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Abstract
The until modality of temporal logic “A until B” is called strict in its first

argument when it does not constrain the value of the first argument A at the
instant at which the formula is evaluated. In this paper, we show that linear
metric temporal logics with bounded until modalities that are non-strict in
the first argument are as expressive as those with strict modalities, when
interpreted over non-Zeno dense-time models.

1 Introduction
Propositional Linear Temporal Logic (LTL) is a well-established formalism for
describing and reasoning about systems that evolve over time. On the one hand,
its success depends on the temporal modalities — the basic ingredient of temporal
logic — mirroring naturally and effectively the way humans reason intuitively
about time. On a more technical level, the classical theory of temporal logic over
discrete time has been thoroughly studied and its deep connections with other
theories (such as automata theory and monadic second-order logic) are solid and
well-understood [5].

Matters change considerably when trying to extend this robust theory to deal
with dense time and metric (i.e., quantitative) constraints. Achieving a unifying
theory has proved much harder in this case. In particular, results are often much
less robust when dealing with dense metric time: small changes in the definition
of basic operators, or in the choice of — apparently marginal — semantic details,
may yield considerable changes in the expressiveness of the resulting formalism.
As a witness to such claims, consider for instance the recent results about the
expressiveness and decidability of Metric Temporal Logic (MTL) [6, 20, 21].
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There have been several suggestions for the causes of, and solutions to, this
lack of robustness; see for instance [5, 16, 2]. This highlights the necessity for
a close scrutiny of the variations in the definition of temporal logic languages, in
order to assess precisely their actual impact on expressiveness and other issues.

In this paper, we carry out such an analysis about the issue of strictness, with
reference to the language MTL over dense-time models. MTL is built upon a
single parametric binary modality UI named bounded until. Informally, UI(p, q)
means that p holds from the current instant until q holds sometimes in the future,
within the time interval I. If we choose an until strict in its first argument, then
p is not required to hold exactly at the current instant (i.e., the until operator
constraints strictly the future); otherwise, with a non-strict until, p has to hold at
the current instant as well.

Although, to the best of our knowledge, the issue of strictness has never been
investigated in detail for metric dense-time models, the usual informal assumption
is that strict operators are more expressive than non-strict ones (see for instance
[1, 14, 6]). In this paper we analyze the problem for non-Zeno dense-time models,
by showing that in this case MTL with strict until (in the first argument) is exactly
as expressive as MTL with non-strict until.

Outline. The paper is organized as follows. Section 2 presents MTL by in-
troducing its strict and non-strict variants; moreover, it references other metric
temporal logics that are similar to MTL, and to which (some of) the results of
this paper apply. Section 3 presents simple results on the relationship between
strict and non-strict operators; in particular, it recalls the straightforward results
that strict operators are at least as expressive as non-strict ones, and it proves the
equivalence — over non-Zeno behaviors — between the strict and non-strict vari-
ants of the derived operator nowon. Section 4 proves the main result, that is that
MTL with until strict in the first argument is exactly as expressive as MTL with
non-strict until. Finally, Section 5 discusses, in a partly informal way, to what
extent the results of the paper can be applied to other common semantic models;
in particular, it considers the use of past operators, of mono-infinite time domains,
and of generic (Zeno) models.

2 Metric Temporal Logic(s)

2.1 MTL
In this section, we define the syntax (Section 2.1.1) and semantics (Section 2.1.2)
of MTL. Although full MTL, as defined originally by Koymans [18], is a very
expressive first-order language, in this paper we refer to MTL à la Alur and Hen-



zinger [3], that is to a propositional fragment of the full language. This distinction
is often made only implicitly in the literature.

2.1.1 Syntax

Non-strict MTL (denoted simply as MTL in this paper) is defined by the following
syntax, where I = 〈a, b〉 denotes a non-empty1 interval of the time domain T such
that 0 ≤ a ≤ b ≤ +∞, 〈 is ( or [, 〉 is ) or ], and p ∈ P is some atomic proposition
from a finite set P.

φ ::= p | UI(φ1, φ2) | ¬φ | φ1 ∧ φ2

As it will be apparent in the definition of the semantics, we mean UI to denote a
bounded until that is non-strict in its first argument.2

Strict MTL. Strict MTL (denoted as M̃TL) is obtained by replacing the non-
strict bounded until UI with its strict variant, denoted as ŨI . The overall goal of
this paper is to show that MTL is exactly as expressive as M̃TL, when interpreted
over non-Zeno models.

Derived operators. Besides the usual abbreviations for propositional connec-
tives and constants (such as ∨,⇒, and >), it is customary to define a set of derived
temporal operators. Table 1 lists those that are referenced in this paper, together
with their definitions. Each operator is defined in both its non-strict version (on
the left-hand column) and its strict version (on the right-hand column); the latter
is denoted graphically by a tilde. We also denote punctual intervals (i.e., intervals
of the form [d, d] for some d) with the abbreviation = d.

