
What’s Decidable About Sequences??

Carlo A. Furia

Chair of Software Engineering, ETH Zurich
caf@inf.ethz.ch http://se.inf.ethz.ch/people/furia/

Abstract. We present a first-order theory of (finite) sequences with integer el-
ements, Presburger arithmetic, and regularity constraints, which can model sig-
nificant properties of data structures such as lists and queues. We give a deci-
sion procedure for the quantifier-free fragment, based on an encoding into the
first-order theory of concatenation; the procedure has PSPACE complexity. The
quantifier-free fragment of the theory of sequences can express properties such
as sortedness and injectivity, as well as Boolean combinations of periodic and
arithmetic facts relating the elements of the sequence and their positions (e.g.,
“for all even i’s, the element at position i has value i + 3 or 2i”). The result-
ing expressive power is orthogonal to that of the most expressive decidable log-
ics for arrays. Some examples demonstrate that the fragment is also suitable to
reason about sequence-manipulating programs within the standard framework of
axiomatic semantics.

1 Introduction

Verification is undecidable already for simple programs, but modern programming lan-
guages support a variety of sophisticated features that make it all the more complicated.
These advanced constructs — such as arrays, pointers, dynamic allocation of resources,
and object-oriented abstract data types — are needed because they raise the level of ab-
straction thus making programmers more productive and programs less defective. In an
attempt to keep the pace with the development of programming languages, verification
techniques have progressed rapidly over the years.

Further steady progress requires expressive program logics and powerful decision
procedures. In response to the evolution of modern programming languages, new decid-
able program logic fragments and combination techniques for different fragments have
mushroomed especially in recent years. Many of the most successful contributions have
focused on verifying relatively restricted aspects of a program’s behavior, for example
by decoupling pointer structure and functional properties in the formal analysis of a
dynamic data structure. This narrowing choice, partly deliberate and partly required by
the formidable difficulty of the various problems, is effective because different aspects
are often sufficiently decoupled that each of them can be analyzed in isolation with the
most appropriate, specific technique.

This paper contributes to the growing repertory of special program logics by explor-
ing the decidability of properties about sequences. Sequences of elements of homoge-
neous type can abstract fundamental features of data structures, such as the content of
a dynamically allocated list, a stack, a queue, or an array.
? Work partially supported by Hasler Stiftung, ManCom project, grant #2146.

We take a new angle on reasoning about sequences, based on the theory of concate-
nation: a first-order theory where variables are interpreted as words (or sequences) over
a finite alphabet and can be composed by concatenating them. Makanin’s algorithm
for solving word equations [14] implies the decidability of the quantifier-free fragment
of the theory of concatenation. Based on this, we introduce a first-order theory of se-
quences Tseq(Z) whose elements are integers. Section 3.3 presents a decision procedure
for the quantifier-free fragment of Tseq(Z), which encodes the validity problem into
the quantifier-free theory of concatenation. The decision procedure is in PSPACE; it is
known, however, that Makanin’s algorithm is reasonably efficient in practice [1].

The theory Tseq(Z) allows concatenating sequences to build new ones, and it in-
cludes Presburger arithmetic over elements. The resulting quantifier-free fragment has
significant expressiveness and can formalize sophisticated properties such as sorted-
ness, injectivity, and Boolean combinations of arithmetic facts relating elements and
their indices in statements such as “for all even i’s, the element with index i has value
i+3 or 2i” (see more examples in Section 3.2). It is remarkable that some of these prop-
erties are inexpressible in powerful decidable array logics such as those in [4,10,12,11].

On the other hand, Tseq(Z) forbids explicit indexed access to elements. This restric-
tion, which is required to have a decidable fragment, prevents the explicit modeling of
updatable memory operations such as “swap the first element with the element at index
i”, where i is a scalar program variable. It also differentiates Tseq(Z) from the theory of
arrays and extensions thereof (see Section 5), which can formalize such operations.

In summary, the theory of sequences Tseq(Z) provides a fresh angle on reasoning
“natively” about sequences of integers by means of an abstraction that is orthogonal to
most available approaches and can be practically useful (see examples in Section 4). To
our knowledge, the approach of the present paper is distinctly new. The absence of prior
work on decision procedures for theories of sequences prompted us to compare the ex-
pressiveness of Tseq(Z) against that of theories of arrays, which are probably the closest
fragments studied. However, the two theories are not meant as direct competitors, as
they pertain to partially overlapping, yet largely distinct, domains.

In order to assess the limits of our theory of sequences better, we also prove that
several natural extensions of the quantifier-free fragment of Tseq(Z) are undecidable.
Finally, we demonstrate reasoning about sequence-manipulating programs with anno-
tations written in the quantifier-free fragment of Tseq(Z): a couple of examples in Sec-
tion 4 illustrate the usage of Tseq(Z) formulas with the standard machinery of axiomatic
semantics and backward reasoning.

Remark. For space constraints, some details and proofs are deferred to [9].

