
A Verifier for Functional Properties
of Sequence-Manipulating Programs

Carlo A. Furia

ETH Zurich, Switzerland
caf@inf.ethz.ch

Abstract. Many programs operate on data structures whose models are
sequences, such as arrays, lists, and queues. When specifying and verifying func-
tional properties of such programs, it is convenient to use an assertion language
and a reasoning engine that incorporate sequences natively. This paper presents
qfis, a program verifier geared to sequence-manipulating programs. qfis is a
command-line tool that inputs annotated programs, generates the verification con-
ditions that establish their correctness, tries to discharge them by calls to the SMT-
solver CVC3, and reports the outcome back to the user. qfis can be used directly
or as a back-end of more complex programming languages.

1 Overview

Many programs use data structures whose functional properties are expressible in terms
of sequences of values from a certain domain. For example, lists, queues, and stacks are
all modeled by sequences accessed according to specific patterns. To specify and reason
about such programs, it is convenient to use first-order languages that support sequences
natively, and that are amenable to automated reasoning.

In previous work [2], we introduced a first-order theory of integer sequences Tseq(Z)
whose quantifier-free fragment is decidable. Tseq(Z) also includes Presburger arithmetic
on sequence elements, and it is sufficiently expressive to specify several functional
properties of sequence-manipulating programs. The present paper describes qfis, an
automated verifier for programs annotated with Tseq(Z) formulas. qfis inputs programs
written in a simple imperative Algol-like procedural language, supporting integers and
sequences as primitive types. Each routine may include a functional specification in the
form of pre- and postcondition, written in a logic language including native functions
and predicates on sequences—such as the concatenation and length functions.

The overall usage of qfis is similar to that of general-purpose program verifiers such
as Dafny [3] or Why [4]. First, the user writes the program as a collection of routines
with pre- and postconditions. Whenever useful, she also provides a collection of logic
axioms (also expressed in the theory of integer sequences Tseq(Z)) that define the se-
mantics of predicates mentioned in the specification. For example, when proving the
correctness of a sorting algorithm, it is customary to introduce a predicate sorted?(X)
with the expected meaning. When called on the input file, qfis generates the verification
conditions (VC): a set of first-order formulas whose validity entails the correctness of
the program with respect to its specification. qfis encodes the VC in the input language

of the SMT-solver CVC3 [1], and calls the solver to discharge the VC. Then, qfis fil-
ters back CVC3’s output and reports the outcome to the user. In case of unsuccessful
verification, qfis points to specific annotations in the input program that could not be
verified. Figure 1 shows a screenshot of qfis, with the input program displayed in the
editor on the left, and the verifier’s output in the shell on the right.

qfis is written in Eiffel, distributed under GPL, and available for download at:
http://se.inf.ethz.ch/people/furia/software/qfis.html

The download page includes pre-compiled binaries for Linux; the source code for com-
pilation; a user manual with installation instructions and a tutorial examples; a demo
video; a collection of annotated example programs; and a syntax-highlighting GTK
source-view specification of its input language (used in Figure 1).

Fig. 1. qfis verifying routine tail.

2 Using qfis

qfis’s input language features sequences as a primitive type; unlike other verifiers that
also support sequence types (e.g. Dafny [3]), qfis’s sequences are usable in both speci-
fication and imperative constructs.

2.1 Input Language

qfis inputs text files containing a collection of routines (functions and procedures) and
declarations of global variables (accessible from any routine), predicates (usable in an-
notations), and axioms (defining the semantics of user-defined predicates). For example:

1 routine tail (A: SEQUENCE): (B: SEQUENCE)
2 require |A| > 0
3 do B := A�2:0�
4 ensure
5 len: |B| = |A| − 1
6 snd: B[1] = A[2]
7 end

is a partially-specified function tail that returns the input sequence without the first
element (line 3, i.e., from the second element to the last one). tail’s precondition (line 2)

2

http://se.inf.ethz.ch/people/furia/software/qfis.html

requires that the input sequence A has positive length; the postcondition has two clauses
(lines 5 and 6) that assert that the returned sequence B has one less element than A, and
that B’s first element equals A’s second element.

qfis annotations include axioms, pre- and postconditions (require,
ensure), intermediate assertions (assert, assume), loop invariants (invariant), and
frame clauses (modify) to specify the effect of routines on global variables. The as-
sertions themselves share the same language of Boolean expressions also usable in
imperative statements. It is very similar to the quantifier-free fragment of the theory
Tseq(Z) with some restrictions (for performance in the current implementation) but also
some additions. In particular, it includes element (A[3]) and range (A�2:5�) selection,
sequence length (|A|), concatenation (A ◦B) and sequence equality (A .