2.1.2 Semantics

We define formally the semantics of MTL (and M̃TL) over generic Boolean be-
haviors. Given a time domain T (satisfying some standard minimal properties
[18]) and a finite set of atomic propositions P, a Boolean behavior over P is a
mapping b : T→ 2P from the time domain to subsets of P: for every time instant
t ∈ T, b maps t to the set of propositions b(t) that are true at t. We denote the set
of all mappings for a given set P as BP, or simply as B.

The semantics of MTL (and M̃TL) formulas is given through a satisfaction
relation |=T: given a behavior b ∈ B, an instant t ∈ T (sometimes called “current

1That is there exists some p ∈ I; we rule out empty intervals for simplicity of presentation.
2Non-strict operators are also called reflexive [8].



O ≡ D O ≡ D
^I(φ) ≡ UI(>, φ) ˜̂

I(φ) ≡ ŨI(>, φ)
�I(φ) ≡ ¬^I(¬φ) �̃I(φ) ≡ ¬˜̂I(¬φ)

U↓I (φ1, φ2) ≡ UI(φ1, φ2 ∧ φ1) Ũ↓I (φ1, φ2) ≡ ŨI(φ1, φ2 ∧ φ1)
U(φ1, φ2) ≡ U(0,+∞)(φ1, φ2) Ũ(φ1, φ2) ≡ Ũ(0,+∞)(φ1, φ2)
Uw(φ1, φ2) ≡ U[0,+∞)(φ1, φ2) Ũw(φ1, φ2) ≡ Ũ[0,+∞)(φ1, φ2)
Uw↓(φ1, φ2) ≡ Uw(φ1, φ2 ∧ φ1) Ũw↓(φ1, φ2) ≡ Ũw(φ1, φ2 ∧ φ1)
©(φ) ≡ U(φ,>) ©̃(φ) ≡ Ũ(φ,>)

Table 1: MTL derived temporal operators

instant”) and an MTL (or M̃TL) formula φ, the satisfaction relation is defined
inductively as follows.
b(t) |=T p iff p ∈ b(t)
b(t) |=T UI(φ1, φ2) iff there exists d ∈ I such that b(t + d) |=T φ2

and, for all u ∈ [0, d) it is b(t + u) |=T φ1

b(t) |=T ŨI(φ1, φ2) iff there exists d ∈ I such that b(t + d) |=T φ2

and, for all u ∈ (0, d) it is b(t + u) |=T φ1

b(t) |=T ¬φ iff b(t) 6|=T φ
b(t) |=T φ1 ∧ φ2 iff b(t) |=T φ1 and b(t) |=T φ2

b |=T φ iff for all t ∈ T: b(t) |=T φ
Notice that the above definition works both with mono-infinite (e.g.,N,R≥0,Q≥0)
and with bi-infinite time domains (e.g., Z,R,Q). Still, it differs from the most
common definition for mono-infinite time domains, where initial satisfiability is
usually chosen: see Section 5, where we discuss why our choice is compatible
with the more common definition for mono-infinite time domains.

Now, according to the semantics we have just shown, let us make a few re-
marks on the definitions of Table 1.

• Since we consider strictness in the first argument only, it is obvious that
the strict and non-strict variants of the ^ and � operators have the same
semantics.

• U↓I denotes the matching variant of the until operator, where both arguments
are required to hold together at some point. This is a relatively uncommon
variant, although it has been used in works such as [9, 19]. We deal with
it explicitly as its use simplifies the presentation of some equivalences in
Section 4.3. We call the standard variant non-matching until.

• U denotes the qualitative until, the basic operator of classic temporal logic.



Uw denotes instead the weak version of the qualitative until, where the sec-
ond argument may hold at the current instant as well; this variant is some-
times called non-strict in the second argument.3

• © denotes what we call the nowon operator. Informally, for dense-time
models, ©(φ) means that φ holds continuously on some non-empty — but
arbitrarily small — interval to the right of the current instant.

2.1.3 Non-Zenoness

It is common to constrain behaviors over dense time to the non-Zenoness (also
called finite variability) requirement [4, 12]. A behavior b ∈ B is called non-Zeno
if the truth value of any atomic proposition p ∈ P changes in b only finitely many
times over any bounded interval of time. Formally, we require that for any t ∈ T
(where T is assumed to be dense) there exists an ε > 0 such that, for all p ∈ P: (1)
either p ∈ b(u) for all u ∈ (t, t + ε) or p < b(u) for all u ∈ (t, t + ε); and (2) either
p ∈ b(v) for all v ∈ (t− ε, t)∩T or p < b(v) for all v ∈ (t− ε, t)∩T. In particular, it
can be easily seen that b |=R �[0,+∞)

(
©̃(p) ∨ ©̃(¬p)

)
must hold for any non-Zeno

behavior b and atomic proposition p.
This derived property can be “lifted” from atomic propositions to generic MTL

formulas, by observing that MTL operators preserve non-Zenoness (the proof is
straightforward by structural induction). Then, for any formula φ and non-Zeno
behavior b:

b |=T �[0,+∞)

(
©̃(φ) ∨ ©̃(¬φ)

)
(1)

Throughout this paper, we consider only dense-time behaviors that are non-
Zeno. At the end of Section 5 we discuss the impact of allowing Zeno behaviors.