2 The Theory of Concatenation

In the rest of the paper, we assume familiarity with the standard syntax and terminol-
ogy of first-order theories (e.g., [3]); in particular, we assume the standard abbreviations
and symbols of first-order theories with the following operator precedence: ¬,∧,∨,⇒,
⇔,∀ and ∃. FV (φ) denotes the set of free variables of a formula φ. With standard
terminology, a formula φ is a sentence iff it is closed iff FV (φ) = ∅. A set Q of

2

strings over {∃,∀} (usually given in the form of a regular expression) denotes the
Q-fragment of a first-order theory: the set of all formulas of the theory in the form
∂1v1∂2v2 · · · ∂nvn • ψ, where ∂1∂2 · · · ∂n ∈ Q, v1, v2, . . . , vn ∈ FV (ψ), and ψ is
quantifier-free. The universal and existential fragments are synonyms for the ∀∗- and
∃∗-fragment respectively. A fragment is decidable iff the validity problem is decidable
for its sentences. It is customary to define the validity and satisfiability problems for a
quantifier-free formula ψ as follows: ψ is valid iff the universal closure of ψ is valid,
and ψ is satisfiable iff the existential closure of ψ is valid. As a consequence of this
definition, the decidability of a quantifier-free fragment whose formulas are closed un-
der negation is tantamount to the decidability of the universal or existential fragments.
Correspondingly, in the paper we will allow some freedom in picking the terminology
that is most appropriate to the context.

Sequences and concatenation. Z denotes the set of integer numbers andN denotes the
set of nonnegative integers. Given a set A = {a, b, c, . . .} of constants, a sequence over
A is any word v = v(1)v(2) · · · v(n) for some n ∈ Nwhere v(i) ∈ A for all 1 ≤ i ≤ n.
The symbol ε denotes the empty sequence, for which n = 0. |v| = n denotes the length
of v. A∗ denotes the set of all finite sequences over A including ε 6∈ A.

It is also convenient to introduce the shorthand v(k1, k2) with k1, k2 ∈ Z to describe
subsequences of a given sequence v. Informally, for positive k1, k2, v(k1, k2) denotes
the subsequence starting at position k1 and ending at position k2, both inclusive. For
negative or null k1, k2, v(k1, k2) denotes instead the “tail” subsequence starting from
the |k1|-to-last element and ending at the |k2|-to-last element. Finally, for positive k1
and negative or null k2, v(k1, k2) denotes the subsequence starting at position k1 and
ending at the |k2|-to-last element. Formally, we have the following definition.

v(k1, k2) ,


v(k1)v(k1 + 1) · · · v(k2) 1 ≤ k1 ≤ k2 ≤ |v|
v(k1, |v|+ k2) k1 − |v| ≤ k2 < 1 ≤ k1
v(|v|+ k1, |v|+ k2) 1− |v| ≤ k1 ≤ k2 < 1

ε otherwise

For two sequences v1, v2 ∈ A∗, v1 ? v2 denotes their concatenation: the sequence
v1(1) · · · v1(|v1|)v2(1) · · · v2(|v2|). We will drop the concatenation symbol whenever
unambiguous. The structure 〈A∗, ?, ε〉 is also referred to as the free monoid with gener-
ators in A and neutral element ε. The size |A| is the rank of the free monoid and it can
be finite or infinite.

Decidability in the theory of concatenation. The theory of concatenation is the first-
order theory Tcat with signature

Σcat , { .=, ◦,R}

where .
= is the equality predicate,1 ◦ is the binary concatenation function and R ,

{R1,R2, . . .} is a set of unary (monadic) predicate symbols called regularity con-
straints. We sometimes write Ri(x) as x ∈ Ri and α 6 .= β abbreviates ¬(α .

= β).
1 We use the symbol .

= to distinguish it from the standard arithmetic equality symbol = used
later in the paper.

3

An interpretation of a formula in the theory of concatenation is a structure 〈A∗, ?, ε,
R, ev〉 where 〈A∗, ?, ε〉 is a free monoid, R = {R1,R2, . . .} is a collection of regular
subsets of A∗, and ev is a mapping from variables to values in A∗. The satisfaction
relation 〈A∗, ?, ε,R, ev〉 |= φ for formulas in Tcat is defined in a standard fashion with
the following assumptions: (1) any variable x takes the value ev(x) ∈ A∗; (2) the
concatenation x ◦ y of two variables x, y takes the value ev(x) ? ev(y); (3) for each
Ri ∈ R, the corresponding Ri ∈ R defines the set of sequences x ∈ Ri for which
Ri(x) holds (this also subsumes the usage of constants).

The following proposition summarizes some decidability results about fragments of
the theory of concatenation; they all are known results, or corollaries of them [9].

Proposition 1. 1. [14,7,17] The universal and existential fragments of the theory of
concatenation over free monoids with finite rank are decidable in PSPACE.

2. The following fragments of the theory of concatenation are undecidable.
(a) [8] The ∀∗∃∗ and ∃∗∀∗ fragments.
(b) [5] The extensions of the existential and universal fragments over the free

monoid {a, b}∗ with: (1) two length functions |x|a, |x|b where |x|p , {y ∈ p∗ |
y has the same number of p’s as x}; or (2) the function Sp(x) , |x|a ? |x|b.

3. [5] The following are not definable in the existential or universal fragments.
(a) The set S= , {anbn | n ∈ N}.
(b) The equal length predicate Elg(x, y) , |x| = |y|.

It is currently unknown whether the extension of the existential or universal frag-
ment of concatenation with Elg is decidable.

3 A Theory of Sequences

This section introduces a first-order theory of sequences (Section 3.1) with arithmetic,
demonstrates it on a few examples (Section 3.2), gives a decision procedure for its
universal fragment (Sections 3.3– 3.4), and shows that “natural” larger fragments are
undecidable (Section 3.5).

