification tech-
nique of model-checking [1].

Although model-checking techniques target primarily ebsnonolithic systems,
modularization has been considered for model-checkinberrésearch trends that go
by the namesnodule checkingl12] and modular model-checkinflL1]. Both extend
model-checking techniques tpensystems, i.e., systems with an explicit interaction
with an external environment (that provides input) [8]. hi@ module checking prop-
erties of the system are checked with respe@lt@ossible environments, whereas in
modular model-checking properties are checked with raspenvironments satisfying
a temporal-logic specification (according to tiesume/guarantgearadigm [3]).

In this paper we take a different approach, which exploits itiformation that
comes from the modular decomposition of systems to amétian@del-checking per-
formances in practice. We consider explicit-state modhele&ing techniques for linear-
time temporal logic: the system and the property are reptedeas finite-state au-
tomata, and checking that all runs of the system satisfy thpgsty amounts to per-
forming an exploration of the state-space of the overalbmatton — resulting from
the composition of the various component automata — in daldetect cycles (which
correspond to runs where the property is violated) [1]. Bxisloration is the more ef-
ficient the earlier we are able to detect “unproductive” pdtiat lead to no cycle. If
the various components of a system are decomposed into coitating modules, the
information about how these modules are connected is usefulide such state-space
exploration paths.

Our approach aims at being practical, in that we do not claiyreesymptotic worst-
case gain over traditional algorithms. In fact, our techeids essentially based on
heuristics that may or may not be effective according to tirtiqular structure of the
system at hand, and that cannot escape the inherent weestamplexity of automated
verification. However, we demonstrate the significant pcattmpact of our technique
by means of a verification examples where traditional “dahilechniques are com-
pared against our optimized modular approach. Our teckritparly outperforms the
unoptimized algorithm by several orders of magnitude.

The rest of the paper is organized as follows. In the nextsadtion we briefly
review some related work. Section 2 introduces most dedimtithat will be used in
the rest of the paper, including our notion of module. SecBodescribes the opti-
mization technique itself in detail, after an informal oview. Section 4 introduces the
verification examples and reports on experimental resuttstivem. Finally, Section 5
concludes and hints at future work.

Related work. In the Introduction we already mentioned the techniques oflue
checking and modular model-checking. For linear-time teraplogic, module check-
ing and modular model-checking basically reduce to stahdadel-checking, as dis-
cussed in [12] and [11], respectively. In fact, any linéaret environment can simply
be described as an explicit component of the system, thugirglto the usual case
of closed monolithic systems. This entails that the complef the module-checking
and modular model-checking problems is not different thainary linear-time model-
checking; in fact, they all are PSPACE-complete problems.

In practice, however, these modular techniques have priovbd extremely effec-
tive in taming the state-explosion problem which plaguesieh@hecking. Composi-
tionality and theassume/guarantgearadigm, in particular, can be seen as an applica-
tion of the abstraction and modularization principles gpecification and verification
of concurrent systems: the module is decoupled from itsrenmient by abstracting the
latter as an assumption formula. Verification can then bopmed locally to the mod-
ule, without resorting to the full description of its enuirment. There is quite a large
amount of literature dealing with the subject of compositility; we refer the reader to
[3, 5] for surveys and further references.

The work in this paper is most directly based upon [16], whemmlogical infor-
mation that comes from the modular decomposition is usedite dhe systematic
generation of test-case execution sequences for realsiistems described in metric
temporal logic. Previous work of ours [13,17] explored tlesgibility of using sim-
ilar techniques for enhancing practical performancesraddi-time model-checking.
In Section 3 we develop systematically those preliminagaglinto a comprehensive
technique. In particular, the examples in Section 4 aredbaseprevious work on the
translation of metric temporal logic (such as MTL and TRIO)d=als into ProMelLa
models, which can be analyzed with Spin [17,13, 15].

2 Definitions

2.1 Variables and Computations

A variablev is characterized by the finite domaih, over which it ranges; if no domain
is specified the variable is assumed to be Boolean With= {0,1}. For a set of
variables), V' denotes the set of primed variables | v € V} with the same domains
as the original variables.

The behavior of systems — and components thereof — is destbifao-sequences
of variable values called computations. Formally, givennéteiset of variabled’, a
computationover V is anw-sequencey = wg,wy,ws,... € DY, whereD is the
Cartesian produqf[vEv D, of variable domains. Also, given a subset of varialileS
V, theprojectionof w over(Q is a computation: = xg, x1, z2, . . . OVerQ) obtained from
w by dropping the components of variablesin, @, thatisz; = w;|g forall j > 0.
Projection is extended to sets of computations as obvious: $et of computations,
its projection over) is C|g = {w|g | w € C}. The set of all computations ovéris
denoted by’ (V).

2.2 LTL and MTL

In the examples of Section 4 we are going to express the bat@uinodules by means
of Metric Temporal Logic (MTL) formulas. This section intfaces the syntax and se-
mantics of MTL.