2.2 Other Metric Temporal Logics
Although in this paper we consider MTL, there are several other metric temporal
logic languages that are closely related to MTL, to which our results apply as well.
In particular, let us mention:

• R
Z

TRIO, a propositional subset of the TRIO language [13, 7]. R
Z

TRIO has
been introduced in [9], and the results of the present paper have been first
developed for R

Z
TRIO in [10].

• MITL, a decidable subset of the MTL language introduced by Alur, Feder,
and Henzinger in [1]. MITL is the subset of the MTL language where all

3On the other hand, the term weak sometimes denotes a different variation of the until, namely
one where the second argument is not required to hold eventually [8].



intervals are required to be non-punctual. In this paper, we name MITL the
non-punctual subset of non-strict MTL, and M̃ITL the non-punctual subset
of strict M̃TL.

3 Preliminary and Auxiliary Results

This section presents a set of results that are auxiliary to the proof of the main
result of equivalence, carried out in Section 4. For brevity, we omit the proofs of
the simplest results.

Strict is at least as expressive as non-strict. First of all, it is straightforward
to show that M̃TL is at least as expressive as its non-strict variant MTL. In fact,
we have the following equivalence, which holds for both discrete and dense-time
domains.

UI(φ1, φ2) ≡

φ2 ∨ (φ1 ∧ Ũ(0,b〉(φ1, φ2)) if I = [0, b〉
φ1 ∧ ŨI(φ1, φ2) otherwise

(2)

Over discrete time with metric, strict is as expressive as non-strict. If we
consider discrete-time domains only (i.e., in practice N, Z, or subsets thereof), it
is not difficult to express strict until using the non-strict version. In fact, we have
the following equivalence for discrete-time domains (recall that, in discrete time,
all intervals can be expressed as closed).

Ũ[a,b](φ1, φ2) ≡


^
=1

(
U[a−1,b−1](φ1, φ2)

)
if a ≥ 1

φ2 ∨ ^=1

(
U[a,b−1](φ1, φ2)

)
if a = 0 < b

φ2 if a = b = 0

The equivalence in expressive power over discrete time does not contradict
the well-known result that, in Linear Temporal Logic (LTL), strict and non-strict
until are not equivalent, as the result for discrete-time LTL deals with qualitative
(unbounded) until only, not with its quantitative (bounded) version. In this regard,
let us recall that, in LTL, next [8] can be defined from strict until, but not from non-
strict until only [17, 11]. On the contrary, it is easy to express the ^

=1 operator
(i.e., next) using only quantitative non-strict until.

In the remainder of the paper, we therefore assume the time domain T to be
a dense set; in practice, we consider the sets Q and R, and their mono-infinite
restrictions Q≥0 and R≥0.



Qualitatively, weak non-strict is less expressive than strong strict. If we con-
sider the qualitative versions of the until operator over generic dense-time behav-
iors, Reynolds [23] has shown that the strict and strong until operator Ũ is strictly
more expressive than its non-strict and weak variant Uw (see also [8]).

Even if [23] deals with dense time as well as we do, let us remark that two
assumptions are introduced in [23] that make it possible the separation of expres-
siveness: (1) only qualitative operators are considered; and (2) the strict until is
compared against its non-strict and weak counterpart (or, equivalently, until strict
in both arguments is compared against until strict in neither). On the contrary,
in this paper we consider quantitative operators, and we focus on the issue of
strictness (in the first argument) only, without considering the impact of weak
variations.

For non-Zeno behaviors, non-strict nowon is as expressive as strict nowon.
Let us prove the equivalence in expressive power of the strict and non-strict ver-
sions of the nowon operator ©. We establish the following equivalence, for non-
Zeno behaviors.

©̃(φ) ≡ ©(φ) ∨ (¬φ ∧ ¬©(¬φ)) (3)

Proof of Formula 3. It is clear that©(φ) ≡ φ∧©̃(φ). Then, let us start by proving
the⇒ direction: assume that b(t) |=T ©̃(φ) holds at some instant t, for a non-Zeno
behavior b ∈ B. Let us first consider the case: φ true at t; then also ©(φ), and we
satisfy the first term of the disjunction. Otherwise, φ is false at t. Then, ©(¬φ)
must also be false at t, otherwise ©̃(φ) cannot be true. Thus both conjuncts of the
second term of the disjunction are satisfied.