3.1 A Theory of Integer Sequences

We present an arithmetic theory of sequences whose elements are integers. It would be
possible to make the theory parametric with respect to the element type. Focusing on
integers, however, makes the presentation clearer and more concrete, with minimal loss
of generality as one can encode any theory definable in the integer arithmetic fragment.

Syntax. Properties of integers are expressed in Presburger arithmetic with signature:

ΣZ , {0, 1,+,−,=, <}

Then, our theory Tseq(Z) of sequences with integer values has signature:

Σseq(Z) , Σcat ∪ΣZ

4

Operator precedence is: ◦; + and −; .=,= and <, followed by logic connectives and
quantifiers with the previously defined precedence.

We will generally consider formulas in prenex normal form Q • ψ , where Q is a
quantifier prefix and ψ is quantifier-free written in the grammar:

seq ::= var | 0 | 1 | seq ◦ seq | seq + seq | seq − seq
fmla ::= seq

.
= seq | R(seq) | seq = seq | seq < seq

| ¬fmla | fmla ∨ fmla | fmla ∧ fmla | fmla⇒ fmla

with var ranging over variable names.

Semantics. An interpretation of a sentence of Tseq(Z) is a structure 〈Z∗, ?, ε,R,
ev〉 with the same meaning as in the theory of concatenation plus the following ad-
ditional assumptions about arithmetic.2

– The interpretation of a sequence v1v2 · · · ∈ Z∗ of integers in an integer sub-
expression (e.g., in a sum, in an integer equality or inequality) is the first integer in
the sequence v1, with the convention that the interpretation of the empty sequence
is 0.3

– Conversely, the interpretation of an integer v ∈ Z in a sequence sub-expression
(e.g., in a concatenation) is the singleton sequence v.

– Addition, subtraction, equality, and less than are interpreted accordingly.

For example, the expression (1 ◦ 0 ◦ 0 < 1 + 0 + 1) ∧ (1 ◦ 0 = 1 ◦ 1) evaluates to
true because the sequences 1 ◦ 0 ◦ 0, 1 ◦ 0, and 1 ◦ 1 are all interpreted as the integer 1.

Shorthands. We introduce several simplifying shorthands.

– A symbol for every constant k ∈ Z, defined as obvious.
– α 6= β, α ≤ β, α ≥ β, and α > β defined respectively as ¬(α = β), α < β ∨ α =
β, ¬(α < β), and α ≥ β ∧ α 6= β.

– Shorthands such as α ≤ β < γ or β ∈ [α, γ) for α ≤ β ∧ β < γ.
– Bounded length predicates such as |x| < k for a variable x and a constant k ∈ Z.
|x| < k abbreviates R<k(x), where R<k is a regularity constraint that stands for
{ε} ∪

⋃
0<i<k Z

i.
The definition of derived expressions such as k1 ≤ |x| < k2 is straightforward.

– Subsequence functions such as x(k1, k2) for a variable x and two constants k1, k2 ∈
Z with the intended semantics (see Section 2). We define these functions in the the-
ory Tseq(Z) by the following rewriting rules, defined on formulas in prenex normal
form with quantifier prefix Q:

Q • ψ[x(k1, k2)]

Q∀u, v, w •


κ1 ∧ x

.
= uvw ∧ |u| = k1 − 1 ∧ |v| = k2 − k1 + 1

∨ κ2 ∧ x
.
= uvw ∧ |u| = k1 − 1 ∧ |w| = −k2

∨ κ3 ∧ x
.
= uvw ∧ |v| = −k1 + k2 + 1 ∧ |w| = −k2

∨ ¬(κ1 ∨ κ2 ∨ κ3) ∧ u
.
= v

.
= w

.
= ε

⇒ ψ[v]

2 The presentation of the semantics of the theory is informal and implicit for brevity.
3 The results of Section 3.5 suggest that interpretations aggregating the values of multiple se-

quence elements are likely to be undecidable.

5

where κ1 , 1 ≤ k1 ≤ k2 ≤ |x|, κ2 , k1 − |x| ≤ k2 < 1 ≤ k1, κ3 , 1 − |x| ≤
k1 ≤ k2 < 1.

– fst(x) and lst(x) for the first x(1, 1) and last element x(0, 0) of x, respectively.

3.2 Examples

A few examples demonstrate the expressiveness of the universal fragment of Tseq(Z).
1. Equality: sequences u and v are equal.

u
.
= v (1)

2. Bounded equality: sequences u and v are equal in the constant interval [l, u] for
l, u ∈ Z.

u(l, u)
.
= v(l, u) (2)

3. Boundedness: no element in sequence u is greater than value v.

∀h, t • u
.
= ht ∧ |t| > 0 ⇒ t ≤ v (3)

4. Sortedness: sequence u is sorted (strictly increasing).

∀h,m, t • u
.
= hmt ∧ |m| = 1 ∧ |t| > 0 ⇒ m < t (4)

5. Injectivity: u has no repeated elements.

∀h, v1,m, v2, t • u
.
= hv1mv2t ∧ |v1| = 1 ∧ |v2| = 1⇒ v1 6= v2 (5)

6. Partitioning: sequence u is partitioned at constant position k > 0.

∀h1, t1, h2, t2 •

u(1, k)
.
= h1t1

∧ u(k + 1, 0)
.
= h2t2

∧ |t1| > 0 ∧ |t2| > 0

⇒ t1 < t2 (6)

7. Membership: constant element k ∈ Z occurs in sequence u.

u ∈ (Z∗kZ∗) (7)

8. Non-membership: no element in sequence u has value v.

∀h, t • u
.
= ht ∧ |t| > 0 ⇒ t 6= v (8)

9. Periodicity: in non-empty sequence u, elements on even positions have value 0 and
elements on odd positions have value 1 (notice that lst(h) = 0 if h is empty).