=B), as well as
full integer arithmetic among sequence elements and lengths. Postconditions may also
include the old keyword to refer to the values of global variables before invocation of
the current routine. Axioms may also include arbitrary quantifiers (forall, exist) to de-
fine predicate semantics. To simplify typing and declarations, qfis assumes different
identifier styles according to the type: integer identifiers start with lowercase letters,
sequence identifiers with uppercase letters, Boolean and predicate identifiers end with
“?”, and assertion labels start with an underscore.

2.2 Verification Condition Generation

Given a collection of annotated input routines, qfis generates verification conditions
by weakest precondition calculation (performed by visiting the AST of the input). The
backward propagated assertions hold references to their source line numbers in the input
program; this information is used when some VC cannot be discharged, to trace back
the error to the location in the source. For example, the backward substitution of tail’s
postcondition clause len determines the VC |A| >0 =⇒|A�2:0�| = |A| − 1, which
can be proven valid.

Similarly to other program provers, qfis performs modular reasoning: the seman-
tics of a call to some routine foo within another routine is entirely determined by foo’s
precondition P , postcondition Q, and frame F : check that P holds before the call
(assert P); nondeterministically assign values to variables in foo’s frame (and argu-
ments) havoc F; constrain the nondeterministic assignment to satisfy Q (assume Q).

2.3 SMT Encoding

qfis does not implement the decision procedure for the quantifier-free fragment of
Tseq(Z) presented in [2], but it directly encodes the VC in the input language of the
SMT-solver CVC3. This design choice provides overall more flexibility and a more ro-
bust implementation, relying on a carefully engineered tool such as CVC3. The input
language is deliberately relaxed to include undecidable components (full-fledged inte-
ger arithmetic and unrestricted quantifiers in axioms), but this is not much of a problem
in practice thanks to the powerful instantiation heuristics provided by SMT-solvers—as
long as the departure from the basic decidable kernel is reasonably restricted.

The translation of VC to CVC3 uses a list DATATYPE definition to encode se-
quences. A set of standard axioms provides an axiomatization of the concatenation

3

function cat applied on lists; for example, an axiom asserts that nil is the neutral el-
ement of the concatenation function cat with formulas such as cat (x, nil) = x. The
CVC3 encoding of expressions involving element selection and subranges uses unrolled
definitions that are handled efficiently by the reasoning engine.

3 Examples

Table 1 lists 11 programs verified using qfis with CVC3 2.2 as back-end, running on a
GNU/Linux Ubuntu box (kernel 2.6.32) with an Intel Quad-Core2 CPU at 2.40 GhZ
with 4 GB of RAM. For each program, the table shows the number of routines in
the input file (# R), the number of user-defined predicates and specification functions
(# P), of user-written axioms (# A), the total lines of the input (# L), and the real time
(in seconds) taken by verification, including both the VC generation and the call to
CVC3. All the programs are included in the qfis distribution.

The most complex program is the second version of merge sort, which required an
increase of the standard timeout of 10 seconds (per VC, before the SMT solver gives up
proving validity). tail is the very simple program of Section 2.1, and it is also the only
program where verification fails (as shown in Figure 1); qfis reports that it cannot verify
the postcondition clause snd: B[1] = A[2]: in fact, if A has only one element (which is
possible, because the precondition only requires that it is not empty), A[2] is undefined.

PROGRAM # R # P # A # L TIME [S]
binary search 2 3 11 87 3.1
linear search 1 3 5 41 2.3

linked list 15 4 6 208 15.6
merge sort (v. 1) 1 1 4 49 12.3
merge sort (v. 2) 2 1 4 67 31.0

quick sort 2 3 11 87 6.8
reversal 1 1 2 24 4.0

stack reversal 1 2 4 37 5.5
sum & max (v. 1) 3 2 8 83 6.8
sum & max (v. 2) 1 2 9 52 3.8

tail 1 0 0 11 2.2
Table 1. Programs verified with qfis.

Acknowledgements. Work partially supported by SNF project 200021-134976 (Auto-
mated Support for Invariant Inference) and by the Hasler foundation on related projects.

References
1. Barrett, C., Tinelli, C.: CVC3. In: CAV. LNCS, vol. 4590, pp. 298–302. Springer (2007)
2. Furia, C.A.: What’s decidable about sequences? In: ATVA. LNCS, vol. 6252, pp. 128–142.

Springer (2010)
3. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In: LPAR

(Dakar). LNCS, vol. 6355, pp. 348–370. Springer (2010)
4. Why3: Where programs meet provers. http://why3.lri.fr

4

http://why3.lri.fr

	A Verifier for Functional Properties of Sequence-Manipulating Programs