For the ⇐ direction, let us start by considering the case ©(φ) at t; then, a
fortiori, ©̃(φ) at t and we are done. Otherwise, let us assume that ¬φ ∧ ¬ ©(¬φ)
holds at the current instant t. Since b is non-Zeno, we consider Formula 1 at t to
immediately conclude that ©̃(φ) at t. �

4 Strict Is As Expressive As Non-Strict

In this section, we establish the main result of the paper, that is that MTL is as
expressive as M̃TL for non-Zeno behaviors. Since Formula 2 states that M̃TL is
at least as expressive as MTL, the goal is now to prove the converse. In other
words, we show how to express any occurrence of Ũ

〈a,b〉 in terms of non-strict
until only. This is done by analyzing different cases for the left-bound a.



4.1 Case a > 0

First, we consider intervals I in ŨI with a positive left end-point.

Left-open intervals. For a > 0, we establish the following equivalence.

Ũ(a,b〉(φ1, φ2) ≡ ^(a,b〉(φ2) ∧ �(0,a](U(φ1, φ2)) (4)

Proof of Formula (4). Let us start with the ⇒ direction: assume that b(t) |=T
Ũ(a,b〉(φ1, φ2). That is, there exists a u ∈ (t + a, t + b〉 such that b(u) |=T φ2 and,
for all v ∈ (t, u) it is b(v) |=T φ1. From b(u) |=T φ2 it follows immediately that
^(a,b〉(φ2), so the first conjunct is proved.

Then, let us show that b(t) |=T �(0,a](U(φ1, φ2)). Let α be any instant in (0, a];
we have to show that b(t+α) |=T U(φ1, φ2). Notice that (t+a, t+b〉 ⊆ (t+α,+∞),
as t + a ≥ t + α, therefore u ∈ (t + α,+∞) a fortiori. Moreover, [t + α, u) ⊂ (t, u),
as α > 0, so for all v′ ∈ [t + α, u) it is b(v′) |=T φ1. Therefore, we have shown that
b(t + α) |=T U(φ1, φ2).

Let us now consider the ⇐ direction. Notice that b(t) |=T �(0,a](U(φ1, φ2))
implies that b(t) |=T �(0,a)(φ1). Moreover, in particular b(t+ a) |=T U(φ1, φ2). That
is, there exists a u ∈ (t + a,+∞) such that b(u) |=T φ2 and, for all v ∈ [t + a, u) it is
b(v) |=T φ1.

Let us now consider the case u ∈ (t + a, t + b〉. All in all, φ1 holds over the
interval (t, u), and φ2 holds at u; therefore, we have b(t) |=T Ũ(a,b〉(φ1, φ2).

Otherwise, let us consider the case u < (t+ a, t+ b〉; therefore u ∈ (t+ a,+∞) \
(t + a, t + b〉. In particular, this implies that for all v ∈ (t, t + b) it is b(v) |=T φ1.
Moreover, we are also assuming that b(t) |=T ^(a,b〉(φ2) in this branch of the proof.
That is, there exists a u′ ∈ (t+a, t+b〉 such that b(u′) |=T φ2. Since (t, u′) ⊆ (t, t+b),
then we have shown that b(t) |=T Ũ(a,b〉(φ1, φ2), as required. �

Left-closed intervals. The case for left-closed intervals is based on the previous
one. In fact, we prove the following formula (still for a > 0), which relies on
Formula 4 to replace strict occurrences of the until operator.

Ũ[a,b〉(φ1, φ2) ≡ Ũ(a,b〉(φ1, φ2) ∨
(
�(0,a)(φ1) ∧ ^=a(φ2)

)
(5)

Proof of Formula (5). Beginning with the⇒ direction, assume that there exists a
u ∈ [t + a, t + b〉 such that b(u) |=T φ2 and for all v ∈ (t, u) it is b(v) |=T φ1. Then,
if u ∈ (t + a, t + b〉, obviously b(t) |=T Ũ(a,b〉(φ1, φ2). Otherwise, it is u = t + a;
therefore b(t) |=T ^=a(φ2) and b(t) |=T �(0,a)(φ1).

For the⇐ direction, let us first consider b(t) |=T Ũ(a,b〉(φ1, φ2); then there exists
a u ∈ (t + a, t + b〉 such that b(u) |=T φ2 and for all v ∈ (t, u) it is b(v) |=T φ1. Since
(t + a, t + b〉 ⊂ [t + a, t + b〉, then a fortiori b(t) |=T Ũ[a,b〉(φ1, φ2). Otherwise,
b(t) |=T �(0,a)(φ1) ∧ ^=a(φ2) implies b(t) |=T Ũ[a,b〉(φ1, φ2) for u = t + a. �



4.2 Case a = 0

Now, we handle the case of intervals I = 〈a, b〉 where a = 0.

Left-open intervals. The following equivalence, which relies on Formula 3
to replace strict occurrences of the nowon operator (and thus it assumes non-
Zenoness), holds.