∀h, t • u
.
= ht ∧ |t| > 0⇒

(
lst(h) = 1
⇒ t = 0

)
∧
(
lst(h) = 0
⇒ t = 1

)
(9)

10. Comparison between indices and values: for every index i, element at position i in
the non-empty sequence u has value i+ 3.

fst(u) = 1+3∧∀h, t, v • u
.
= ht∧|h| > 0∧|t| > 0∧ lst(h) = v ⇒ fst(t) = v+1

(10)
11. Disjunction of value constraints: for every pair of positions i < j in the sequence

u, either u(i, i) ≤ u(j, j) or u(i, i) ≥ 2u(j, j).

∀h, v1,m, v2, t • u
.
= hv1mv2t ∧ |v1| > 0 ∧ |v2| > 0⇒ v1 ≤ v2 ∨ v1 ≥ v2 + v2

(11)

6

Comparison with theories of arrays. Properties such as strict sortedness (4), periodic-
ity (9), and comparisons between indices and values (10) are inexpressible in the array
logic of Bradley et al. [4]. The latter is inexpressible also in the logic of Ghilardi et
al. [10] because Presburger arithmetic is restricted to indices. Properties such as (11)
are inexpressible both in the SIL array logic of [11] — because quantification on mul-
tiple array indices is disallowed — and in the related LIA logic of [12] — because
disjunctions of comparisons of array elements are disallowed. Extensions of each of
these logics to accommodate the required features would be undecidable.

Conversely, properties such as permutation, bounded equality for an interval speci-
fied by indices, length constraints for a variable value, membership for a variable value,
and the subsequence relation, are inexpressible in the universal fragment of Tseq(Z).
Membership and the subsequence relation are expressible in the dual existential frag-
ment of Tseq(Z), while the other properties seem to entail undecidability of the corre-
sponding Tseq(Z) fragment (see Section 3.5). Bounded equality, length constraints, and
membership, on the other hand, are expressible in all the logics of [4,10,11,12], and [10]
outlines a decidable extension which supports the subsequence relation (see Section 5).

3.3 Deciding Properties of Integer Sequences

This section presents a decision procedureDseq(Z) for the universal fragment of Tseq(Z).
The procedure transforms any universal Tseq(Z) formula into an equi-satisfiable univer-
sal formula in the theory of concatenation over the free monoid {a, b, c, d}∗. The basic
idea is to encode integers as sequences over the four symbols {a, b, c, d}: the sequence
acbk1a encodes a nonnegative integer k1, while the sequence adb−k2a encodes a neg-
ative integer k2. Suitable rewrite rules encode all quantifier-free Presburger arithmetic
in accordance with this convention. Subsection 3.4 illustrates the correctness and com-
plexity of Dseq(Z).

Consider a universal formula of Tseq(Z) in prenex normal form:

∀x1, . . . , xv • ψ (12)

where ψ is quantifier-free. Modify (12) by application of the following steps.

1. Introduce fresh variables to normalize formulas into the following form:

fmla ::= var
.
= var | var .

= var ◦ var | R(var) | var = 0 | var = 1

| var = var | var = var + var | var = var − var | var < var

| ¬fmla | fmla ∨ fmla | fmla ∧ fmla | fmla⇒ fmla

Clearly, we can achieve this by applying exhaustively rewrite rules that operate on
ψ such as:

ψ[x ◦ y]
e
.
= x ◦ y ⇒ ψ[e]

ψ[x+ y]

f = x+ y ⇒ ψ[f]

for fresh variables e, f .

7

2. For each variable xi ∈ FV (ψ) = {x1, . . . , xv}, introduce the fresh variables
hi, ti, si,mi (for head, tail, sign, modulus) and rewrite ψ as:

∧
1≤i≤v



xi

.
= hiti

∧ hi
.
= asimia

∧
(
(si ∈ {c} ∧mi ∈ b∗)
∨ (si ∈ {d} ∧mi ∈ b+)

)
∧ ti ∈ (acb∗a ∪ adb+a)∗

 ∨

xi

.
= ε

∧ hi
.
= asimia

∧ si
.
= c

∧mi
.
= ε

∧ ti
.
= ε


⇒ ψ

3. Apply the following rules exhaustively to remove arithmetic equalities:

ψ[xi = xj]

ψ[hi
.
= hj]

ψ[xi = 0]

ψ[hi ∈ 0]

ψ[xi = 1]

ψ[hi ∈ 1]

4. Apply the following rule exhaustively to remove differences:

ψ[xk = xi − xj]
ψ[xi = xk + xj]

5. Apply the following rule exhaustively to remove comparisons:

ψ[xi < xj]

mi
.
= mj

∨ mi
.
= mjp

∨ mj
.
= mip

⇒ ψ


si

.
= d ∧ sj

.
= c

∨
si

.
= sj

.
= c ∧mj

.
= mip

∨
si

.
= sj

.
= d ∧mi

.
= mjp


for fresh p ∈ b+.