LetV be a set of variables. MTL formulas are given By:=v = c | =¢ | ¢1 A2 |
U, (¢1,02) | Sy (¢h1,¢2),forv e V,c € D,,andJ C IN an interval of the nonnegative
integers. The basic temporal operator isbeended untilU ; (and its past counterpart
bounded sinces ;); it is the metric version of the well-known LTL until opecat

MTL formulas are interpreted over computations over the/set variables. Given
such a computatiow, a time instant > 0, and an MTL formulap, the satisfaction
relation|= is defined as follows:

% We assume thab, t~ [~ ¢ forallt~ < 0.

w,itEv=c iff w(t), =c
w,t = —¢ iff w,t}E o
w,t):¢1/\q§2 iff w,t):¢1andw,t|:¢2
w,itl= Uj(¢1,¢2) iff IdeJ: (w,t+dEGp AVO<u<d:wt+ulk=¢r)
w,t = Sy (d1,¢2) iff IdedJ:(w,t—dE g AVO<u<d:w,t—ulk=¢r)
wE ¢ iff w,0FE¢
Wheneverw = ¢ we say thatw satisfiesg. Any MTL formula identifies a set of
computationd.(¢) = {w € C(V) | w = ¢} called the language af.

Standard abbreviations are assumed sucfi ak, vV, =-, <. In addition, we in-
troduce the following derived temporal operators: the (med)eventuallyF ;(¢) =
U; (T, ¢), the (boundedylobally G, (¢) £ —F ;(=¢), thenextX(¢) £ F_,(¢), the
(bounded)previouslyP ;(¢) & S, (T, ¢), theyesterdayY (¢) = P_,(¢), thealways
Alw(g) = G(o,w)(¢) A ¢. Note that, whenever no interval is specifidd= (0, co)
is assumed; also, intervals are abbreviated by pseuduyagiic expressions such as
=k,> k,< k for [k, k], [k,), (0, k) respectively. It should be clear that, over com-
putations, MTL is just LTL with syntactic salt: LTL'sextoperatorX can be used to
“count” distances over discrete time.

2.3 Modules and Composition

A system is described by the composition of modufesdenotes the set of all modules.

Primitive modules.The simplest component is tigimitive moduledefined as\i =
(I,0,H, W), where:

— 1,0, andH are sets of input, output, and hidden (i.e., internal) \#eis, respec-
tively. We assume that these sets are pairwise disjfint. [U O U H denotes all
variables of the module.

— W is a set of computations ovét, describing the module’s semantics. In practice,
the behavior of modules is specified as the language) of some finite-state au-
tomaton or temporal logic formulB.

Usually, one assumes that the value of input variables igigeed “from the out-
side”, hence it should not be constrainedifi this can be stated formally by re-
quiring thatW|; £ {w|; | w € W} equalsC(I). However, this assumption is not
strictly required for the discussion of this paper, as it b clear in the following.

We introduce a graphical representation for (the interfa@erimitive modules:
a module is represented by a box with inward arrows corredipgrto variables in
1, outward errors corresponding to variableginand internal lines corresponding to
variables inH.

Example 1.Primitive moduleMs, pictured in Figure 1, has input variablés= {v,,
vg }, output variable® = {vs, vg, v7 }, and hidden variabled = {vi1,vi2}.

Composite modulesPrimitive modules can be composed to budtmposite modules
A composite module is defined 8 = (I, O, n,n, C, X), where:

— n > 0is the number if internal modules;

V1 My \Z] My V3 M, My

TPk | e

Fig. 1. Flat composite open modubd, (left) and its connection graph (right).

v

Vs

— nis afinite set of module identifiers such thelt = n;

— C : n — M provides the module definitiofi(¢) of every internal modulé € 7.
We denote the components of every modul(g) with superscripts as ifi, 0%, H',
etc. Also, we define the sets of all input, output, and hiddemables of internal
modules ast = (J,, I', 0 2 U, OF, andH £ J,., H' respectively. Accord-
ingly, V£ZUOUMH.

— X C O x T is a connection relation, which defines how the inputs anguatof
the various modules are connectéd:) € X iff output o is connected to input

— 1, 0 have the same meaning as in primitive modules. Hence, imglLibatput vari-
ables of composite modules are defined as those of interndlile® that are not
connected, namely: = {i € Z | Yo € O : (0,i) ¢ X} andO = {o € O | Vi €
T:(o,0) & X}.

We extend the graphical notation to composite modules a®obyby representing
connections through connected arrows.

Sy

Modules classification A module isclosediff I = (), otherwise it isopen A module
is flat iff it is primitive or it is composite and all its internal mates are primitive; if a
module is not flat it imesting A module isnon-hierarchicaliff it is flat or it is nesting
and all its components are flat; otherwise ihierarchical

For a composite modul = (I, O, n,n, C, X), its connection graplis a directed
graphG = (V, E) with V = n and(h, k) € E iff there is a connectioffo, i) € X with
o € O" andi € I*. We stretch the terminology by “lifting” attributes of thermnection
graph to the modules themselves. So, for instance, if theexion graph is acyclic
(resp. connected), the modular system is called acyclép(reonnected), etc.