Ũ(0,b〉(φ1, φ2) ≡ ^(0,b〉(φ2) ∧ ©̃(U(φ1, φ2)) (6)

Proof of Formula (6). Let us start with the ⇒ direction: assume that b(t) |=T
Ũ(0,b〉(φ1, φ2). That is, there exists a u ∈ (t, t + b〉 such that b(u) |=T φ2 and,
for all v ∈ (t, u) it is b(v) |=T φ1. From b(u) |=T φ2 it follows immediately that
^(0,b〉(φ2), so the first conjunct is proved.

Then, let us show that b(t) |=T ©̃(U(φ1, φ2)). More precisely, we can show that
for all α ∈ (t, u) it is b(α) |=T U(φ1, φ2). In fact, notice that u > α, so u ∈ (α,+∞);
moreover [α, u) ⊂ (t, u), as α > t. All in all, we have that b(α) |=T U(φ1, φ2).

Let us now consider the⇐ direction, and let us assume the second conjunct:
b(t) |=T ©̃(U(φ1, φ2)). That is, there exists a β > 0 such that for all v ∈ (t, t + β) it
is b(v) |=T U(φ1, φ2). This implies that for all v ∈ (t, t + β) it is also b(v) |=T φ1.

Let v′ = t+ β/2; since v′ ∈ (t, t+ β) then b(v′) |=T U(φ1, φ2). Thus, there exists
a u ∈ (t+β/2,+∞) such that b(u) |=T φ2 and, for all z ∈ [t+β/2, u) it is b(z) |=T φ1.
Notice that φ1 holds throughout (t, u).

If u ∈ (t, t + b〉 then we are done proving b(t) |=T Ũ(0,b〉(φ1, φ2). Otherwise,
u ∈ (t,+∞) \ (t, t + b〉; then φ1 holds throughout (t, t + b〉 ⊂ (t, u). Since in this
branch of the proof we are also assuming that b(t) |=T ^(0,b〉(φ2), we are done in
this case as well. �

Left-closed intervals. It is immediate to prove the following equivalence, for
b > 0.

Ũ[0,b〉(φ1, φ2) ≡ Ũ(0,b〉(φ1, φ2) ∨ φ2 (7)

For a = b = 0, it is trivial to verify the following.

Ũ[0,0](φ1, φ2) ≡ φ2 (8)

4.3 No Need for Punctual Intervals
In our set of equivalences, Formula 5 introduces a punctual interval, i.e., it spec-
ifies an exact time distance through the ^=a operator. Therefore, it transforms
M̃ITL formulas (whenever b > a) into generic MTL formulas. This is not nec-
essary, as far as the expression of the strict until is concerned. In fact, we now



provide other equivalences — alternative to Formula 5 — that do not use punctual
intervals (of course, provided the strict until itself is constrained by a non-punctual
interval). Thus, they transform M̃ITL formulas into equivalent MITL formulas.

Matching until. To this end, it is convenient to start with the matching variant
of the until operator: we establish the following, for a > 0.

Ũ↓[a,b〉(φ1, φ2) ≡ �(0,a]

(
Uw↓(φ1, φ2)

)
∧ ^[a,b〉(φ2 ∧ φ1) (9)

Proof of Formula 9. Let us start with the ⇒ direction, and let t be the current
instant. We assume that there exists a u ∈ [t + a, t + b〉 such that b(u) |=T φ2 and,
for all v ∈ (t, u] it is b(v) |=T φ1. Clearly, b(t) |=T ^[a,b〉(φ2 ∧ φ1) is immediately
implied. We still have to show that, for all d ∈ (t, t + a], it is b(d) |=T Uw↓(φ1, φ2).

So, let us consider a generic d; notice that u ∈ [d,+∞) as d ≤ t + a ≤ u,
and recall that b(u) |=T φ2. Moreover, let v′ be any point in [d, u]; since d > t, a
fortiori v′ ∈ (t, u]. Thus, by hypothesis b(v′) |=T φ1, so we are done with proving
b(d) |=T Uw↓(φ1, φ2).

Let us now consider the ⇐ direction. First of all, let us realize that b(t) |=T
�(0,a]

(
Uw↓(φ1, φ2)

)
implies b(t) |=T �(0,a)(φ1). In fact, otherwise there would be a

y ∈ (t, t + a) such that b(y) |=T ¬φ1; but since it is also b(y) |=T Uw↓(φ1, φ2) we
clearly have a contradiction.

Next, let us consider the consequences of b(t + a) |=T Uw↓(φ1, φ2): it means
that there exists a u′ ∈ [t + a,+∞) such that b(u′) |=T φ2 and for all v′ ∈ [t + a, u′]
it is b(v′) |=T φ1.

Let us first distinguish the case u′ ∈ [t + a, t + b〉. All in all, φ1 holds over the
interval (t, u′], and φ2 holds at u′; therefore, we have b(t) |=T Ũ↓[a,b〉(φ1, φ2).