6. Apply the following rule exhaustively to remove sums:

ψ[xk = xi + xj]

mi
.
= mj

∨ mi
.
= mjp

∨ mj
.
= mip

⇒ ψ



si
.
= sj ∧ xk

.
= asimimja
∨

si 6
.
= sj ∧mi

.
= mj ∧ xk

.
= aca

∨
si 6

.
= sj ∧mi

.
= mjp ∧ xk

.
= asipa

∨
si 6

.
= sj ∧mj

.
= mip ∧ xk

.
= asjpa


for fresh p ∈ b+.

7. Modify the meaning of regularity constraints as follows: let Ri be defined by a
regular expression with constants in Z. Substitute every occurrence of a nonnega-
tive constant k ∈ Z by acbka; every occurrence of a negative constant k ∈ Z by
adb−ka; every occurrence of set Z by acb∗a ∪ adb+a.

The resulting formula is again in form (12) where ψ is now a quantifier-free formula
in the theory of concatenation over {a, b, c, d}∗; its validity is decidable by Proposi-
tion 1.

8

3.4 Correctness and Complexity

Let us sketch the correctness argument for the decision procedureDseq(Z), which shows
that the transformed formula is equi-satisfiable with the original one.

The justification for step 1 is straightforward. The following steps introduce a series
of substitutions to eliminate arithmetic by reducing it to equations over the theory of
concatenation with the unary encoding of integers defined above.

Step 2 requires that any variable xi is a sequence of the form (acb∗a∪adb+a)∗ and
introduces fresh variables to denote significant parts of the sequence: hi aliases the first
element of the sequence which is further split into its sign si (c for nonnegative and d
for negative) and its absolute valuemi encoded as a unary string in b∗. The second term
of the disjunction deals with the case of xi being ε, which has the same encoding as 0.

The following steps replace elements of the signature of Presburger arithmetic by
rewriting them as equations over sequences with the given encoding. Step 3 reduces the
arithmetic equality of two sequences of integers to equivalence of the sequences encod-
ing their first elements. Step 4 rewrites equations involving differences with equations
involving sums.

Step 5 reduces arithmetic comparisons of two sequences of integers to a case dis-
cussion over the sequences hi, hj encoding their first elements. Let p be a sequence in
b+ encoding the difference between the absolute values corresponding to hi and hj ;
obviously such a p always exists unless the absolute values are equal. Then, hi encodes
an integer strictly less than hj iff one of the following holds: (1) hi is a negative value
and hj is a nonnegative one; (2) both hi and hj are nonnegative values and the sequence
of b’s in hj is longer than the sequence of b’s in hi; or (3) both hi and hj are negative
values and the sequence of b’s in hi is longer than the sequence of b’s in hj .

Step 6 reduces the comparison between the value of a sum of two variables and a
third variable to an analysis of the three sequences hi, hj , hk encoding the first elements
of the three variables. As in step 6, the unary sequence p encodes the difference between
the absolute values corresponding to hi and hj . Then, hk encodes the sum of the values
encoded by hi and hj iff one of the following holds: (1) hi and hj have the same sign
and hk contains a sequence of b’s which adds up the sequences of b’s of hi and hj ,
still with the same sign; (2) hi and hj have opposite sign but same absolute value, so
hk must encode 0; (3) hi and hj have opposite sign and the absolute value of hi is
greater than the absolute value of hj , so hk has the same sign as hi and the difference
of absolute values as its absolute value; or (4) hi and hj have opposite sign and the
absolute value of hj is greater than the absolute value of hi, so hk has the same sign as
hj and the difference of absolute values as its absolute value.

Finally, step 7 details how to translate the interpretation of the regularity constraints
over Z into the corresponding regularity constraints over {a, b, c, d} with the given
integer encoding.

It is not difficult to see that all rewriting steps in the decision procedure Dseq(Z)

increase the size of ψ at most quadratically (this accounts for fresh variables as well).
Hence, the PSPACE complexity of the universal fragment of the theory of concatenation
(Proposition 1) carries over to Dseq(Z).

Theorem 1. The universal fragment of Tseq(Z) is decidable in PSPACE with the deci-
sion procedure Dseq(Z).

9

3.5 Undecidable Extensions

Theorem 2. The following extensions of the ∀∗-fragment of Tseq(Z) are undecidable.

1. The ∀∗∃∗ and ∃∗∀∗ fragments.
2. For any pair of integer constants k1, k2, the extension with the two length functions
|x|k1 , |x|k2 counting the number of occurrences of k1 and k2 in x.

3. The extension with an equal length predicate Elg(x, y) , |x| = |y|.
4. The extension with a sum function σ(x) ,

∑|x|
i=1 x(i, i).

Proof. 1. Sentences with one quantifier alternation are undecidable already for the
theory of concatenation without arithmetic and over a monoid of finite rank (Propo-
sition 1). Notice that the set of sentences that are expressible both in the ∀∗∃∗ and
in the ∃∗∀∗ fragment is decidable [18, Th. 4.4]; however, this set lacks a simple
syntactic characterization.

2. Corollary of Proposition 1.
3. We encode the universal theory of Π = 〈N, 0, 1,+, π〉— where π(x, y) , x2y —

in the universal fragment of Tseq(Z) extended by the Elg predicate; undecidability
follows from the undecidability of the existential and universal theories of Π [5,
Corollary 5]. All we have to do is showing that π(x, y) = p is universally definable
in Tseq(Z) with Elg. To this end, define ly as a sequence that begins with value y,
ends with value 1, and where every element is the successor of the following.