Example 2.Figure 1 (left) pictures flat composite open modiMg with I = {v,vs},
O = {vs,vs},n = 3, n = {M1, M2, Ms}. For graphical simplicity, variables that are
connected are given a unigue name. To the right, we have tireection graph oi.

Modules semanticsLet us define thesemanticof modules. For a primitive module
M, the semantics is trivially given by’ = L(M), which is called théanguageof M.
Let us now consider a composite modiNe The languagé.(N) accepted by such
a module is a set of computations owérdefined as follows. A computation is in
L(N) iff: (1) w is compatible with every component module, i®|p: € L(M?) for

all component modulese 7; and (2) connections between modules are respected, i.e.,
for all connectiongo, i) € X we havew|,, = w|;-

Notice that, for linear-time models, semantics of open nheslis trivial, and im-
plicit in our previous definitions. To make this apparent, wioduce the notion of
maximal environment, which is a module generating all gaesinputs to another
(open) module. Given a sét of variables, anaximal environmenf (V) is a primi-
tive module such thaf = H = (), O = V, and the languagé&(£(V)) is exactly
C(V). So, for an open modul& (either primitive or composite), the languajéK)
can be defined as the language of the composite closed m&doletained by compos-
ing K with a maximal environment. Henc&,’ = (i, 0¥, 2, {e,m}, (€(IX"), K), X)
with X = {(2/,z) | = € I*}. However, for any computation € C(V U IX) it is
z € L(K') iff |, € LIEUIX")) = ¢(IX') andz|y € L(K) andz|;x = z|;x.
Hence,L(K')|y = L(K).

3 Efficient Design of Generators

3.1 Practical Module Checking

Let us consider what happens in practice when performintigitxptate model-checking

of a modular system using an automata-based approach.slrsékiing, the model-

checking algorithm is basically an on-the-fly state-spaagch for cycles (or absence
thereof). Correspondingly, the modular structure of thsteay can be exploited to

greatly improve the performances of the check in practicsehtially, structure can

guide the state-space exploration in order to minimize ggrek of unnecessary non-
determinisnt: We introduce this technique with an overview example.

Example 3.Consider the example of a beverage vending machine, adaptad12].
The machine can be modeled as a primitive moddlewith I™ = {idle, start,
choice : {tea,coffee}} andOM = {done : {tea, coffee, 1 }} whose behavior is de-
fined by the finite state automaton in Figure 2. Consider attieoduleC with I¢ =
{idle, start} andO® = {choice : {tea,coffec}} that always chooses tea, i.e., whose
behavior is defined by the LTL formukaart = X(choice = tea). It is clear that the
composition of the two modules (with a generic environmras in Figure 2 guaran-
tees propertyr = Alw(done # coffee).

In principle, a state exploration process could start geirey any possible choice
for the various variables, one step at a time, until it reaithat the states corresponding
to propertyr cannot be reached. Such a process would also consider catopstwith
start followed in the next state byhoice = coffee; these sequences are not compat-
ible with the behavior of modul€ and thus the corresponding path must be aborted.
However, if the state space exploration is random, it coaloiden that the semantics of
C is considered last, thus the unfeasible paths are prunedaagignificant amount of
processing has been done to no avail. On the contrary, generariables according

% In a sense, a model with shared-variable concurrency isfoemed into one with message-
passing concurrency, according to the functional depemideramong variables of different
modules.

g idle start l
idlestart

choice

start = X(choice = tea)

C

choic

done
-~

Fig. 2. Beverage machine example.

to the input/output relations among modules yields a mdieiefit exploration. In the
example, the generation could start from the environmexss phrough modul€é and
then pass its output variables to modiMeThis means that computations wittart fol-
lowed in the next state byhoice = coffee would not “reach” modulé/, hence pruning
down unfeasible paths as soon as possible.

We take advantage of these remarks in the following way. FeryemoduleM
in a system we introduce @eneratorcomponent; (M). The generator is responsible
for setting the value of all variables it/ . It operates as an interface betweehand
the other modules in the system. Namely, it can receive imatiables from the other
modules, once they have generated them, and it is resperisitéetting the value of
hidden and output variables, according to the behaviaklofWe also define #otal
orderingover all generators in a system. This induces a generatiber dor environ-
ment variables in the whole system. As we have shown in théqure example, this
can influence the efficiency of the system state-space extflar

Notice that generators are not additional modules of thesysbut they are com-
ponents that pertain to a lower level of abstraction, narttedysystem description in
the model-checking environment. These components reialipeactice the coordina-
tion among modules in an efficient way. This framing of theljdean has been espe-
cially inspired by our experience with the Spin model-clexcnd its implementation
of ProMeLa processes [9], in particular the one based omalaion from TRIO metric
temporal logic formulas [17, 13, 15]. However, we preseatrésults in a more general
setting which is exploitable also with other linear-timekgit-state model-checkers.