Otherwise, let us consider the case u′ < [t+a, t+b〉; therefore u′ ∈ [t+a,+∞)\
[t + a, t + b〉. In particular, this implies that for all v′ ∈ (t, t + b) it is b(v′) |=T φ1.
Moreover, we are also assuming that b(t) |=T ^[a,b〉(φ2 ∧ φ1) in this branch of the
proof. That is, there exists a u′′ ∈ [t + a, t + b〉 such that b(u′′) |=T φ2 ∧ φ1. Since
(t, u′′) ⊆ (t, t + b), then we have shown that b(t) |=T Ũ↓[a,b〉(φ1, φ2), as required. �

Non-matching until. Then, still for a > 0, we can express the non-matching
variant by means of the matching variant.

Ũ[a,b〉(φ1, φ2) ≡ Ũ↓[a,b〉(φ1, φ2) ∨(
�(0,a)(U(φ1,¬φ1 ∧ φ2)) ∧ ^[a,b〉(¬φ1 ∧ φ2)

)
(10)

Proof of Formula 10. Let us start with the ⇒ direction, and let t be the current
instant. We assume that there exists a u ∈ [t + a, t + b〉 such that b(u) |=T φ2



and, for all v ∈ (t, u) it is b(v) |=T φ1. If, furthermore, b(u) |=T φ1, then b(t) |=T
Ũ↓[a,b〉(φ1, φ2) and we are done. Otherwise, let us consider the case b(u) |=T ¬φ1:
clearly, b(t) |=T ^[a,b〉(¬φ1 ∧ φ2) is immediately implied (as ¬φ1 ∧ φ2 holds at u).
We still have to show that, for all d ∈ (t, t + a), it is b(d) |=T U(φ1,¬φ1 ∧ φ2).

So, let us consider a generic d; notice that u ∈ (d,+∞) as d < t + a ≤ u, and
recall that b(u) |=T φ2 ∧ ¬φ1. Moreover, let v′ be any point in [d, u); since d > t, a
fortiori v′ ∈ (t, u). Thus, by hypothesis b(v′) |=T φ1, so we are done with proving
b(d) |=T U(φ1,¬φ1 ∧ φ2).

Let us now consider the ⇐ direction. The implication Ũ↓[a,b〉(φ1, φ2) ⇒
Ũ[a,b〉(φ1, φ2) is straightforward, so let us assume that b(t) |=T ^[a,b〉(¬φ1 ∧ φ2)
and b(t) |=T �(0,a)(U(φ1,¬φ1 ∧ φ2)).

First of all, let us realize that b(t) |=T �(0,a)(U(φ1,¬φ1 ∧ φ2)) implies b(t) |=T
�(0,a)(φ1). In fact, otherwise there would be a y ∈ (t, t + a) such that b(y) |=T ¬φ1;
but since it is also b(y) |=T U(φ1,¬φ1 ∧ φ2) we clearly have a contradiction, as the
latter implies in particular that b(y) |=T φ1.

Next, let us realize that b(t) |=T �(0,a)(φ1) and b(t) |=T �(0,a)(U(φ1,¬φ1 ∧ φ2))
holding together require that b(t + a) |=T Uw(φ1,¬φ1 ∧ φ2). In fact, φ1 cannot
become false before t + a, but it must become false somewhere after (or at) t + a
to satisfy U(φ1,¬φ1 ∧ φ2). Thus, there exists a u′ ∈ [t + a,+∞) such that b(u′) |=T
¬φ1 ∧ φ2 and for all v′ ∈ [t + a, u′) it is b(v′) |=T φ1.

Let us first distinguish the case u′ ∈ [t + a, t + b〉. All in all, φ1 holds over the
interval (t, u′), and φ2 holds at u′; therefore, we have b(t) |=T Ũ[a,b〉(φ1, φ2).

Otherwise, let us consider the case u′ < [t+a, t+b〉; therefore u′ ∈ [t+a,+∞)\
[t + a, t + b〉. In particular, this implies that for all v′ ∈ (t, t + b) it is b(v′) |=T φ1.
Moreover, we are also assuming that b(t) |=T ^[a,b〉(¬φ1 ∧ φ2) in this branch of the
proof. That is, there exists a u′′ ∈ [t + a, t + b〉 such that b(u′′) |=T ¬φ1 ∧ φ2. Since
(t, u′′) ⊆ (t, t + b), then we have shown that b(t) |=T Ũ[a,b〉(φ1, φ2), as required. �

4.4 Summary

Considering non-Zeno behaviors, Formulas 4 through 8 provide a way to replace
any occurrence of strict until with an equivalent formula that uses only instances
of until that are non-strict in the first argument. More precisely, the replace-
ment also exploits Formula 3, which shows how to express any occurrence of the
strict nowon operator (employed in the equivalence of Formula 6) using non-strict
nowon (and thus, non-strict until) only.