∀h, t • fst(ly) = y ∧ lst(ly) = 1 ∧ ly
.
= ht ∧ |h| > 0 ∧ |t| > 0⇒ lst(h) = t+ 1

As a result ly is in the form y, y − 1, . . . , 1 and hence has length y.4 Then, π(x, y)
is universally definable as the sequence p with the same length as ly , whose last
element is x, and where every element is obtained by doubling the value of the
element that follows:

∀g, u • Elg(p, ly) ∧ lst(p) = x ∧ p .
= gu ∧ |g| > 0 ∧ |u| > 0⇒ lst(g) = u+ u

Hence p has the form 2yx, 2y−1x, . . . , 22x, 2x, x which encodes the desired value
x2y in Tseq(Z). (Notice that the two universal definitions of ly and p can be com-
bined into a single universal definition by conjoining the definition of p to the con-
sequent in the definition of ly).

4. For any sequence x over {0, 1} define Sp(x) = y as y ∈ 0∗1∗ ∧ σ(y) = σ(x).
Then, Proposition 1 implies undecidability because this extension of Tseq(Z) can
define universal sentences over the free monoid {a, b}∗ with the function Sp. ut

The decidability of the following is instead currently unknown: the extension of the
universal fragment with a function x ⊕ 1 defined as the sequence x(1) + 1, x(2) +
1, . . . , x(|x|) + 1. The fragment allows the definition of the set S={0n1n | n ∈ N} as
the sequences x such that x ∈ 0∗1∗ ∧∀u, v • x .

= uv∧u ∈ 0∗ ∧ v ∈ 1∗ ⇒ u⊕ 1
.
= v.

This is inexpressible in the universal fragment of the theory of concatenation, but the
decidability of the resulting fragment is currently unknown (see Proposition 1).

4 This technique would allow the definition of the length function |x| and full index arithmetic.

10

1 merge sort (a: ARRAY): ARRAY
2 local l , r : ARRAY
3 do
4 if |a| ≤ 1 then
5 { sorted (a) }
6 Result := a
7 else
8 l , r := a [1:|a |/2] , a[|a|/2+1: |a|]
9 { l ∗ r = a }

10 l , r := merge sort (l) , merge sort (r)
11 { sorted (l) ∧ sorted(r) }
12 from Result := ε
13 { invariant sorted (Result) ∧ sorted(l) ∧ sorted(r) ∧
14 lst(Result)≤ fst(l) ∧ lst(Result)≤ fst(r) }
15 until | l | = 0 ∨ |r| = 0
16 loop
17 if l . first > r. first then
18 Result := Result ∗ r. first ; r := r . rest
19 else
20 Result := Result ∗ l. first ; l := l . rest
21 end
22 end
23 if | l | > 0 then
24 { |r| = 0 } Result := Result ∗ l
25 else
26 { | l | = 0 } Result := Result ∗ r
27 end
28 { ensure sorted (Result) }

1 reverse (a: LIST): LIST
2 local v : INTEGER ; s: STACK
3 do
4 from s := ε
5 { invariant s ◦ a = old a }
6 until a = ε
7 loop
8 s .push (a . first)
9 a := a . rest

10 end
11 from Result := ε
12 { invariant
13 s ◦ ResultR = old a }
14 until s = ε
15 loop
16 v := s . top
17 s .pop ; Result . extend (v)
18 end
19 { ensure ResultR = old a}

Table 1. Annotated Mergesort (left) and Array Reversal (right).

4 Verifying Sequence-Manipulating Programs

This section outlines a couple of examples that use formulas in the theory Tseq(Z) to
reason about sequence-manipulating programs. An implementation of the decision pro-
cedure Dseq(Z) is needed to tackle more extensive examples; it belongs to future work.
The examples are in Eiffel-like pseudo-code [15]; it is not difficult to detail an axiomatic
semantics and a backward substitution calculus, using the universal fragment of Tseq(Z),
for the portions of this language employed in the examples.

Mergesort. Consider a straightforward recursive implementation of the Mergesort al-
gorithm; Table 1 (left) shows an annotated version, where ∗ denotes the concatenation
operator in the programming language (whose semantics is captured by the correspond-
ing logic operator ◦). The annotations specify that the routine produces a sorted array,
where predicate sorted(u) is defined as (cmp. (4)):

sorted(u) , ∀h,m, t • u
.
= hmt ∧ |m| > 0 ∧ |t| > 0⇒ m ≤ t

It is impossible to express in Tseq(Z) another component of the full functional specifi-
cation: the output is a permutation of the input. This condition is inexpressible in most
of the expressive decidable extensions of the theory of arrays that are currently known,
such as [4,11] (see also Section 5). Complementary automated verification techniques
— using different abstractions such as the multiset [16] — can, however, verify this
orthogonal aspect.

11

We must also abstract away the precise splitting of array a into two halves in line
8. The way in which a is partitioned into l and r is however irrelevant as far as correct-
ness is concerned (it only influences the complexity of the algorithm), hence we can
simply over-approximate the instruction on line 8 by a nondeterministic splitting in two
continuous non-empty parts.