Example 4.Let us go back to the beverage vending machine example, &r ¢odl-
lustrate practically the idea of generator. Table 1 outliagportion of ProMeLa code
for the generatog (€) of the environment. The generator first of all waits for mgesa
from the module that immediately precedes it in the globdkang (line 2); since is
the first in our ordering, this happens at the beginning ofyefidl round in the state-
space exploration process. When a non-error “acknowledg€mmessage is received
the actual generation process is started (lines 10-19g\oy variable, a value in its
domain is chosen nondeterministically and it is assigneddwariable itself (e.g., lines
12-13 for the Boolean variabldle). After a full set of values has been generated, it is
checked for consistency with the constraints induced byrtbdule’s semantics. Since
£ is a maximal environment (see definitions above) this stgbsent in the example

do
;1 meg?x, eval (generator_id);
if
11 x==0
|+ error occurred */
-> goto error_handling_routine;
:: else
/+* no error, go on with actual generation */
->

0N OO AW N

©

i f
/+ generate values for "idle" */
1 idle=0;

coidle=1;

fi;

i f
/* generate values for "start" =/
;. start=0;

1 start=1;

fi;

nsg! 1, C_nodul e_proc_i d;

fi;

NNNE R PR R BB P B
NP O®©®~N®u-_wRNPRO

od;

Table 1. ProMeLa code generator sample.

of Table 1. Finally (line 20), the generator terminates ggstully its execution round
by releasing its control to the next process. Since we wangémeration to go on with
moduleC, the “acknowledgement” message is sent preciseys@enerator.

In the remainder, we show a strategy to design an ordered generator for any
given modular system. The strategy aims at designing aneriogithe generators so
as to cut down the state-space exploration as soon as podsilsl based on a set of
heuristics and built upon the analysis of the modular stmecdf the system.

Clearly, we can assume that the the connection graph of stersyis connected. In
fact, if it is not connected, we can partition it into a cotiea of connected components,
such that every connected component can be treated inigsoée discussed below.

3.2 Acyclic Flat Modules

Let M = (I,0,n,n,C, X) be an acyclic flat connected module; without loss of gener-
ality we assume it is a composite module (otherwise, jussictam a composite module
with a single primitive component). For eveng 7 the generatog (i) of moduleC'(7)

is responsible for generating the following variabl&&:u O U (I N I). That is,G (i)
generates all hidden and output variables, and all inpudbas that are not connected
to any output variables of other modules.

3.3 Cyclic Flat Modules

Let M = (1,0, n,n,C, X) be a cyclic flat connected module; note that such a module
is also necessarily composite. In order to design gener&sosuch a module we recall
the notion offeedback arc setet G = (V, E) be the cyclic connection graph 81. A
feedback arc set (FAS) is a set of ed@es. V such that the grap{V, E'\ F') is acyclic.

In practice, we can considéf as an acyclic module with (self-)connections going from
some of its output variables to some of its input variablessé connections correspond
to edged’ of the FAS. Itis clear that a FAS always exists for a cyclic mledin general,
however, the FAS is not unique.

Through the definition of FAS we can re-use the simple styafegdesigning gen-
erators that we applied in the acyclic case. Namely/fetC 7 \ I andOf C O\ O
be the sets of input and output variables, respectivelyesponding to the edges in
F'. Then, for everyi € n generatoG (i) of moduleC (¢) is responsible for generating
the following variablesH® U (O' N (O \ OF)) U (I' N 1) U (I* N IF). That is,G (i)
generates all hidden variables, all output variables thatat in the cycle (because
these are the same as the input variables they are connecaeditthese input variables
are generated by the generator of the corresponding mggdalemput variables that
are not connected to any output variables of other modulescg coming from the
environment), and all input variables that belong to the FAS

Example 5.Consider the connection graph of cyclic modidig in Figure 1. If we
chooseF; = {(Ms,M;)} as FAS, the generators would generate the following vari-
ables:G(My) = {vo,v2,v1,v6,v7}, G(M2) = {vi0,v3,va}, G(M3) = {vi1,vi2,Vs,
vg}. If we choose instead> = {(My, Ms)} as FAS, we would generatg§(M,) =
{vo,vi}, G(M2) = {vi0,V3,va,Vv2}, G(M3) = {v11,V12,Vs, Vg, V7, Vs }.

In order for the generation to be correct all variables inghstem must be gen-
erated, in some order, in such a way that all constraints §sgpdy the modules’ se-
mantics are satisfied. Any FAS guarantees a correct geoeratithis sense, because
it simply induces a particular generation order on the setllofariables, such that no
variable is ignored. While correctness is guaranteed dégss of which FAS is chosen,
it is advisable to choose the arcs corresponding to the nimmumber of variables,
so that the minimum number of variables is generated firshcegwe introduce the
following minimization problem to select a suitable FAS.