Formulas 9 and 10 further show that non-punctuality of the intervals can be
preserved; that is, it is possible to replace any occurrence of strict until with an
equivalent formula that uses only instances of non-strict until whose intervals are
punctual only if those bounding the replaced strict until are. Therefore, we have



established the following.

Theorem 1. For non-Zeno behaviors over dense-time domains:

• the language MTL (MTL with non-strict until) is as expressive as the lan-
guage M̃TL (MTL with strict until);

• the language MITL is as expressive as the language M̃ITL.

5 Extensions to Other Semantics and Languages
This section discusses how the results of Theorem 1 can be extended to some
common variations of the MTL language or of its semantics. More precisely, we
discuss to what extent our results apply to semantics with a mono-infinite time
domain, to MTL extensions with past operators, to the well-known timed interval
sequence and timed word semantics, and to generic (Zeno) behaviors.

Mono-infinite time domains. In proving the various equivalence formulas in
the previous section, no assumptions were made about the dense temporal domain
T being bi-infinite or mono-infinite. Therefore, Theorem 1 holds in particular for
mono-infinite time domains that is, in practice, the sets of nonnegative rationals
Q≥0 and nonnegative reals R≥0.

As we hinted at in Section 2.1.2, in the literature, whenever a mono-infinite
time domain such asR≥0 is adopted, the interpretation relation b |=R≥0 φ is usually
defined as b(0) |=R≥0 φ; this is called initial satisfiability. On the contrary, in Sec-
tion 2.1.2, we defined a different interpretation relation called global satisfiability
and defined as ∀t ∈ R≥0 : b(t) |=R≥0 φ.

Our results still apply for the initial satisfiability relation. In fact, we have
shown, given an M̃TL formula φ, how to derive an MTL formula φ′ such that
b(t) |=T φ if and only if b(t) |=T φ′, for all times t ∈ T. Since t is generic,
in particular our results hold for t = 0. Therefore, we can express any M̃TL
formula φ such that b(0) |=R φ with another MTL formula φ′ such that b(0) |=T φ′.
This shows that Theorem 1 holds for mono-infinite time domains independent of
whether global or initial satisfiability is chosen.

Adding past operators. A common syntactic extension of MTL is obtained by
adding past modal operators. That is, we introduce a symmetric version of the
bounded until operator, named since and denoted with the symbol S, that deals
with past time instants. We define the following semantics, respectively for the
non-strict (in the first argument) since SI and for its strict counterpart S̃I .



b(t) |=T SI(φ1, φ2) iff there exists d ∈ I such that b(t − d) |=T φ2

and, for all u ∈ [0, d) it is b(t − u) |=T φ1

b(t) |=T S̃I(φ1, φ2) iff there exists d ∈ I such that b(t − d) |=T φ2

and, for all u ∈ (0, d) it is b(t − u) |=T φ1

We name MTLP the extension of MTL with a non-strict since, and M̃TLP the
extension of M̃TL with a strict since.

It is known that, over dense time, adding past operators to MTL strictly in-
creases its expressive power [6, 21]. However, let us illustrate how Theorem 1
can be extended to deal with MTLP and M̃TLP as well. First of all, let us rewrite
Formulas 2–10 so that they refer to the past, rather than to the future; in other
words, we replace every occurrence of the until operator (and its specializations)
with a since. For instance, Formula 4 becomes:

S̃(a,b〉(φ1, φ2) ≡
←−
^(a,b〉(φ2) ∧←−� (0,a](S(φ1, φ2)) (11)

where
←−
^I(φ) ≡ SI(>, φ) and←−� I(φ) ≡ ¬

←−
^I(¬φ).

Let us first assume a bi-infinite time domain such as R. Then, it is straightfor-
ward to check that all of the proofs of Formulas 2–10 work for the new formulas
with since in place of until, if we just replace, in the proofs, any distance d in the
future of the current instant of t with a symmetric distance in the past of t (i.e.,
−d). Let us show this by modifying the proof of Formula 4 into that of Formula
11.

Proof of Formula (11). Let us start with the ⇒ direction: assume that b(t) |=T
S̃(a,b〉(φ1, φ2). That is, there exists a u ∈ 〈t − b, t − a) such that b(u) |=T φ2 and,
for all v ∈ (u, t) it is b(v) |=T φ1. From b(u) |=T φ2 it follows immediately that
←−
^(a,b〉(φ2), so the first conjunct is proved.

Then, let us show that b(t) |=T
←−
� (0,a](S(φ1, φ2)). Let α be any instant in (0, a];

we have to show that b(t−α) |=T S(φ1, φ2). Notice that 〈t−b, t−a) ⊆ (−∞, t−α),
as t − a ≤ t − α, therefore u ∈ (−∞, t − α) a fortiori. Moreover, (u, t − α] ⊂ (u, t),
as α > 0, so for all v′ ∈ (u, t − α] it is b(v′) |=T φ1. Therefore, we have shown that
b(t − α) |=T S(φ1, φ2).