From the annotated program, we can generate verification conditions by standard
backward reasoning. Universal sentences of Tseq(Z) can express the verification con-
ditions, hence the verification process can be automated. Let us see an example on
the non-trivial part of the process, namely checking that the formula on lines 13–14 is
indeed an inductive invariant. Consider the “then” branch on line 18. Backward substi-
tution of the invariant yields:

sorted(Result ∗ fst(r)) ∧ sorted(l) ∧ sorted(r(2, 0)) ∧
lst(Result ∗ fst(r)) ≤ fst(l) ∧ lst(Result ∗ fst(r)) ≤ fst(r(2, 0)) (13)

This condition must be discharged by the corresponding loop invariant hypothesis:

fst(l) > fst(r) ∧ sorted(Result) ∧ sorted(l) ∧ sorted(r) ∧ (14)
lst(Result) ≤ fst(l) ∧ lst(Result) ≤ fst(r) ∧ |l| 6= 0 ∧ |r| 6= 0

Checking that (14) entails (13) discharges the corresponding verification condition. El-
ements of this condition can be encoded in the universal fragment of Tseq(Z) and proven
using the decision procedure of Section 3.3; for instance, the fact that lst(Result) ≤
fst(l), |l| 6= 0, |r| 6= 0, and fst(l) > fst(r) imply lst(Result ∗ fst(r)) ≤ fst(l) corre-
sponds to the validity of (all free variables are implicitly universally quantified):

r
.
= hrmrtr ∧ |hr| = 1 ∧ |r| 6= 0
∧ l

.
= hlmltl ∧ |hl| = 1 ∧ |l| 6= 0

∧ Result ◦ hr
.
= hmt ∧ |t| = 1

∧ hl > hr

⇒ t ≤ hl

Reversal. In Table 1 (right), a program reverses a sequence of integers, given as a list
a, using a stack s. The queries “first” and “rest” respectively return the first element in
a list and a copy of the list without its first element, and the command “extend” adds an
element to the right of a list; the query “top” and the commands “pop” and “push” for
a stack have the usual semantics. In the annotations, s is modeled by a sequence whose
first element is the bottom of the stack; the expression old a denotes the value of a
upon entering the routine.

The superscript R denotes the reversal of a sequence. We do not know if the exten-
sion of Tseq(Z) by a reversal function is decidable. However, the following two simple
update axioms are sufficient to handle any program which builds the reverse uR of a
sequence u starting from an empty sequence and adding one element at a time:

uR = ε ⇔ u = ε |x| = 1 ⇒ (ux)R = xuR

Consider, for instance, the verification condition that checks if the invariant of the
second loop (lines 11–18) is indeed inductive:

s ◦ResultR = old a ∧ s 6= ε ⇒ s(1,−1) ◦ (Result ◦ s(0, 0))R = old a

12

After rewriting (Result ◦ s(0, 0))R into s(0, 0) ◦ResultR the implication is straight-
forward to check for validity.

5 Related Work

A review of the staggering amount of work on decision procedures for theories of com-
plex data types (and integrations thereof) is beyond the scope of this paper; for a partial
account see [9,19,13]. In this section, we focus on a few approaches that are most simi-
lar to ours and in particular which yield decidable logics that can be compared directly
to our theory of sequences (see Section 3.2). The absence of previous work on “direct”
approaches to theories of sequences makes the many work on decidable extensions of
the theory of arrays the closest to ours in expressive power. As discussed in Section 1,
however, our theory of sequences is not meant as a replacement to the theories of arrays,
but rather as a complement to them in different domains.

Bradley et al. [4] develop the array property fragment, a decidable subset of the
∃∗∀∗ fragment of the theory of arrays. An array property is a formula of the form
∃∗∀∗ • ι⇒ ν, where the universal quantification is restricted to index variables, ι is a
guard on index variables with arithmetic (restricted to existentially quantified variables),
and ν is a constraint on array values without arithmetic or nested reads, and where no
universally quantified index variable is used to select an element that is written to. The
array property fragment is decidable with a decision procedure that eliminates universal
quantification on index variables by reducing it to conjunctions on a suitable finite set of
index values. Extensions of the array property fragment that relax any of the restrictions
on the form of array properties are undecidable. Bradley et al. also show how to adapt
their theory of arrays to reason about maps.

Ghilardi et al. [10] develop “semantic” techniques to integrate decision procedures
into a decidable extension of the theory of arrays. Their ADP theory merges the quan-
tifier-free extensional theory of arrays with dimension and Presburger arithmetic over
indices into a decidable logic. Two extensions of the ADP theory are still decidable:
one with a unary predicate that determines if an array is injective (i.e., it has no repeated
elements); and one with a function that returns the domain of an array (i.e., the set of
indices that correspond to definite values). Ghilardi et al. suggest that these extensions
might be the basis for automated reasoning on Separation Logic models. The frame-
work of [10] also supports other decidable extensions, such as the prefix, and sorting
predicates, as well as the map combinator also discussed in [6].

De Moura and Bjørner [6] introduce combinatory array logic, a decidable extension
of the quantifier-free extensional theory of arrays with the map and constant-value com-
binators (i.e., array functors). The constant-value combinator defines an array with all
values equal to a constant; the map combinator applies a k-ary function to the elements
at position i in k arrays a1, . . . , ak. De Moura and Bjørner define a decision procedure
for their combinatory array logic, which is implemented in the Z3 SMT solver.