Consider thaveighted connection graph weighted enhancement of the connection
graph defined as follows. L&t = (V| E) be the (unweighted) connection graph. The
corresponding weighted versid@i,, = (V, E, W) introduces a weight function :

E — NN, that associates with every edge= (M, M;) € E a weightW(e) =
]‘[UeMlHM,2 |D,| whereM; > M is the set of output variables df/; connected to
input variables of\/, (i.e., M; = My = {o € OM1 | 3i € IMz2 : (0,i) € X}).

Finding the optimal generator design amounts to solvingwedghted) minimum
FAS problem over the weighted connection graph. This probewell-known to be
NP-complete [10, 6], while it is solvable in polynomial tirfer planar graphs [7]. How-
ever, the connection graph of a modular system is not likellye significantly large,
hence it is acceptable to use exact algorithms that have strwase exponential run-
ning time. Indeed, one can solve the problem with a brutegfatgorithm which finds
the minimum FASMINFAS(G) for a weighted connection graghi = (V, E, V) in
time O(2/%1|V|?).

Example 6.For moduleMy in Figure 1, the weighted minimum FAS problem suggests
to choosg My, Ms) (or (M2, M3)) over (M3, M;) as FAS. Notice that, if ar¢m, n) is
chosen, one must start generating from moduylavhere the broken cycle is entered.

In fact, in the previous example we have shown that choo@ifig M,) involves gen-
erating variables for modules 5, then 3, then 4, whereassthgdM, M5) involves
generating variables for modules 2, then 4, then 6.

Fig. 3. Non-hierarchical nesting modubM, and its 4 SCCs (dotted boxes).

3.4 Non-Hierarchical Nesting Modules

In increasing order of complexity, let us now consider megstinodules that are non-
hierarchical. The connection graph of such modules mustrbedinalyzed at the top
level, in order to cluster its component flat modules into thasses. To this end, we
have to identify the strongly connected components of tmmeotion graph.

A strongly connected compond®CC) of a directed graph is a maximal sub-graph
such that for every pair;, v, Of its vertices there is a directed path framto v>. The
collection of all strongly connected components of a dedajraph form a partition
such that the “higher-level” graph where each SCC is repteseby a single node
is acyclic. The collection of SCCs of a gragh = (V, E') can be computed in time
O(|V] + |E|) [2, Sec. 22.5].

For a non-hierarchical nesting modulé = (I, O, n,n, C, X) letG = (V, E) be its
connection graph, and Iét= {51, S>, ..., S|s} be a partition of” such that(S;, E;)
with E; = {(v1,v2) € E | v1,v2 € S;} isa SCC foralll <i < |S|. Then, every SCC
(S, E;) belongs to exactly one of the following two categories:|&) = 1, that is the
SCCS; represents a single flat module; and [2)| > 1, that is the SCC; represents
a collection of (more than one) flat modules. We build the getoes for every module
in a SCC according to the following strategy:

1. If |S;| = 1 we just apply the techniques for flat modules that we preséntéhe
previous sections;

2. If |S;] > 1 we “flatten” the collection of corresponding modules asdoi.
Let S; C n with |S;] > 1, such that every € S; is a flat module. LeC' =
(I¢,0%,n% n%, C% X°) be a new composite module defined as follows. For
every composite modul€'(j) = (17,07, n?, C7, X7) with j € S;, we introduce
in C the set of primitive module$C’ (k) | k € 77} by adding: (1)n/ = |n|
to n%, (2) 7 to n¢, (3) the mappinggk — C7(k) | k € 77} to C¢, and (4)
the tuples{(o,i) € X’} to X¢. Also, for every primitiveC(j) with j € S; we
simply increaser’ by one, add the new identifigrto n“ and the new mapping

10

{j — C(j)} toC®. I andO® are defined accordingly &3, . I and{, g, O
respectively. FinallyC replaces all module&C(j) | j € S;} in the system.

In all, informally, we have removed the “wrapper” of everyngoosite module in
S; by merging its components directly into the top level(@f Now, C' is a flat
(composite) module, which can be analyzed through the tqake presented in
the previous sections.

Example 7.Consider non-hierarchical nesting modidig in Figure 3 (left). Its com-
ponentdVy, M3, My form a SCC with more than one node, which can be flattened into
moduleC in Mg (right). The SCC ofM;, are the singleton$M; }, {C}, {Ms}, hence
they can be analyzed according to the discussions in théguesection.

3.5 Hierarchical Modules

For a hierarchical modul&/ we can apply recursively the strategies discussed in the
previous sections. First, we build the connection graphirwhich represents the
structure of the system at the top level. By analyzing thapgras shown before, we
identify, for every node in the graph, a set of variables thatt be generated for its
lower-level components. Then, we recur on every node in thplg we consider the
corresponding modules in isolation from the rest, we builel ¢corresponding (lower-
level) connection graph, and further partition the vagabdccording to the discussed
techniques. In the end, we will have introduced a generatag\fery component at the
lowest level.