Let us now consider the ⇐ direction. Notice that b(t) |=T
←−� (0,a](S(φ1, φ2))

implies that b(t) |=T
←−� (0,a)(φ1). Moreover, in particular b(t−a) |=T S(φ1, φ2). That

is, there exists a u ∈ (−∞, t − a) such that b(u) |=T φ2 and, for all v ∈ (u, t − a] it is
b(v) |=T φ1.

Let us now consider the case u ∈ 〈t − b, t − a). All in all, φ1 holds over the
interval (u, t), and φ2 holds at u; therefore, we have b(t) |=T S̃(a,b〉(φ1, φ2).

Otherwise, let us consider the case u < 〈t− b, t− a); therefore u ∈ (−∞, t− a) \
〈t − b, t − a). In particular, this implies that for all v ∈ (t − b, t) it is b(v) |=T φ1.
Moreover, we are also assuming that b(t) |=T

←−
^(a,b〉(φ2) in this branch of the proof.



That is, there exists a u′ ∈ 〈t−b, t−a) such that b(u′) |=T φ2. Since (u′, t) ⊆ (t−b, t),
then we have shown that b(t) |=T S̃(a,b〉(φ1, φ2), as required. �

Intuitively, problems may arise with mono-infinite time domains such as R≥0,
where time has a lower bound. For such domains, a distance d > 0 is defined in
the past only at instants greater than or equal to d itself. However, a close scrutiny
of our proofs shows the following: from any current instant t, in the proofs we
never consider any instant in the future of t that is beyond some distance d, such
that the existence of the instant t + d is an hypothesis of the proof itself (i.e., it
is asserted by an existential quantification of an until formula that is assumed to
hold). In other words, the proofs never predicate about instants whose existence is
not constructively assumed. Therefore, if we consider the same proofs “reversed”
to the past, we never reference instants that are not guaranteed to exist (i.e., that
fall before the minimum of the mono-infinite time domain).

As a witness to this claim, consider again the proof of Formula 11: the ex-
istence of an instant u ∈ 〈t − b, t − a) in the past of t — such that a formula φ2

holds at u — is assumed as hypothesis. Then, no instant occurring before u is ever
referenced in the remainder of the proof.

All in all, we conclude that Theorem 1 holds for the past as well.

Theorem 2. For non-Zeno behaviors over dense-time domains:

• the language MTLP is as expressive as the language M̃TLP;

• the language4 MITLP is as expressive as the language M̃ITLP.

Timed interval sequences. The timed interval sequence [2, 5] is a common
model over which MTL formulas are interpreted. In practice, timed interval
sequences are represented exactly by those behaviors b that are non-Zeno [12,
22, 16]. Therefore, Theorem 1 applies to interpretations over timed interval se-
quences.

Timed words. The timed word [2, 5] is another common model over which
MTL formulas are interpreted. In [6, Lemma 4] it is shown how to express any
timed word ρ as a timed interval sequence κ(ρ), and how to modify any M̃TL
formula φ into another M̃TL formula φ′ such that ρ |=T φ if and only if κ(ρ) |=T
φ′. Through this simple translation process, timed words can be represented as
Boolean behaviors. Therefore, given an M̃TL formula φ interpreted over timed
words, one can use Theorem 1 to derive an MTL formula φ′ whose behaviors
correspond to the timed words of φ.

4MITLP and M̃ITLP are defined in an obvious manner.



However, timed word interpretations may adopt definitions of the basic op-
erators that differ in some aspects from ours (when interpreted “verbatim” over
timed words). For instance, sometimes weakly monotonic timed words are used
[2], where time is not required to strictly increase at every event. In such cases,
different semantics for the until operator are typically adopted (see [15] for an ex-
ample). Evaluating exactly to what extent our results extend to such variations is
beyond the scope of the present paper, and it belongs to future work.

Generic (and Zeno) behaviors. In proving Theorem 1, we considered non-
Zeno behaviors only. More precisely, the non-Zenoness assumption is required
in the proof of Formula 3, which is then used in Formula 6.

For a Zeno behavior b and a formula φ, it may be that b(t) |=T ¬©̃(φ)∧¬©̃(¬φ)
at some instant t, contradicting Formula 1. For instance, consider a behavior b
such that p ∈ b(u) iff u = 2−i for some i ∈ N. Then, p switches from true to
false infinitely often in any finite interval to the right of the origin, so its value is
undefined to the strict right of the origin. In this case, Formula 3 does not hold.

Whether, over Zeno behaviors, strict operators are more expressive than non-
strict ones is — to the best of our knowledge — an open problem. We conjecture
that the answer is affirmative, and in particular that a non-strict until operator
cannot be used to distinguish between Zeno and non-Zeno behaviors. We are
currently working on detailing a proof of this conjecture.
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