Habermehl et al. introduce powerful logics to reason about arrays with integer
values [12,11,2]; unlike most related work, the decidability of their logic relies on
automata-theoretic techniques for a special class of counter automata. More precisely,
[12] defines the Logic of Integer Arrays LIA, whose formulas are in the ∃∗∀∗ frag-

13

ment and allow Presburger arithmetic on existentially quantified variables, difference
and modulo constraints on index variables, and difference constraints on array values.
Forbidding disjunctions of difference constraints on array values is necessary to ensure
decidability. The resulting fragment is quite expressive, and in particular it includes
practically useful formulas that are inexpressible in other decidable expressive frag-
ments such as [4]. The companion work [11] introduces the Single Index Logic SIL,
consisting of existentially quantified Boolean combinations of formulas of the form
∀∗ • ι ⇒ ν, where the universal quantification is restricted to index variables, ι is a
positive Boolean combination of bound and modulo constraints on index variables, and
ν is a conjunction of difference constraints on array values. Again, the restrictions on
quantifier alternations and Boolean combinations are tight in that relaxing one of them
leads to undecidability. The expressiveness of SIL is very close to that of LIA, and the
two logics can be considered two variants of the same basic kernel. The other work [2]
shows how to use SIL to annotate and reason automatically about array-manipulating
programs; the tight correspondence between SIL and a class of counter automata al-
lows the automatic generation of loop invariants and hence the automation of the full
verification process.

6 Future Work

Future work will investigate the decidability of the universal fragment of Tseq(Z) ex-
tended with “weak” predicates or functions that slightly increase its expressiveness
(such as that outlined at the end of Section 3.5). We will study to what extent the deci-
sion procedure for the universal fragment of Tseq(Z) can be integrated with other decid-
able logic fragments (and possibly with the dual existential fragment). We will investi-
gate how to automate the generation of inductive invariants for sequence-manipulating
programs by leveraging the decidability of the universal fragment of Tseq(Z). Finally, we
will implement the decision procedure, integrate it within a verification environment,
and assess its empirical effectiveness on real programs.

Acknowledgements. Thanks to Nadia Polikarpova and Stephan van Staden for com-
ments on a draft of this paper, and to the anonymous reviewers for their remarks.

References

1. Abdulrab, H., Pécuchet, J.P.: Solving word equations. Journal of Symbolic Computation
8(5), 499–521 (1989)

2. Bozga, M., Habermehl, P., Iosif, R., Konecný, F., Vojnar, T.: Automatic verification of integer
array programs. In: Proceedings of the 21st International Conference on Computer Aided
Verification (CAV’09). Lecture Notes in Computer Science, vol. 5643, pp. 157–172. Springer
(2009)

3. Bradley, A.R., Manna, Z.: The Calculus of Computation. Springer (2007)
4. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Proceedings of

the 7th International Conference on Verification, Model Checking, and Abstract Interpreta-
tion (VMCAI’06). Lecture Notes in Computer Science, vol. 3855, pp. 427–442. Springer
(2006)

14

5. Büchi, J.R., Senger, S.: Definability in the existential theory of concatenation and unde-
cidable extensions of this theory. Zeitschrift fur Mathematische Logik und Grundlagen der
Mathematik 34, 337–342 (1988)

6. de Moura, L., Bjørner, N.: Generalized, efficient array decision procedures. In: Proceedings
of 9th Conference on Formal Methods in Computer Aided Design (FMCAD’09). pp. 45–52
(2009)

7. Diekert, V.: Makanin’s algorithm. In: Lothaire, M. (ed.) Algebraic Combinatorics on Words.
Cambridge University Press (2002)

8. Durnev, V.G.: Unsolvability of the positive ∀∃3-theory of a free semi-group. Sibirskiı̆
Matematicheskiı̆ Zhurnal 36(5), 1067–1080 (1995)

9. Furia, C.A.: What’s decidable about sequences? http://arxiv.org/abs/1001.2100 (January
2010)

10. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Decision procedures for extensions of the
theory of arrays. Annals of Mathematics and Artificial Intelligence 50(3-4), 231–254 (2007)

11. Habermehl, P., Iosif, R., Vojnar, T.: A logic of singly indexed arrays. In: Proceedings of
the 15th International Conference on Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR’08). Lecture Notes in Computer Science, vol. 5330, pp. 558–573. Springer
(2008)

12. Habermehl, P., Iosif, R., Vojnar, T.: What else is decidable about integer arrays? In: Proceed-
ings of the 11th International Conference on Foundations of Software Science and Com-
putational Structures (FOSSACS’08). Lecture Notes in Computer Science, vol. 4962, pp.
474–489. Springer (2008)

13. Kuncak, V., Piskac, R., Suter, P., Wies, T.: Building a calculus of data structures. In: Pro-
ceedings of the 11th International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI’10). Lecture Notes in Computer Science, Springer (2010)

14. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Rossiı̆skaya
Akademiya Nauk. Matematicheskiı̆ Sbornik (Translated in Sbornik Mathematics) 103(2),
147–236 (1977)

15. Meyer, B.: Object-oriented software construction. Prentice Hall, 2nd edn. (1997)
16. Piskac, R., Kuncak, V.: Decision procedures for multisets with cardinality constraints. In:

Proceedings of the 9th International Conference on Verification, Model Checking, and Ab-
stract Interpretation (VMCAI’08). Lecture Notes in Computer Science, vol. 4905, pp. 218–
232. Springer (2008)

17. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. Journal of the
ACM 51(3), 483–496 (2004)

18. Seibert, S.: Quantifier hierarchies over word relations. In: Proceedings of the 5th Workshop
on Computer Science Logic (CSL’91). Lecture Notes in Computer Science, vol. 626, pp.
329–352. Springer (1992)

19. Zee, K., Kuncak, V., Rinard, M.C.: Full functional verification of linked data structures. In:
Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language Design
and Implementation (PLDI’08). pp. 349–361. ACM (2008)

15

	What's Decidable About Sequences?
	Carlo A. Furia