3.6 Choosing the Total Ordering of Generators

Let us now discuss how to choose a total ordering over thergtars. Consider a
directed acyclic weighted connection gra@h= (V, E, W) such that for every module
M e V we have defined a genera@)M). This setting is without loss of generality,
because if the graph is cyclic we choose a FRSs described in Section 3.3 and
consider the “cut” acyclic graptV, E \ F,W). Also, for composite module/ we
may have one generator for every componentiQfhowever, we first conside¥/ as an
aggregate component (§¢M) represents a collection of generators that we consider
atomic) and then recursively apply the enumeration teakntqM itself.

The acyclic grapltz defines the partial orddt C V' x V onits noded/. Through
a standard technique, we select a total ofder < C V' x V by repeatedly selecting a
pair M1, M5 € V of nodes such that/; and M, are not comparable ik and adding
either(M;, M) or (M, M;) to <. Pairs are selected according to tfeneration do-
main dimensio{GDD) heuristic. For a modul#/; we define?

[Lecr W(m) + 11 cring |IP=| if M;is a source node

gdd(M;) = {HweF+ W(r) — Hﬂerf W(r) otherwise

with I't = {(M;,v) € E} andI'~ = {(v,M;) € E} the sets of outgoing and
ingoing edges, respectively, ahth the set of input variables dff; that are generated.

5 A source node is a node without ingoing edges.

11

Then, we letM; < M, iff gdd(M;) < gdd(Ms). This corresponds to putting first
the generators corresponding to modules that “filter out”rtiost variables. Hence it
hopefully cuts down as soon as possible several possihlesfgtates to be considered
in the state-space exploration.

4 Examples and Experiments

We introduce a modular system whose behavior is formaligaddans of discrete-time
MTL formulas.

leaky leaksy
e ———

Reservoir; Reservoiry

level |- [0..max] drain, fill, levely|: [0..max]

Pipe

fill draing

T transfer

Control

Fig. 4. The Reservoir System.

The reservoir system description. The reservoir system is made of four primitive
modules: two reservoirs, a controller, and a pipe conngdtie two reservoirs (see
Figure 4, where the top “wrapper” module is not pictured fordicity).

Every reservoiReservoir; (i = 1, 2) stores some liquid, whose level is represented
at any time by variabléevel; : [0..M] whereM is a constant parameter. The value of
level; changes according to the behavior of the three Booleanblasgdrain;, leak;,
andfill;, representing fluid being drained out, leaking out of, anihdp@dded to the
reservoir, respectively. Correspondingly, we introdudliag rate fr; > 0, a draining
ratedr; < 0, and a leaking ratér; < 0, expressed in fluid units per time unit. Leaking
is completely nondeterministic, so it can happen at any,timmée the other two actions
are taken by th€ontrol unit. The behavior ofevel is formalized by formulas (1-2) in
Table 2.

The Pipe is responsible for transferring fluid froReservoir; to Reservoiry upon
receiving commanekans; it does so simply by draining fluid frofReservoir; and cor-
respondingly fillingReservoirs. In order for this to make sense, we implicitly assume
thatdr; = —frs. The behavior oPipe is formalized by formula (3) in Table 2.

The Control unit monitors the levels of the two reservoirs and takeastin order
to maintain both levels in the rangle M—1]. More precisely, the controller can perform
afill; on the firstReservoir, adrainy on the secon®eservoir, or it cantransfer fluid

12

from the first to the seconBeservoir through thePipe. The control policy can be de-
scribed as followsfill; is performed wheneveevel; goes below a minimum threshold
mingy,, and itis held untilevel; goes above the haMl/2; drain, is performed whenever
level, goes above a maximum threshabdx,y,,; finally, atransfer is decided whenever
level; is abovemaxyy, or levels is below theminyy,,. This behavior is formalized by
formulas (4-9) in Table 2.

at0: level; = M/2 @)
(Y (fill; = f Aleak; =1 Adrain; = d Alevel; = L))
Vf,l,d:[0..1],L:[0.M] : = 2)
level; = min(M, max(0, L + f - fr; + 1 - Ir; + d - dr;))
(trans = 1 = drain; = filla = 1) A (trans = 0 = drain; = filla = 0) 3)
at0: fill; = trans = draing =0 4)
level; < ming,, = fillb =1 5)
filh=1 = level; <M/2 (6)
Y(fill, =0) Afillhb =1 = U(fillL =1, level; > M/2) @
level; > max¢p, V levels < ming,, < trans=1 (8)
levelo > max¢hy < draing =1 9)
1<leveli; <M—-1 A 1<levela <M-1 (10)
level; = minghy = Fp.M/2-ming,](levell > M/2) (112)

Table 2. Formulas of the Reservoir System.

We verify that, under suitable choices for the parametbesfallowing two prop-
erties hold for the modular system: the level of both resesvie always in the range
[1.M — 1] (formula (10) in Table 2), and itvel; reaches minimum thresholdinyy,, it
grows back to the valukl/2 in no more tharM /2 — miny,, time units (formula (11)
in Table 2). For all formulas, except (1) and (4), we assumargticit quantification
over the whole temporal axis with thiew operator.

System verification. In order to evaluate the effectiveness of our approach we ver
ified the reservoir system using both the flat “vanilla” agmio — as presented in
[13] — and the modular approach of this paper. The model ferftat verification
can be automatically generated using the TRIO2ProMeLaslagor® In a nutshell,
TRIO2ProMela translates MTL (and TRIO) formulas in ProMehadels, the input
language of the Spin model-checker [9]. The generated Praviedels simulate alter-
nating automata, which are finite-state automata over tafoomputations, potentially
exponentially more concise variants of Buchi automatd.[IBe ProMeLa simulation

 TRIO2ProMeLa is available at http://home.dei.polimijtoleti/ TRIO2ProMeLa.htm, together
with the code used in the experiments.

13

accepts (or rejects) computations by analyzing the valwfithe current value of vari-
ables at each step, also taking in account the current hisfdhe computation. In the
flat approach, the modular structure of the system is igndredce computations are
generated by a unique global generator that proceeds dkleyistep by step, until
acceptance or rejection can be decided.

In the modular setting, we translated MTL formulas simifaak in the flat case
but we associated different ProMeLa processes to eachnsyatalule. Each process
is represented in ProMeLa usingoaoct ype instance and the order among them is
enforced through message passing, so that each processtgsranly the variables
needed at that point of the analysis.

Table 3 shows several test results obtained by running neddifRIO2ProMeLa
models of the reservoir system described above with the Syidel-checker. In all
tests we assumening,, = 5, maxi,, = M — 2,fry = 4,dr; = —fro = —2,1Ir; =
Iro = —1,dry = —2. For each test the table reports: whether a flat or modulaeimod
is used (F/M), the value of parametkf in the specification, the checked property,
the total ordering of modules according to which variablesgenerated, if some ad-
ditional modification are introduced in the model (to be dssed next), the number
of explored states and transitions (in millions), the usednmory (in MBytesoo means
“out of memory”), and the verification time (in seconds). Tésts have been performed
on a PC equipped with an AMD Athlon64 X2 Dual-Core Proces$ifi04, 2 GBytes
of RAM (roughly 1.7 Gb available), Kubuntu GNU/Linux (kelriz6.24), Spin 5.1.5
(using partial order reduction and memory compression).

The experiments show clearly that the reservoir systematdreanalyzed with the
flat approach, and taking into account the modular struétuneeded. The connection
graph of the reservoir system is cyclic and its FASs with aimirm number of arcs
aref| = {Ievell, Ievelg}, Fy = {fl”l, drainl, fl”g, draing}, F3 = {Ievell, drainl, fl”g,
levels }, andFy = {filly, trans, draina }. According to the notion of weighted connection
graph introduced beforehand, FASs includieg:!; andlevel, have the highest weight
and thus are likely to be inconvenient. Correspondinghy ttto best FASs aré; and
Fy, which yield the generation orderings, = Reservoiry, Reservoiry, Control, Pipe
andGy = Pipe, Reservoir, Reservoiry, Control, respectively. Among themG, is the
best one according to the weighted connection graph hestigxperiments confirm
that these two orderings yield the best performances; hewéy is slightly better
than the other orderingf. This is acceptable, given that the corresponding FASs have
a very similar weight. The chosen orderifig also allows us to scale nicely verification
parameteM up to a value of 31. In addition, th&, andG- orderings also correspond
to the lowest GDD values, where in particuGlr gets the best score in this case. This
gives support to the intuition that tiReservoir modules “filter out” more thaRipe and
hence they should come first in the ordering.

In addition to the modular technique, in the experimentatie also tinkered with
somead hocoptimizations. First, we noticed th&eservoir; andReservoiry use only
past values of the outputs provided Gyntrol andPipe. Hence, we avoided generating
inputs toReservoir; andReservoirs (when these modules come first in the ordering),
as their inputs are already provided by generation in oth&dtutes in previous steps.

" For symmetry, we fix the relative order between modulesiRl R..

14

This corresponds to optimizatiom) in Table 3. An additional consideration is that
Pipe only contains “definition” formulas, composed by present past modalities. So
the input values to be considered can be immediately nadaee/n only to the two
casesrans = drain; = fill, = 0 andtrans = drain; = fill, = 1. This corresponds
to optimization g) in Table 3. Optimization€) combines optimizationsa) and).
Finally, optimization ©) further extends the idea of optimizatior)(by noticing that
all formulas except (7) do not involve future modalities drahce the corresponding
variable generation can be done deterministically.

F/M M PROP GEN. ORDER NOTES MSTATES MTRANS. MEM. TIME
F 12 (10) 34.00 36.92 oo 165
F 12 (11) 34.00 36.92 oo 166
M 12 (10) PCRR: 11.34 12.03 632 75
M 12 (11) PCRR: 11.34 12.03 632 75
M 12 (10) PRR:C 181 1.95 94 1
M 12 (11) PRR:C 181 1.95 94 1D
M 12 (10) RR2CP 0.53 0.58 28 B
M 12 (11) RR2CP 0.53 0.58 28 B
M 12 (10) CPRR: 16.04 17.11 896 105
M 12 (11) CPRR: 16.04 17.11 896 103
M 20 (10) PRR:C 6.43 6.92 357 4
M 25 (10) PRR:C 13.31 1433 773 90
M 31 (10) PRR:C 29.42 31.68 1667 193
M 32 (10) PRR2C 29.43 31.70 oo 194
M 12 (10) RR2:CP A 0.05 0.06 3
M 12 (11) RR,CP A 0.05 0.06 3
M 12 (10) RR2:CP B 0.53 0.57 28 B
M 12 (11) RR,;CP B 0.53 0.57 28 B
M 12 (10) RR2:CP c 0.05 0.05 3
M 12 (11) RR,CP ¢ 0.05 0.05 3
M 100 (10) PRR2C c 2.11 229 110 1B
M 150 (10) PRR2C ¢ 3.12 339 172 21
M 12 (10) PRR2C D 0.13 0.16 7 |
M 12 (11) PRR:C D 0.13 0.16 7 |
M 100 (10) PRR2C D 0.05 0.05 3
M 150 (10) PRR:C D 0.07 0.07 4

Table 3. Experiments with the Reservoir System.

5 Conclusion

We showed how the information on the modular structure ofmusite systems can be
availed to increase the efficiency of the state-space exgpborin explicit-state linear-
time model-checking. We introduced heuristic techniques extract a total order-
ing among modules of a complex system according to its tagolBxperiments have
shown clearly very relevant performance enhancements whestate-space explo-
ration is done according to the technique. In particular sérification of the example
system has been made possible with limited resources.

Future work will follow four main directions. First, we ar@igg to implement our
exploration technique in the TRIO2ProMeLa translator @htdan currently handle flat
specifications only). Second, we will consider additiongtimization techniques that

15

can be useful in the modular case, such as those taking intmatinformation about
the modules’ semantics and their capability of “filteringt’ounproductive variable
values. Third, we plan to consider the problem of applying approach to systems
with heterogeneous behavioral specifications of modulesieh as different kinds of
automata and temporal logics — possibly considering amttifiad hocoptimizations
for significant special cases. Fourth, we will investigdteechniques similar to those
presented in this paper can be used effectively also with BR28ed model-checking
techniques.

Acknowledgementdie thank the anonymous reviewers for their useful remarks.

References

=

E. M. Clarke, O. Grumberg, and D. A. Pelédodel CheckingMIT Press, 2000.
. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stkitroduction to Algorithms MIT
Press, 2nd edition, 2001.
3. W. P. de Roever, H. Langmaack, and A. Pnueli, edit@smpositionality: The Significant
Difference volume 1536 o£ NCS 1998.
4. E. A. Emerson. Temporal and modal logic. In J. van Leeuwsiipr, Handbook of Theo-
retical Computer Scien¢eolume B, pages 996-1072. Elsevier Science, 1990.
5. C. A. Furia. A compositional world: a survey of recent wodn compositionality in formal
methods. Technical Report 2005.22, DEI, Politecnico diid, 2005.
6. M. R. Garey and D. S. Johnsoi€omputers and Intractability: A Guide to the Theory of
NP-CompletenessV.H. Freeman, 1979.
7. M. Grotschel, L. Lovasz, and A. Schrijvegeometric Algorithms and Combinatorial Opti-
mization Springer-Verlag, 1993.
8. D. Harel and A. Pnueli. On the development of reactiveesyst InLogics and Models of
Concurrent Systempages 477-498, 1985.
9. G.J. HolzmannThe SPIN Model Checker: Primer and Reference Man2a03.
10. R. M. Karp. Reducibility among combinatorial problents Proceedings of the Symposium
on Complexity of Computer Computatiopages 85-103, 1972.
11. O. Kupferman and M. Y. Vardi. An automata-theorteticrapph to modular model check-
ing. ACM TOPLAS$22(1):87-128, 2000.
12. O. Kupferman, M. Y. Vardi, and P. Wolper. Module checkihormation and Computatign
164(2):322—-344, 2001.
13. A. Morzenti, M. Pradella, P. San Pietro, and P. Spolefitddel-checking TRIO specifica-
tions in SPIN. INFME 2003 volume 2805 of NCS pages 542-561, 2003.
14. D. L. Parnas. On the criteria to be used in decomposirtgmsgsinto modulesCommunica-
tions of the ACM15(12):1053-1058, 1972.
15. M. Pradella, P. San Pietro, P. Spoletini, and A. MorzeRtactical model checking of LTL
with past. INATVA'03 pages 135-146, 2003.
16. P. San Pietro, A. Morzenti, and S. Morasca. Generati@xetution sequences for modular
time critical systemslEEE TSE 26(2):128-149, 2000.
17. P. Spoletini.Verification of Temporal Logic Specification via Model Chiagk PhD thesis,
DElI, Politecnico di Milano, May 2005.
18. W. Thomas. Automata on infinite objects. In J. van Leeywsditor,Handbook of Theoreti-
cal Computer Scienceolume B, pages 133-164. Elsevier Science, 1990.

N

16

